
AD-A261 511

yOI!J NSWCDD/TR-92/425

NSWC LI3RARY OF MATHEMATICS SUBROUTINES

BY ALFRED H. MORRIS, JR.

STRATEGIC AND SPACE SYSTEMS DEPARTMENT

JANUARY 1993
FEB 2 5 1993

Approved for public release; distribution unlimited.

93-03904

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION
Dahigren, Virgini3 22448-5000

f 1) Bjy

II S DL PAHI - MFNT (o)f COMM .fl -C
_ - ['J/", I)',A I (,1 jr I(ýA !INI) (1) ,,1Ai1()r I ý If I)

- "P F? -I i IF fI) VA q :"')

NSWCDD/TR-92/425

NSWC LIBRARY OF MATHEMATICS SUBROUTINES

BY ALFRED H. MORRIS, JR.
STRATEGIC AND SPACE SYSTEMS DEPARTMENT

JANUARY 1993

Approved for public release; distribution unlimited.

NAVAL SURFACE WARFARE CENTER

DAHLGREN DIVISION
Dahigren, Virginia 22448-5000

FOREWORD

In 1976 development of the NSWC library of general purpose numerical mathematics
subroutines began. Since that time six editions of the library have been released. for general
use. This report describes the subroutines in the 1993 edition of the library, the seventh
edition. The report supersedes N1WC TR 90-21 (1990). The development of the library
is funded by the Computing Systems and Networks Division, Strategic and Space Systems
Department, NSWCDD.

Approved by:

R. L. SCHMIDT, Head
Strategic and Spa-e Systems
Department

L A ~'75•,.on For

-DI

f -]

- --4

•-= I
i ii.

ABSTRACT

The NSWC library is a libi'ary of general purpose Fortran subroutines that provide
a basic computational capability for a variety of mathematical activities. Emphasis has
been placed on the transportability of the codes. Subroutines are available in the following
areas: elementary operations, geometry, special functions, polynomials, vectors, matrices,
large dense systems of linear equations, banded matrices, sparse mr'trices, eigenvalues and
eigenvectors, t4 solution of linear equations, least-squares solution of linear equations, op-
timization, transforms, approximation of functions, curve fitting, surface fitting, manifold
fitting, numerical integration, integral equations, ordinary diffe:,ential equations, partial
differential equations, and random number generation.

---- _

CONTENTS

Page

Introduction 1

Elementary Operations

Machine Constants - SPMPAR,DPMPAR,IPMPAR 3
Argument Bounds for the Exponential Function -

EPSLN,EXPARG,DEPSLN,DXPARG 5
Sorting Lists - ISHELL,SHELL,AORD,RISORT,SHELL2,DSORT,

DAORD,DISORT,DDSORT,QSORTI,QSORTR,QSORTD.,IORDER,
RO RDER,D O RDER .. 7

Cube Root - CBRT,DCBRT .. 11
Four Quadrant Arctangent - ARTNQ,DARTNQ 1.1
Length of a Two Dimensional Vector - CPABS,DCPABS 11
Reciprocal of a Complex Number - CREC,DCREC 13

1 Division of Complex Numbers - CDVI,DIVID 13
Square Root of a Double Precision Complex Number - DCSQRT 13
Conversion of Polar to Cartesian Coordinates - POCA 15
Conversion of Cartesian to Polar Coordinates - CAPO15
Rotation of Axes - RO TA .. 15
Planar Givens Rotations - SROTG,DROTG 17
Three Dimensional Rotations - ROT3 ... 19
Rotation of a Point oni the Unit Sphere to the North Pole - CONSTR 21
Computation of the Angle Between Two Vectors - ANG 23
Trigonometric Functions - SIN1,COS1,DSIN1,DCOS1 25
Hyperbolic Sine and Cosine Functions - SNIICSH 27
Exponentials - REXP,DREXP .. 29
Logarithms - ALNREL,RLOG ,RLOG1,DLNREL,DRLOG,DRLOG 1 31

Geometry

Determining if a Point is Inside or Outside a Polygon - LOCPT 33

I Intersection of a Straight Line and Polygonal Path -- PFIND 35
The Convex Hull for a Finite Planar Set -- HULL 37
Areas of Planar Polygons -- PAREA ... 39
H am iltonian C ircuits - H C .. 41

Special Functions

Error Function -- CEItF,CERtF'C,ERF,EItFC,ERF C ,I)Cl(E'RF,DCIFti'.,
i)E1iF,DER1FC,I)ERIC1 45

lnverse Error Function - ERlFI,I) FI F1 51
Diffvrencc ,f Error Functions - AERF,I)AEPFt 53
Normal Probability Distribution Function -- PNI 55
Inverse N,,rnriu Pl obability Distribution Function - 'NI,I)PN1I.... 57

ID aw son's Integral l)AW ,J) I)I)A W ... 59

vii

Complex F'resnel Integral - CFRNLI 61
Real Fresnel Integrals - FRNL.. 63
Exponential Integral Function - CEXPLI,EXPLI,DEI)DEI1 65
Sine ana Cosine Integral Functions - SI,CIN I.... I.........69

IExponential E'xponential Integral Function - CEXEXI 71
Dilogarithm Function - CLI,ALI.. 73
Gamma Function - CG AMMA,G AMMA,GAMLN,DCG AMA,

DGAMMA,DGAMLN ... 75
Digamma Function - CPSI,PSI,DCPSI,DPSI 79
Derivatives of the Digamma Function - PSIDF............................... 81
Incomplete Gamma Ratio Functions - G RATIO, RCOMP, DG RAT

DRCOMP 83
Inverse Incomplete Gamma Ratio Function - GAMINV,DGINV 85
Logarithm of the Beta Function - BE'2ALN,DBETLN I.............87
Incomplete Beta Function - BRATIO,ISUBX,BRCOMP 89
Bessel Function Ji,(z) - CBSSLJ,BSSLJ,BESJ............................... 91
Bessel Function Y,,(z) - BSSLY 93
Modified Bessel Funct)*on 1,(z) - CBSSLI,BSSLI,BESI 95
IModified Bessel Function K 1,(z) - CBESK,CBSSLK,BSSLK 97
Airy functions - CAI,CBI,AI,AIE,BI,BIE.................... I............... 99
Complete Complex Elliptic Integrals of the First and Second Kinds -

CK,CKE............................ I.......... 103
Real Elliptic Integrals of the First and Second Kinds -

ELLPI,RF VAL, RDVAL,D ELLPI,DRF VAL,DRDVAL 107
Real Elliptic Integrals of the Third Kind - EPI,RJVAL,

DEPI,DRJVAL......................... 11ll
Jacobian Elliptic Functions - ELLPF,ELPFC1 115
Weierstrass Elliptic Function for the Equianharmonic

and Lemniscatic Cases -- PEQPEQ1,PLEM,PLEM1 119
Integral of the Bivariate Density Function over Arbitrary

Polygons and Semi-infinite Angular Regions - VALR2................. 123
Circular Coverage Function - CIRCV 125
Elliptical Coverage Function - PKILL 127

Polynomials
Copying Polynomials - PLCOPY,DPCOPY................................. 129
Addition of Polynomials - P.ADD,DPADD.................................. 131
Subtrartion of Polynomials -- PSUBT,DPSUBT............................. 133
Multiplication of Polynomials -- PMt.LT,DPMUIJT.......................... .135
lDivision of Polynomials- PDIV,DPD1V.................................... 137
Real Powers of lPotyriomials - PILIWR?,D1PLPWR 139
Inverses of Power Series -- PIN1VL)P1NV................................. 141
Derivatives and1 Integrals of Polynomials -- MIPLNMV........ 143
Evaluation of Cliebysliev Expansions -- C1SEVL I)CSEVI 145
Lagrange Polynoial~s -- l(RNG N,,G RNG V,LG RNX X......................147
Orthogonal lPolynoImiiJ2, on' Finite Seits OIITILOS,Ol{THIOV,

Oft'F'lX.. 149

voli

Solutions of Nonlinear Equations
IZeros of Continuows Functions-. ZEROIN,DZERO............... 151
Solution of Systems of Nonlinear Equatiors - HBRD 153
Solutions of Quadratic, Cubic, and Quartic Equations

QD)CR.T,CI3CRT,QTCRT,DLQDCRT,DCBCRT,DQTCRT.ý....... 155
Double Precision Roots of Polynomxials - DRPOLY,DCPOLY 157

1 Accuracy of the Roots of Polynomnials - RBND,CBND...................... 159

Vec tors
Copying Vectors - SCOPY,DCOPY,CCOPY 161
Interchanging Vectors - SSWAP,DSWAP,CSWAP.......................... 163
Planar Retation, of Vectors - SROT,DROT,CSROT..................... ... 1165

1Modified Givens Rotations - SROTMG,DROTMG,SROTM,D.ROTN/M.........167
Dot Products of Vectors - SDOT,DDOT,CDOTC,CDOTU 171
Scaling Vectors - SSCAL,DSCAL,CSCAL,CSS CAL............ 173
Vector Addition - SAXPY,DAXPY,CAXPY................. 175
L, Normn of a Vector - SASUM,DASUM,SCASUM 177
L2 Norm of a Vector - SNRM2,DNRM?,SCNRM2 I.... I.............. 179
L,, Norm of a Vector - ISAMAX,IDAMAX,ICAMAX...................... 181

Matrices
Packing and Unpacking Symmetric Matrices - MCVFS,DMCVFS,

M4CVSF,D-MCVSF........................ 183
Conversion of Real Matrices to and from Double Precision Form -

MCVRD,MCVDR ... 185
Storage of Real Matrices in the Complex Matrix Format - MCVR.C..........187
The Real and Imaginary Parts of a Complex Matrix -

CMREAL,CMIMAG................................... 189
Copying M~atrices -- MCOPY,SMCOPY,DMCOPY,CMCOPY 191
Computation of the Conjugate of a Complex Matrix - CMCONJ 193
Transposing Matrices -- TPOSE,DTPOSE,CTPOSE,TIP,DTIP,CTIP 195
Computing Adjoints of C"omnpkx Matrices - CMADJ,CTRANS............... 197
Matrix Addition -- MADD,SMADD,DMADD,CMADD 199

4 ~~Matrix Subt-raction -- MSLUI3T,SMSUBT,DMSUBT,rCMSUBT 201
Matrix Multiplication - MTMS,DMTMS,CMTMS,MPROD,DMPROD,

CMPROD............................... 203
Product of a Packed Symmu-etric Matrix and a Vector -

SVPRD,I,-SVPRD ý............................... 205
Transpose Matrix Products - TIMPROD 207
Symmetr~ic Matrix Products -. SMPROI)......... 209
Kronecker Product of Matriccos -- KPROD,DKPROD, 'KP.OL I2t1
R1ank of a Reai Matrix- RNK,D)RNK 213
Inverting Generai Peal Matrices and Solving General

Sy stemrs of Real Linear Equations --CR0 UT, KRI01T,r
NPIIVOTI',MSIV ,)MSILV ,NS1N,DýlLMSV! 215

Soluiton 0 f Real Eqjuations wvithý Iterative Imnprovement -- S LVMI 22

ix

Solution of Almost Block Diagonal Systems of Linear
Equations - ARCECO,ARCESL 223

Solution of Almost Block Tridiagonal Systems of Linear
Equations - BTSLV 225

Inverting Symmetric Real Matrices and Solving Symmetric
Systems of Real Linear Equations - SMSLV,DSMSLV 227

Inverting Positive Definite Symmetric Matrices and
Solving Positive Definite Symmetric Systems of
Linear Equations - PCHOL,DPCtIOL 231

Solution of Toeplitz Systems of Linear Equations -
TO PLX ,D TO PLX .. 233

Inverting General Complex Matrices and Solving General Systems
of Complex Linear Equations- CMSLV,CMSLV1,
D C M SLV ... 235

Solution of Complex Equations with Iterative Improvement -
C SLV M P 239

Singular Value Decomposition of a Matrix -- SSVDC,DSVDC,
C S V D C 241

Evaluation of the Characteristic Polynomial of a Matrix -
DET,DPDET,CDET ... 243

Solution of the Matrix Equation AX + XB C - ABSLV,DABSLV 245
Solution of the Matrix Equation AeX + XA C when C is

Symmetric - TASLV,DTASLV .. 247
Solution of the Matrix Equation AX 2 + BX -+- C = 0 -- SQUINT 249
Exponential of a Real Matrix - MEXP,DMEXP 251

Large Dense Systems of Linear Equations

Solving systems of 200-400 Linear Equations -- LE,DPLE,CLE 253

Sanded Matrices

B and M atrix Storage 255
Conversion of Banded Matrices to and from the Standard Format -

CVBR,CVBD,CVBC,CVRB,CVDB,CVCB,CVRB 1,
CVDB1,CVCB1 ... 257

Conversion of Banded Matrices to and from Sparse Form -
MCVBS,DMCVBSCMCVBS,M(CVSB,DMCVSB,CMCVSB 259

Conversion of Banded Real Matrices to and from Double
Precision Form -- BCVRD,BCVDR 261

The Real and Imaginary Parts of a Banded Complex Matrix --
B R EA L ,B IM A G 263

Computing A + Bi for Banded Real Matrices A and B IBCVRC 265
Transposing Banded Matrices - BPOSE,DIBPOSE,CII OSF. 267
Addition of Banded Matrices - BADD,DBADD,C3ADI) 269
Subtraction of Banded Matrices - BSIJiB,D3SUti,,CUB t 271
Multiplication of Banded Matrices - BPROD, DIBPROD,CBPROIb 271
Product of a Real lBanded Matrix and Vector - BVPRI),JIVPHI 1),

BT1P Rl),BT P~R D I ... 2 75

x

Product of a Double Precision Banded Matrix and Vector -
DB3VPD,DI WPD I ,DBTPDDBTPD1 277

Product of a Complex Banded Matrix and Vector - CBV]?D,
CBVPD1,CBTPD,CBTPD1 .. 279

L, Norm of a Real Banded Matrix - B1NRM,DBINRM 281
L, Norm of a Real Banded Matrix - BNRM,DBNRM 283
Solution of Banded Systems of Real Linear Equations -

B SLV ,B SLV 1 285
Computation of the Condition Number of a Real Banded

M atrix -- B 1C N D 287
Double Precision Solution of Banded Systems of Real Linear

Equations - DBSLV,DBSLVI 289
Computation of the Condition Number of a Double Precision

Banded M atrix - DB1CND 291
Solution of Banded Systems of Complex Linear Equations -

C B SLV ,C B SLV i .. 293

Sparse Matrices

Storage of Sparse M atrices ... 295
Conversion of Sparse Matrices to and from the Standard

Format - CVRSCVDS,CVCS,CVSR,CVSD,CVSC 297
Conversion of Sparse Real Matrices to and from Double

Precision Form - SCVRD,SCVDR 299
The Real and Imaginary Parts of a Sparse Complex Matrix -

C SIZEA L,C SIM A G ... 301
Coi•puting A + Hi for Sparse Real Matrices A and B - SCVRC 303
Copying Sparse Matrices - RSCOPY,DSCOPY,CSCOPY 305

Computing Conjugates of Sparse Complex Matrices - SCONJ 307
Transposing Sparse Real Matrices -- RI OSE,RPOSE1 309
Transposing Sparse Double Precision Matrices - DPOSE,DPOSE1 311
Transposing Sparse Complex Matrices -- CPOSE,CPOSEI 313
Addition of Sparse Matrices- SADI),DSADD,CSAID 315
Subtrac~tion of Sparse Matrices SS1JBTr,DSSUBT,CSSU r IT................ 317
Multiplication of Sparse Matrices - SPROD,DSPROI),CStIRO) 319
Product of a Real Sparse Matrix arid Vector - MVPR1),MVPRDI,

M Tl IP I),M T'lRIID 3ý1
l'roduct of a l)ouble Precision Spz.rse Matrix and Vector-

I)VI1RI),)VIJ)RI) I ,DTI)TlI),l)TPRlI) 1.............................. 323
ProdAct of a. Complex Sparse Matrix and Vector CV PR!),

CVI I,(I') ,l'lII) 1.......... 325
"L, Norm ,f a Sparse I cal Matrix SIN RM,I)SIN!?M 32
I.._ Norm (f a Spare R{eal Matrix SN1?M I)SNIHN

)rdvriog the)WS (If ifa Spas NI attrix by ho revasilg
Ic lig t h S P O(IN I) 3 3 1

lP(.r&.rii,• SpLerse .nci ric-• jtW bIck Triaogular l"')rin
l i)

'(i

Solution of Sparse Systems of Real Linear Equations -
SPSLV ,RSLV ,TSLV ... 335

Computation of the Condition Number of a Real Sparse
M atrix - S1C N D 339

Double Precision Solution of Sparse Systems of Real Linear
Equations - DSPSLV,DSLV,DTSLV41

Computatior of the Condition Number of a Double Precision
Sparse M atrix -- DSICND ... 345

Solution of Sparse Systems of Complex Linear Equations -
CSPSLV ,CSLV,CTSLV .. 347

Eigenvalues and Eigenvectors

Computation of Eigenvalues of General Real Matrices -
EIG,EIG1 351

Computation of Eigenvalues and Eigenvectors of General
Real Matrices -- EIGV,EIGV1 353

Double Precision Computation of Eigenvalues of Real
M atrices - D EIG 355

Double Precision Computation of Eigenvalues ai
Eigenvectors of Real Matrices - DEIGV 357

Computation of Eigenvalues of Symmetric Real Matrices -
SE IG ,SE IG I .. 359

Computation of Eigenvalues and Eigenvectors of Symmetric
Real M atrices - SEIGV,SEIGV1 361

Double Precision Computation of Eigenvalues of Symmetric
Real M atrices - DSEIG .. 363

Double Precision Computation of Eigenvalues and
Eigenvcctors of Symmeuric Real Matrices - DSEIGV 365

Computation of Eigenvalucs of Complex Matrices - CEIG 367
Computation of Eigenvalues and Eigenvcctors of Complex

M atrices - C EIG V .. 369
Double Precision Computation of Eigerivalues of ComplexM t ie -.. ,I11 (,... 371i

Matrices D ACI(................. 371
Double Precision C(omputation of Eigenvalues and

Eigenvectors of Complex Matrices - !)CEIG V 373

t, Solution of Linear Equations

f, Solution of Systems of Linear EI'quations with Equality
and hInquality Co;istrkiints CIA 375

Least Squares Solution of Linear Equations

L east Squ:.ires Solitioi, of S ' stems of Linear Equations
1,LSQ, LSQ tI,l IF'TI,I I F''I2 177

Lva-,.t Squarcs Solutionl of Overdeterwitir'l Svs..crns of lInear
q'A(tolitos "w it~h Iter;.ti vc lIoproveinent 1, 1 QM P 3v3

)0oble' t'recision lexcit. Sq(tuAVres S;iltioln of S•ysteuis of
linear Eqtations l)LII Q ,I)I 1 11 'I'1,1) 11 2 :s85

xii

Least Squares Solution of Systems of Linear Equations with
Equality and Inequality Constraints - LSEI 391

Least Squares Solution of Systems of Linear Equations with
Equality and Nonnegativity Constraints - WNNLS 395

Least Squares Iterative Improvement Solution of Systems of
Linear Equations with Equality Constraints - L2SLV 399

Iterative Least Squares Solution of Banded Linear
Equations - BLSQ .. 403

Iterative Least Squares Solution of Sparse Linear
Equations - SPLSQSTLSQ ... 405

Optimization

Minimization of Functions of a Single Variable - FMIN 407
Minimization of Functions of n Variables -- OPTF 409
Unconstrained Minimum of the Sum of Squares of Nonlinear

Functions - LM DIFF411
Linear Programming - SM PLX,SSPLX 413
The Assignment Problem - ASSGN .. 417
0-1 Knapsack Problem - M KP 419

Transforms

Inversion of the Laplace Transform - LAINV 421
Fast Fourier Transform - FFT,FFT1 ... 425
Multivariate Fast Fourier Transform - MFFTMFFT1 427

Discrete Cosine and Sine Transforms - COSQI,COSQB,COSQF,
.SIN Q B ,SIN Q F .. 429

Approximation of Functions

Rational Minimax Approximation of Functions -- CHEBY 433
LP Approximation of Functions -- ADAI 435
Calculation of the Taylor Series of a Complex Analytic

Function - C PSC ,I)C P SC ... 439

Curve Fitting

inear Interpolation - T il 413
Lagrange Interpolation 1,11) 445
lheri ite hIterpolation - II''tR 4.17
Conversion of Real Polynomials from Newton to l'ayhbr

Series Formn - PCO EFF' 4-1
Lea-t Squares Polynomrial Fit - PFIT 451
Weighted I,ea&t Squares Polynomial Fit WPFIT 453
Cubic Spline Interpolation CBISiIL,SIPI .FT
Weighted letLst Sqtuares Cuwic Spline Fitting S'FlT 157
-ie.-ast Squiares Cubic Splinc Fitting with I'41alfity

dam Inequ iality (Constraints (ISt)FIT15 9

(,,III) 1)1 line J'ý vt~ I ()I) SC,()M ,S(()M !'I '-,('()M l'2 46X1

S~x111

Cubic Spline Evaluation and Differentiation - SEVAL,
SEVA L1,SEVA L2 463

Integrals of Cubic Splines - CSINT,CSINT1,CSINT2 465
Periodic Cubic Spline Interpolation - PDSPL 467
Least Squares Periodic Cubic Spline Fitting - PDFIT 469
Periodic Cubic Spline Evaluation and Differentiation -

PSC M P,PSEV L 471
N-Dimensional Cubic Spline Closed Curve Fitting - CSLOOP,

LO PCM P,LO PD F 473
Spline under Tension Interpolation - CURVI 475
Spline under Tension Evaluation - CURV2 477
Differentiation and Integration of Splines under Tension -

CURVD,CURVI 479
Two Dimensional Spline under Tension Curve Fitting -

K U RV I,K U RV 2 .. 481
Two Dimensional Spline under Tension Closed Curve

Fitting -- K URVP1,KURVP2 .. 483
Three Dimensional Spline under Tension Curve Fitting -

Q U RV 1,Q U RV 2 485
B -S p lin es 4 87
Finding the Interval that Contains a Point - INTRVL 489
Fvaluation and Differentiation of Piecewise Polynomials

from their B-Spline Representations - BVAL 491
Evaluation of the Indefinite Integral of a Piecewise

Polynomial from its B-Spline Representation - BVALI 493
Conversion of P)iecewise Polynomials from B-Spline to

Taylor Series Form -- SP I ... 495
Evaluation of lhiecewise Polynomials from their

"Taylor Series Representation P)VAI 1 497
-Piec.wise Polynomia Interpolation - STR' P 499
Weighted lewst Squares lWicv (wise l'oly noniial Fitting BS LSQ 501
La.•st Squares t'iecewi.se P oulynoimial F itting with

Iqualitly and Inequality Constraints I " IT 503

Surface Fitting over Rectangular Grids

Biculic Splinres and Bisplines under lenision 5)05
Weighte[d IA.wit Sq;(lares l.icub|ic Spline Fitting SI'FT2.......... 507

Evaluatiol ald t)ilf'erciltiatilu of Bicui c Splilics
('S I,'~ ,('SIJIl~ l1 ,(RI , F2 ,(.'SI{ '2 509

11ispline minder Tenisioni Sirfawe interpolation ST'I 13
B1i ,plilne tinder 'l'st:ons Ev;lidimhon SIJ kl"2,NSURIU2 5...................IS
bivAlriabt. Hl.pie leiet'cewisc I':lymIiuiil litnitivrpo,0ii(.n IS'....2..........517
Blivarilte 6.•ip•inc l'hkewivc l'u(lyninial Lt,:LýLt Squeris

St,'~~~~ittin~g 1• 1 5 1:

I"valkiratition An Pifferentititi () f Bivatriattv Pie(ci.Se
'lo'lynumui lm,. from th,,eir h Stline I•eprvescntuttion I ,VAI.I2

x 1\V

Surface Fitting over Arbitrarily Pcowitioned Data Points
Surface Interpolation foi- Arbitrarily Positioned Data Points

l TRMESH',GRAD-G ,GRADL,SFVAL,SFVAL2......................... 523

Manifold .ittin&

Weighted Least Squares Fitting with Polynomiýals of ni Variables -

M.F 11)DMFIT,MEVAL,DME VAL I........................ I.... 527

Numerical Integration

Evalu atiorn of Integrals over Finite Intervals - QAGS,
QXGSQStJBA,DQAGS,DQXGS 531

Evalu'stiori of !ntegrals over Infinite Intervals - QýAGI,DQAGI 539
Evaluation of Double Integrals over Triangles -- CUBTRI 543

Integral Equations

Solution of Fredholrn Integral Equations of the Second Kind - IESLV 545

Ordinary Differential Equations/ Initial Value Problems
The Initial Value Solvers - Introductory Comments 549
Adaptive Adanis Solution of Nonstiff Differential Equations - ODE 551
Adaptive Block RKF Solution of Nonstiff Differential Equations -

BRKF45 555
Adaptive RKF Solution of Nonstiff Differential Equations - RKF45...........559
Adaptive RKF Solution of Nonstiff Differential Equations with

Global Error Estimation - GERK 563
Adaptive Solution of Stiff Differential Equations -- SFODE,SFODE1 567
Fourth-Oreer Ilunge-Kutta - RK 571
Eightli-Order Runge-Kutta - RK8 573

Partial Differential Equations
Separable Second.-Order Elliptic Equations on Rectangular

Domnains - SEI)DE 575

Discrete Random Number Generation

Uniform Randorn Se!ectien of Values fromn a Finite Set of
Iaixgý!r[- URGET 579

Continuous Random Number Generation

Uniform Random Number Generator .- URNG,DURNG.................... 581
Genvratling Points Uniformly in a Square -URNG2,DURN(G2 ... IL.............583
Gent-rating Points Uniformly in a Circle -RCIR,D)RCIR 585
Normal Random Nurmber Generator - RNOH,DRNOR,NIRN(.,D)NRN 587

Multi variat e Normhl Random Vector Generator -NRVG,DNRVG
NHVG; 1 I)N .VG; 1 589

Exponential Random Number Gcneratoc RANEXi,DRNEXP.............. 593
(ariona Kandorr. Nuynber Generator &nd the Chi-Square I istributioni

HGAM,I)RCAM 595

xv

Beta Random Number Generator - RBETA,DRBETA 597
F-Distribution Random Number Generator - FRAN,DFRAN 599
Student t-Distribution Random Number Generator - TRAN,DTRAN 601
First Order Markov Random Number Generator - RMK1,DRMK1 603

Appendix. Installation of the NSWC Library and Conversion of
Codes from Single to Double Precision Form 605

In d ex .. 60 7

xvi

INTRODUCTION

In 1976 development of the NSWC library began. The objective was to form a library
of general purpose Fortran subroutines that would provide a basic computational capability
for a variety of mathematical activities. Even though the subroutines were intended for
use on the k DC 6000-7000 series computers, emphasis was placed on their transportability.
Currently, the library is used on a variety of computers, ranging from supercomputers such
as the Cray Y-MP to personal computers such as the IBM PC. A brief appendix is included,
which provides information for installing the library on all computers.

i'he subroutines in the library originate from a variety of sources. Approximately
40% of the subroutines were developed at NSWCDD. The remaining subroutines are from
government, commercial, and university research centers in the U.S. and abroad. The 1993
edition of the library contains 1060 + subroutines. This report describes the 576 subroutines
that are intended for general use. The remaining subroutines are supportive, norma!ly being
of little interest to most users. The library contains single and double precision subroutines.
The single precision subroutines are designed for single precision floating arithmetics which
have 6-14 digits of accuracy, and the double precision subroutines are designed for double
preŽcmsion arithmetics which have 12-30 digits of accuracy.

All subroutines are thoroughly examined and tested before being accepted for the li-
brary. Primary considerations are the reliability and transportability of the subroutine, its
efficiency, and its ease of use. The subroutines in the library are always subject to reexam-
ination and possible modification. If a subroutine becomes obsolete, then the subroutine
may be eliminated.

The major issues concerning reliability are accuracy, the stability and robustness of
the algorithm being used, and tihe overall quality of the code. Testing is performed for
determining the accuracy and efficiency of the subroutine, checking for defects in the code,
searching for regions of numerical instability, and checking the robustness of the algorithm.
In most cases the testing must be highly selective, being used along with an examination
of the algorithm and code. After the algoritihm and code have been examined and testing
is finished, an assessment is made of the overall performance of the code.

mIm regard to transportability, it is clear that machine dependent constants and pre--
cision dependent algorithms cannot be avoided. However, machine dependent code is not
permitted. In order for a code to be acceptable, it is reqlired that the code satisfy the 1977
ANSI Fortran standard. Tie code oF a subroutine is examined for illegal Fortran constructs,
detection of operations that are known to be error prcne when n, used with extreme care,
location of global variables or ENTRY statements (which are not permitted), and checking
for the use J.f EQU:VA LENCE' statements arnd common blocks (which are allowed, but with
extreryme disapproval). Variables that are defined by DATA stateiments are never permitted
to he redefined. (The 1977 Fortran standard permits such a variable to be retefined by an
aýssignmlmlnt staternel t. Iflwever, when the subroutine terminates the variable thenl becolies
o, (n1(ffiled•C)

The ease of use criterion is of considerable importance. The main purpose of the

library is to provide a service to as broad an audience as is possible. Hence, it is important

that the subroutines be as simple to use and comprehensive in scope as is practical, and

that the subroutines do riot unnecessarily restrict the user. The only requirement fGr the

software that 1, as a direct bearing c ' issue involves the use of I/O. No.I/O statements

"are permitted. If error detection)rned in a function, then it is required that the

function be assigned a special vali 'i the error occurs. (No arguments of a function

in the library may be altered dur. l ipu.Ation.) If error detection is performed by a

subroutine that is not a function, rk e call line of the subroutine must contain one or

more parameters for reporting the' ci;. The use oi such parameters allows the user to

have total control over the sequenciý of e-ets that follow.

If the precision of a subroutinc u e library is established, then this information is

given with the description of the sul m ine in the report. All precision estimates are for

the CDC 6000-7000 series 14-digit si L.')recision and 28-digit double precision truncation

arithmetics. The estimates do not 'de inherent error. Thus, the reported accuracy

of a subroutine may be better or han the inherent error of the function that it is

computing.

Since the subroutines in the 1i, gary originate from a variety of sources, standards

concerning in-line documentation and the style of code cannot be imposed. In generel, all

supportive subreutines not intended for direct use are not described in the report. This

makes it possible to modify or replace the code without bothering the programmer. This

capability is extremely important,. Luring the last decade a vast amount of research has

resulted in the development of new, more powerful algorithms for a variety of problems.

Many of the results affect current codes, occasionally making some codes obsolete.

Since the beginning of the development of the library, no proprietary or otherwise

restricted codes have been permitted ;' the library. Only general purpose mathematical

subroutines for use by the entire NSWCDD scientific community have been mnsidered for

the library. Restrictiops on the use of any iibrary can severely impair its V Ile, both for

theoretical purposes (where the source codes are frequently of prime importance), and for

general use in applications. Since expertise is so widely scattered, reliable codes are so very

difficult to obtain, and many of the libraries do not provide source code, the policy has been

to make the source code of the library readily available to the general scientific communitry.

2

MACHINE CONSTANTS

Assume that the atege" arithmetic being used has base b, and that the integers are
representee i the form

:t:(ko + klb + ... + k,,.-Ib"•-'*)

where ko, k1 , ,,k- 1 are integers such that 0 _< ki < b (i = 0,1, , n - 1). The value
n is the number of base b digits ki, and b" - 1 and -(b" - 1) are the largest positive and
negative integers that occur.

It is assumed that the single and double precision arithmetics being used have the same
base, say fl, and that the nonzero numbers can be represented in the form

ki km

where kj, ... ,km are integers such that 0 < ki < # (i =1,...,rn),.kl _> 1, and e is an
integer such that f .. , f< f rnc.. The value m is the number of base 8 digits ki, and
k, > 1 is the requirement that the floating point numbers are normalized. The values
eroin and fm.. are the largest negative and positive exponents that arise where the floating
point numbers maintain full m digit accuracy. Then xmin -7 81--1 is the smallest positive
number that is represented and xmy•× = (1 - - the largest.

Associated with rn is the constant c =- P-m+", called the relative precision of the
floating point arithmetic being used. Theoretically, c is the smallest number for which 1 + C,
when stored in mremory, is stored exactly and has a value greater than L. Normally c will
be the smallest number that satisfies these conditions. However, there do exist computer
arithmetics (such as the CDC 6L000-7000 series double precision arithmetics) for which this
is not the case. In such arithrnctics, some P-rithynetic results are able to be stored more
accurately than others.

The functions SPMPAR,)l'M PA R, ar,d IPMPAR are available for obtainit)g the above
constants. IPMWA1 is the only subprgrani in the library that is machine dependent.

SPMPAR(i)

SPMPAR is a real valued function. It is assumed that i = 1,2, or 3. SPMPAR provides
the following constants for the single precision arithmetic being used:

SPMI'AR(i) c, the relative precision

SPMPA R(2) x,njri, the smallest positive number

SPMIPAR(3) Xm.,the largest positive number

Programming. SPMPARA was written by A. If Morris. The function IfPMPAR is used.

"3

DPMPAR(i)

DPMPAR .s a double precision valued function. It is assumed that i = 1,2, or 3.
DPMPAR provides the following constants for the double precision arithmetic being used:

DPMPAR(1) = e, the relative precision

DPMPAR(2) = Xmin, the smallest positive number

DPMPAR(3) = Xmx, the largest positive number

DPMPAR must be declared in the calling program to be of type DOUBLE PRECISION.

Programming. DPMPAR was written by A. H. Morris. The function IPMPAR is used.

IPMPAR(i)

IPMPAR is an integer valued function. It is assumed that i == 1, ... ,10. IPMPAR
provides the following constants:

Integer arithmetic

IPMPAR(1) -- b, the base of the arithmetic
IPMPAR(2) n, the number of base b digits
IPMPAR(3) bn -_ 1, the largest integer

Base for the floating arithmetics

IPMPAR(4) -7)3

Single precision arithmetic

IPMPAR(5) = n, the number of base [3 digits
IPMPAR(6) == ni,,, the largest negative exponent
IPMPAR(7) . the largest positive exponent

Double precision arithmetic

IPMPAR(8) =m, the number of base /3 digits
IPMPAR(9) . f,,,j, the largest negative exponent
IPMPAR(10) =- nx, the largest positive exponent

Programming. It'MPAR is an adaptation by A. 11. Morris of the function IIMACH, de-
signed by PR A. Fox, A. 1). liall, and N. L. Schryer (Bel! Laboratories). The constants for
the various computers are from Bell Laboratories, NSWC, and other sources.

4

ARGUMENT BOUNDS FOR THE EXPONENTIAL FUNCTION

The functions EPSLN and EXPARG are available for obtaining the argument bounds
for the exponential function EXP, and the functions DEPSLN and DXPARG are available
for obtaining the argument bounds for DEXP.

EPSLN(t)

If r is, the relative precision of the single precision floating arithmetic being used (i.e.,
if SPMPAR(1) = c), then EPSLN(t) is assigned the logarithm value In•. The argument f
is ignored,

Programming. EPSLN employs the function IPMPAR. EPSLN was written by A.H. Morris.

EXPARG(f)

The argument t may be an integer. If t = 0 then EXPARG(t) = the largest positive
value w for which EXP(w) can be computed. Otherwise, if t €. 0 then EXPARG(t) = the
largest (in magnitude) negative value for which EXP(w) does not underflow.

Precision. EXPARG(f) is accurate to within I unit of the 5 th significant digit for any single
precision floating arithmetic, being slightly less in magnitude than the largest value w being
approximated.

Programming. EXPARG employs the function IPMPAR. EXPARG was written by A.1I.
Morris.

DEPSLN(f)

If c is the relative precision of the double precision floating arithmetic being used (i.e.,
if DPMPAR(1) = c), then DEPSLN(t) is a3signed the logarithm value In c. The argument
f is ignored.

Remark. DEI)SiN must be declared in the calling jrogram to be of type I)OUBLE,
PRECISION,

Programming. DEPSLN employs the function IPMPAR. DEPSLN was written by A.l1.
Morris.

DXPARG(e)

The argument f may be any integer. If F -. 0 th.; I)XPAtIG(f) - the largest posi-
tive double precision value w for which l)EXI'(w) can be conmputed. Otherwise, if f / 0
then I)XPARG(f) - the largest (in magnitude) negat.ive double precision value for which
DEXtP(w) does not underflow.

Remark.)XPAIRG must be declared to be of type I)O1ILE PIRtECISION in the calling

5

program.

Precision. DXPARG(t) is accurate to within 1 unit of the 1 2 th significant digit for any
double precision floating arithmetic, being slightly less in magnitude than the largest value
being approximated.

Programming. DXPARG employs the function IPMPAR. DXPARG was written by A.H.
Morris.

• 6

SORTING LISTS

Let A be an array containing n > 1 elements ai, ... ,aan. Then the following subroutines
are available for reordering the element3 of A.

CALL ISHELL(A,n)

It is assumed that A is an integer array. When ISHELL is called, the elements of A
are reordered so that a, !< aj+1 for i = 1, ... ,n,- 1.

Algorithm. The Shell sorting algorithm with increments (3 k .- 1)/2 is employed.

Programmer. A. H. Morris

Reference. Knuth, D. E., The Art of Computer Programming. Vol. 3, Sorting and Search-
ing. Addison-Wesley, Reading, Mass., 1973, pp. 84-95.

CALL SHELL(A, n)
CALL AORD(A,n)

It is assumed that A is a real array. If SHELL is called, then the elements of A are
reordered so that aj < a1++ for i = 1, ... ,n - 1. Otherwise, if AORD is called, then the
elements of A are reordered so that 1aii • Iaj+,I for i =- 1, ... ,n -- 1.

Programmer. A. H. Morris

CALL RISORT(A, L, n)

It is assumed that A is a real array and L an integer array containing n elements. When
RISORT is called, the elements of A are reordered so that a, < aj+1 for i = 1, .. . ,n - 1.
The same permutations are performed on L as on A, thereby reordering the ele.nents of L
so as to correspond with the new ordering of A.

Programmer. A. I1. Morris

CALL SHELL2(A, B, n)

It is assumed that A and B are real arrays containing n elements. When SIIELL2 is
called, the elements of A are reordered so that aj < ai~ for i = 1, ... ,n 1. The same
permutations are performed on B as on A, thereby reordering the elements of B so aýs t(i
correspond with the new ordering of A.

Programmer. A. II. Morris

CALL DSORT(A, na)
CALL DAORD(A,n)

7

It is assumed that A is a double precision array. If DSORT is called, then the elements
"of A are reordered so that a, < a 1+j for i =: 1, .. ,n - 1. Otherwise, if DAORD is called,
then the elements of A are reordered so that Iai a< 1aiI for i 1, . n 1.

Programmer. A. H. Morris

CALL DISORT(A,L,n)

It is assumed th-.t A is a double precision array and L an integer array containing n
eiements. When I)ISORT is called, the elements of A axe reordered so that ai _< a±ij for
i = 1, ... ,n - 1. The same permutations are performed on L as on A, thereby reordering
the elements of L so as to correspond with the new ordering of A.

Programmer. A. H. Morris

CALL DDSORT(A,B,n)

It is assumed that A and B are double precision arrays containing n elements. When
DDSORT is called, the elements of A are reordered so that a, _< ai+I for i = 1, . . . ,n - 1.
The same permutations are peýrformed on B as on A, thereby reordering the elements of B
so as to correspond with the new ordering of A.

Programmer. A. H. Morris

CALL QSORTI(ALn)
CALL QSORT(.A, L, n)
CALL QSORTD(A, L, n)

QSORTI is used if A is an integer array, QSORTR is used if A is a real array, and
QSORTD is used if A is a double precision array. It is assumed that n < 2097152 and that
L is an integer array of dimension n or larger. When the subroutine is called, the indices
ti,... ,i, are stored in L where ai, < ... < aj,. A is not modified by the routine.

Remarks.

(1) After L has been obtained, A may be reordered so that a, <ý ai4I for i 1, .n. ,n

by IOUDER, ROR1)ER, or DORDER (see below).
(2) QSORITI, QSOR3.TR, and QSORTD employ a quick sort procedurc. These routines fre-

"quently take less than half the time rmquired by the corresponding subroutines ISIEIIL,
SHELL, and I)SORIT, which use a SHELL sort procedure.

Programmer. Robert. Renka (Oak Ridge National Laboratory),

CALL IORDER(A,L,n)
CALL RORDER(A, L,n)
CALL DORDER(A,Ln)

IORl)EIR is used if A is an integ(er array, 11)Rl)lE•, is used if A is a real array, and
D)Ol)ER iE used if A i: a double pre('isi-n array. , i.s an integer array contatining a

Si 8

permutation •j,... , i4 of 1,... , n. If A initially contains a,,... a, then A contains the
reordered sequence aj, ... ,aj, when the subroutine terminates.

Programmee. Robert Renka (Oak Ridge National Laboratory).

',ulP.9

CUBE ROOT

The following functions are available for computing the real cube root of a real number.

CBRT(x)
DCBRT(x)

CBRT is used if x is a single precision number, and DCBRT is used if x is a double
precision number. CBRT is a single precision function and DCBRT a double precision
function. The value of the function is x-.

Remnrk. DGBRT must be declared in the calling program to be of type DOUBLE
PRECISTON.

Programmer. A. H. Morris

FOUR QUADRANr ARCTANGENT

The function ARTNQ is similar to the ATAN2 function, the differences being that its
value lies in the interval [0,27r) and its value at the origin is 0. DARTNQ is the double
precision counterpart of ARTNQ.

ARTNQ(y, x)
DARTNQ(y, x)

ARTNQ is used if z and y are single precision values, and DARTNQ is used if x and
y are double precision values. ARTNQ is a single precision function and DARTNQ it a
double precision function.

if (x, y) is a point in the plane other than the origin (0,0), let L denote the straight
line connecting the poiihts (0,0) and (x, y). Then the function is assigned the value 0 where
0 is the angle between L and the positive x-axis meas-ured in a counterclockwise direction.
tle.re J) < 0 < 2. Otlierwise, if (:r, y) is the origin (0, 0), then the function is wssign(ed the
value 0.

Remark. I)AIRTNQ must be declared in the calling program to be of type I)() 1B[,
PREV';ISION.

Programmer. Richard Pasto

LENGTH OF A TWO DIMENSIONAL VECTOR

'l'ie follow'ing fun,'t.iln -. are ivaila hle fi- t)Iitjiit I ,, thht, Jtiihi o f st r ,J ,,vcct r (J-,1)

CPABS(x, y)
DCPABS(x- y-)

S~I1

CPABS is used if x and y are single precision values, and DCPABS is used if x and y

are double precision values. CPABS is a single precision function and DCPABS is a double

precision function. The value 3f the function is -,,x 2 + y 2 .

Remark. DCPABS must be declared in the calling program to be of type DOUBLE

PRECISION.

Programmer. A. H. Morris

/1

RECIPROCAL OF A COMPLEX NiUMBER

The following subroutines are available for computing the reciprocal of a complex
number.

CALL CREC(x,y,tu,v)
CALL DCREC(x,y,u,v)

CREC is used if x and y are single precision real numbers and u and v real variables,
and DCREC is used if x and y are double precision numbers and u and v double precision
variables. It is assumed that x and y are the real and imaginary parts of a nonzero complex
number z. When CREC or DCREC is called, u and v are set to the real and imaginary
parts of 1/z, respectively.

Programmer. A. H. Morris

DIVISION OF COMPLEX NUMBERS

The function CDIV and subroutine CDIVID are available for dividing complex num-
bers.

CIDIV(a, b)

SCDIV(a, b) -.. a/b for any complex numbers a and b where b / G,

Remark. CDIV niust, be declared iii the calling program to be of type ()OMPlqEX.

Programmer. A. II. Morris.

CALL CDIViD(ai ka2,b b .1, u, v)

Th[ie arguneients aj, 1,b ,b2 are double precisi•n numbers, and u and v are dotile

prer(iion variables. It is iLSsUIM'ld thlat (41 and a2 are the real and iai;tgmi.ary [)atrs t f a

co(l)hlex ntiiuiber a) and that bi and b2 are tHie real and iiagin;i:ry t)arts of a nonizero

coimiplcx numb)er b. WVhen (I)!IVI!) is called, u and v ar, set. to the reald n id .agill:irv

pacts of a/b respectively.

Programmer. A. If. NMorris.

SQUARE ROOT OF A DOUBLE PRECISION COMPLEX NUMBER

__ __= T~~~'he fIlhovwiog .-irh[rlirlt o i.s ;tv.':i ltl~h [tr" woliliiti~ig thir sillartr r,,o, of at doib, rt~h t cr(.iolj

S•',m0 lt~hx nil ll oh or.

CALL DCSQRT(/W)'

l13

Z and W are double precision arrays of dimension 2. It is assumed that Z(1) and Z(2)
are the real and imaginary parts of a complex number z. When DCSQRT is called, if z - 0
then W(1) and W(2) are set to 0. Otherwise, if z .• 0 then the square root w = Vi where
-7/2 < arg(w) _< x/2 is computed and stored in W. W(1) and W(2) contain the real and
imaginary parts of w, respectively.

Note. Z and W may reference the same storage area.

Programming. DCSQRT calls the function DCPABS. DCSQRT was written by A. H.
Morris.

14

CONVERSION OF POLAR TO CARTESIAN COORDINATES

The following subroutine is available for converting polar coordinatee (r, 0) to cartesian
coordinates (x, y).

CALL POCA(r,0,x, y)

Let (r, 0) be the polar coordinates of a point in the plane and let z, y be variables.
When the routine is called, x and y are assigned the values x = r cos 0 and y = rsin 0.

CONVERSION OF CARTESIAN TO POLAR COORDINATES

The following subroutine is available for converting cartesian coordinates (x, y) to polar
coordinates (r, 0).

CALL CAPO(x,y,r,O)

Let (x, y) be the cartesian coordinates of a point in the plane and let r, 0 be variables.
If (x, y) is the origin then CAPO sets r = 0 0 0. Otherwise, if (x, y) is a point other than
the origin, let L denote the straight line connecting the points (0,C) and (x, y). Then when
CAPO is called, r is assigned the value V/x- + t.i and 0 is defined to be the angle between
L and the positive x axis. Here -7r < 0 < xr.

ROTATION OF AXES

Let (x1 ,yi) be the (cartesian) coordinates for a point in the plane. The following
subroutine computes the new coordinates (X2,Y2) for the point after the x,y axes have
been rotated oy an angle 0.

CALL ROTA(xi, Yl, 0, x 2 , Y2)

The argurnents X2 and Y2 are variables. When ROTA is called, z2 and y? are assigned
the values:

X2 x1 cos 0 1 Yl sin 0

Y2 -- X I sin 0 + YI cos 0

Programmer. A. 1!. Morris,

PLANAR GIVENS ROTATIONS

If a and b are real numbers where a' + b2 0 0, then there is an orthogonal matrix
s C) such that (_ 8) (a) = (r). in this case r 2 = a 2 +b 2 ,c -- a/r, ands= b/r.-- a C --8 b

The matrix .(--) represents what is called a Given. rotation. Given a and b, the
-9 e

matrix is uniquely defined up to the sign of r. For any real a, let sgn(a) = 1 if a > 0 and
sgn(a) = -1 if a < 0. If we define r =o a + ±b 2 where

sgn(a) if al > fbI

- sgn(b) if lal< IbI

then for r : 0 we note that Icl > Is! implies c > 0, and that Icl _• Isl implies . > 0. For
convenience, when r = 0 we set c = 1 and s = 0.

The value a is not needed for the constuction of a Givens rotation matrix, but its use
permits the representation of c and s by a single value z. For each c and 8, z is defined as
follows:

-- { if sl <c or c =0
_Z= 1/c if 9< Icl< s

The mapping (c, s) -• z is 1- 1. If the user wishes to reconstruct c and s from z, then this
can be done as follows:

If z =2 1 then set c 0 and s 1.

If Izi < I then set c =VF1-z2 and s z.

If IzI > 1 then set c = 1/z and s - V/ - C
2

.

The subroutines SROTG and DROTG are available for computing c, s, r, and z. "ROTG
is used when a and b are single precision real numberm, arid DROTG is used when a and b
are double precision numbers.

CALL SROTrG(AR,BZ,C,,
CALL DROTG(AR,BZ,C,S)

When SROTG is used then AR, 13Z, C, and S are real variables. Othervise, when
I)ROTG is used then AR, BZ, C, and S' are double prccision variables. On input, AR . a
and BZ - b. When the routine terminates AR - r, 1Z :- z, C --- c, and S .. s.

Programming. These rol'tines are part of the BLAS package of bat-ic linear algebra sub-
routines (designed by (C L. Lawson, R. J. lanson, 1). R. Kincaid, and F. T. Krogh SiROT(
and I)DROT(G were written ý)y Char!us Lawson (Jet Proplultsion Laboratory).

17

THREE DIMENSIONAL ROTATIONS

If A = (a1 2) is a 3 x 3 orthogonal matrix, then A can be represented in the form
A -R 3 R 2RIE where (1 0 0 CO co0 2 0 --sin 02 \

R 0 0 cos 01 --sin 0t R 2 0 1 0
0 sin 01 cos 0t \sin 02 0 cos 02

COS 03 --Sin 030 0R3 sin 01 cos 03 0 E= 0 1 0 .
(0 0 1)0 0 5=-

R1 represents a rotation around the x-axis, R 2 a rotation around the fi-axis, and R3 a
rotation around the z-axis. Since A is orthogonal the determinant det(A) = ±1. If det(A)
= 1 then E is the identity matrix and A is the combined rotation R3 R2 R], . If deit(A) = -I
then A is composed of the rotation R 3 R 2 R, and the reflection E = diag(l, 1, -1). The
following subroutine is available for finding the angles 01,02,03 where -- Or < 01 - r, 1021 .

7r/2, and -z < 08 < 7r.

CALL ROT3(A, THETA)

THETA is an array of dimension 3 or larger. When ROT3 is called, the angles 01,02,03

are computed and stored in THETA.

Algorithm. If a 1I = a2 l = 0 then let 03 = 0. Otherwise, let 03 ATAN2(a 21 ,ai1). Then

-R tA 0 a ' , a ' A'

1a3 a 3 2 a33

where r, V=ail + a2, Also, if 02 ATAN2(a3a.rl) then
-" t• A' r2 tila ll2 3 :A

(112 14
141A' 0- a, 2 a/ 3 Al

S0 I I'1
- a 3 2 a 3 3 ,

where r2 vfr? - a32 . Since r2 > 0, by orthogonality it follows that, r2 1 and 1
whrer2= Vr 32' 'Sll r211 2 an "2

"a" 0. Finally, if 01 -- ATAN2(al 2 ,a2 2) then-a13 3 2)te

/1 0 0
:: a23

0 a 3 a"

where r3 ,/(af 2•mSince r3 0, by orthogonality we obtain r3 I, "3 0,
and a."' !!.

Programmer. A. II. Mrris

1 9

I _ _ _ . ._ __..____.

ROTATION OF A POINT ON THE UNIT SPHERE TO THE NORTH POLE

Given the point (X, y. z) where x2 + y2 + z 2 = 1. Then there exist orthogonal matrices

Rx 0 c• -" s aid R1 1 1 0
k S" CX IY 0 Cy

such that RR R. (represents a rotation about the x-axis ard Ru a rotation

Sz \1x
about the y-axis. The following subroutine is available for obtaining the values c., sI, cI, s.dS

CALL CONSTR(x,y,z,CX,SX,CY,SY)

CX,SX,CY,SY are variables. When CONSTR is called, these variables ztre assigned
the values c 8,

Programmer. Robert J. Renka (Oak Ridge National Laboratory)

21

COMPUTATION OF THE ANGLE BETWEEN TWO VECTORS

Given the points x :1 (xi, ... ,x,) and y = (yi, ... ,y,,) where n > 2, x A 0, and y j- 0.
Let Lr denote the straight line connecting 0 and x, and L the straight line connecting 0
and y. Then the function ANG is available for computing the angle 0 between the two lines
L., and Lu.*

ANG(n,X,Y)

X and Y are arrays of dimension n containing xi, ... , x,, and yl, ... , y,. ANG(n, X, Y)
- € where 0 _< < 7r.

Error Return. ANG(n,X,Y) -1 if n < 2, x = 0, or y = 0.

Programming. ANG employs the function SNRM2. ANG was written by A. H. Morris.

23

TRIGONOMETRIC FUNCTIONS

The following functions are available for computing sin rx and cos •rx for real fr.

SINI(x)

SINI(x) = sin rx for all real x.

Algorithm. Minimax approximations are used for sin 7rx and cos 7rx when jxt < 7r/4.

Precision. SINI(x) is accurate to within 1 unit of the 14 th significant digit when 0 < x < 1.

Programming. SIN1 was written by A.H. Morris. The function IPMPAR is used.

COSl(z)

COSI(x) = cos rx for all real x.

Algorithm. Minimax approximations are used for sin 7rx and cos rx when lx] < 7r/4.

Precision. COS1(x) is accurate to within 1 unit of the 14 th significant digit when 0 < x < 1
and x # 1/2.

Programming. COS1 was written by A. H. Morris. The function IPMPAR is used.

DSINI(x)

The argument x is a double precision number. DSINI(x) is the double precision value
for sin 7rx.

Remark. DSIN1 must be declared to be of type DOUBLE PRECISION in the calling
program.

Algorithm. For jxj < 7r/4, sin 7rx and cos 7rx are computed by the power series corresponding
to the Chebyshev expansions developed by J. L. Schonfelder (University of Birmingharm,
England). The power scries were obtained by A. H. Morris,

Precision. DSINI(x) is accurate to wiLhin 1 unit of the 2 8 th significant digit, when 0 < x < 1.

Reference. Schonfelder, J.L.,"Very Iligh Accuracy Chebyshev Expansions for the Baesic
Trigonometric Functions," Math Comp. 34 (1980), pp. 237 244.

Programming. I)SINI was written by A.l1. Morris. The function IEMPAR is used.

DCOS1(x)

The argurnent x is a dtouble precision r, uniber.)COS1(x) is the donllie precision val'je

for -os 7rx.

25

Remark. DCOS1 must be declared to be of type DOUBLE PRECISION in the calling
program.

Aigorithm. For lxi _< 7r/4, sin 7rx and cos rx are computed by the power series corresponding
to the Chebyshev expansions developed by J. L. Schonfelder (University of Birmingham,
England). The power series were obtained by A. IH. Morris.

Precision. DCOSI(x) is accurate to within 1 unit of the 2 8 th significant digit when 0 <
x < I and x : 1/2.

References. Schonfelder, J.L.,"Very High Accuracy Chebyshev Expansions for the Basic
Trigonometric Functions," Math Comp. 34 (1980), pp. 237-244.

Programming. DCOS1 was written by A. H. Morris. The function IPMPAR is used.

~2G;

HYPERBOLIC SINE AND COSINE FUNCTIONS

The following subroutine is available for computing sinh(x) - x, cosh(x) -- 1, and
cosh(x) - 1 - x2 /2 for real x.

CALL SNHCSH(S,C,x,IND)

S and C are variables, and IND is an input argument which specifies the functions to
be computed. IND takes the values:

IND = -1 if only sinh(x) - x is desired.
IND = 0 if sinh(x) -- x and cosh(x) - 1 are desired.
IND = 1 if only cosh (x) - 1 is desired.
IND 2 if only cosh(x) - 1 - x2 /2 is desired.
IND 3 if sinh(x) -- x and cosh(x) - 1 - x2 /2 are desired.

S is assigned the value sinh(x) - x if this function is requested. When cosh(x) - 1 or
cosh(x) - 1 -- x 2 /2 is computed then the value is stored in C.

Precision. For all x, sinh(x) - x has a relative error less than 2.3E-14, cosh(x) - 1 has a
relative error less than 2.2E-14, and cosh(x) - 1 -- X 2/2 has a relative error less than 3.8E-14.

Programming. Written by A. K. Cline and R. J. Renka (University of Texas at Austin).

Modified by A. H. Morris.

2

EXPONENTIALS

The functions REXP and DREXP are available for computing e' -- 1. DREXP is a
double precisiorn function.

REXP(x)

REXP(x) = e' - 1 for real x.

Algorithm. See pages 378-379 arnd appendix B of the reference

Precision. REXP(x) is accurate to within 2 units of the 1 4 1h significant digit when REXP(x)
s o.

Reference. DiDonato, A. R., and Morris, A.. H., "Computafion of the Incomplete Cairma
Function Ratios and Their Inverse," A.CM1 Trans. Math Software 12 (1986), pp. 377-393.

Programmer. A. H-. Morris.

DREXP(x)

The argument x is a double precision number. DREXP(z) is the double precision value
for e' - 1.

Remark. DREXP must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DREXP(x) is accurate to within I unit of the 28•" significant digit when
DREXP(x) 4 0.

Programmer. A. 1:[. Morris.

~29

LOGARITHMS

The functions ALNREL, RLOG, RLOG1, DLNREL, DRLOG, and DRLOG1 are avail-
able for computing In(1 + a), x - 1 - ln(x), and a - In(I + a). DLNREL, DRLOG, and
DRLOG1 are double precision functions.

ALNREL(a)

ALNREL(a) = ln(i + a) for a > -1.

Algorithm. See page 378 and appendix A of the reference.

Precision. ALNREL(a) is accurate to within 2 units of the 1 4 t;h flignificant digit when
ALNREL(a) L 0.

Reference. DiDonato, A. R., and Morris, A. H,., "Computation of the Incomplete Gamma
Function Ratios and Their Inverse," ACM Trans. Math Software 12 (1986), pp. 377--393.

Programmer, A. H. Morris.

RLOGG(x)

RLOG(x;!-) 1:::- x - lln(x) for x-_, 0.

Algorithm. See page 379 and appendix E of the reference.

Precision. LOG(z) is ac:.urate to within 2 units of the 14'1 signikicant digit when

Reference. Dl)Donato, A R., and Morris, A. HI., "Computation of the Incomplete Garumna
Function ltatio3 and Their Inverse,':' ACM Trans. Math Software 12 (1986), pp. 37,7-3.,3.

Programmer. A. 1H. Morris.

RLOGI(a)

t0,O(1 I (a) - a ,n(I 1 a) for a> .

Aigorithni. See page 3'19 aw'd appel.fdix 1 ,1' Athe referenice.

Precision. IMLOGI(a) is :accirate to within 2 units of the 14t significant, digit whtci
Pl•OG11(a) / 0

Reference.)iionato, A R , and Morris, A. If., (."irilmtatiorm of the icotmpett mt
Function Ratios and Their Iniverse," A(,•,AI Tranis. Mloth Software 12 (198(;), Iqp. 377 38):-.

Programmer. A. 1 Nh.)rris.

"• " 3:I

DLNREL(a)

The argument a is a double precision number where a > -1. DLNREL(a) is the double
precision value for ln(1 + a).

Remark. DLNREL must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DLNREL(a) is accurate to within 1 unit of the 2 8 th significant digit when
DLNREL(a) $. 0.

Programmer. A. H. Morris.

DRLOG(x)

"The argument x is a positive double precision number. DRLOG(x) is the double pre-
cision value for x -- 1 - In(x).

Remark. DRLOG must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DRLOG(x) is accurate to within 1 unit of the 28" significant digit when
[DRLOG(x) -- 0.

Programmer. A. 11. Morris.

DRLOGI(a)

The argument a is a double precision number a > -- i. DRLOGI(a) is the double
precision value for a -l-4(1 '- a).

Remark. I)RLOG1 rrust be declared in the calling program to be of type DOtl•AlLE
PREC)SION.

Precision. DLRLOGI(a) is accurate to within i unit. of the 28th significant digit wileci
DRLOG1(a) / 0.

Programmer. A. 11. Morris.

*

DETERMINING IF A POINT IS INSIDE OR OUTSIDE A POLYGON

Given a sequence of points vi = (x1,yi) (i = 1, ... , n). Let r denote the polygonal line
which begins at point vL, traverses the points vi in the order that they are indexed, and

is the straight line segment connecting vi to V,+i for each i = 1, ... n -- 1. It is assumed
that v,• = v, or that there is also a straight line segment from V,, to v,1 whenvn :?, V1

Consequently, the polygonal path r is a loop beginning and ending at V,1.

For any point vo = (xo, yo) not on the path r, let rj(r, vo) denote the winding number
of the path r around the point v0 . Then Yn(r, v 0) = 0 if vo is outside the polygon whose
boundary is r. If .'0 is inside the path then i7(r, o'o) = m where m is an integer. If m > 0 then
the path r loops m times in a counterclockwise direction around the point V,0 . Otherwise,

if m < 0 then r loops [ml times in a clockwise direction around v0.

Given an arbitrary point vo = (Xo, yo), the following subroutine is available for deter-
mining whether vo is on the path, outside the path, or inside the path. If the point VC, is

inside r then the winding number 17(r, vo) = m is also computed.

CALL LOCPT(xo, Yo, X, Y, n, f, rn)

It is assumed that n > 1. X and Y are arrays containing x, ... ,x, and yl, ... ,yl
The arguments f and m are variables. When LOCPT terminates f has one of the following
values:

f - I if (x0 , Ye) is outside the path
_ = 0 if (xo,yo) lies or the path
t 1 if (xo, yo) is inside the path

The variable m is assigned the value 0 if ('o, yo) is on or outside the path. If (xo, yo) is

inside the path then m - the winding number of the path r around the point (X, 0yo).

Remark. There are no restrictions ofn the points (x, ,y,). C(onse(qluently, the path may

intersect itself.

Programming. The funmctioni Sl'NIPAR is used, l,(0'I)'I' w.ai writtenr by A It. Morril..

:ý'3

INTERSECTION OF A STRAIGHT LINE AND POLYGONAL PATH

Given a sequence of points v, = (Xi, yi) (i = 1, ... , n). Let r denote the polygonal path
which begins at point vi, traverses the points vi in the order that they are indexed, and is
the straight line segment from vi to vi+1 for each i = 1, ... ,n - 1. Also consider a straight
line f connecting two points (ai,a 2) and (bi,b 2). If £ and r intersect at a finite number of
points, then the following subroutine is available for obtaining the intersecting points.

CALL PFIND(a, b, X, Y, n, U,V, m,k,IERR)

The arguments a and b are arrays of dimension 2 containing the points (al,a2) and
(bl,b 2). It is assumed that a # b and n > 2. X and Y are arrays containing x1 , ... ,x" aad
yi, , Y, respectively.

The argument mn is the estimated maximum number of points at which the line £ and
path r may intersect (m <- n). U and V are arrays of dimension m or larger, and k and
IERR are variables. When PFIND is called, if no input errors are detected then IERR ,
set to 0, k = the number of points (uj,vt) wheie the line f and path r intersect, and U
and V contain the abscissas u1 , .. ,uk and ordinates v1 , • • , vk of these points. The points
(uj, vj) are listed in the order that the path intersects f when proceeding from (x1 , yi) to

(Xni Y0).

Error Return. If an input error is detected than IERR has one of the following values:

1E1 l{ i 1 Either a b or the path contains a sih•gle point.
II'IRl: 2 U and V require iiore storage. The argument rn must be in-

crewsedl,

SIICRR i . hle iv 21 line segiiie!t of thet path contains a segniehl of the line f.

When an error is detected, k thw numbier (of points (u.,t.,) foun d whiere the line t and

path 7 inttersect, mnd U alid V colntai n th le aLw-issaLs and ord in ates of these points.

Remark. Tle interscting points , (Uv) need not be (distinct. T[le path may intersect f at

the sanie point a nitiiiher (,f time,.s when l.roceediig froiim (.rl,yl) to (X,,,y,,).

Programming. IPFINI) w';La writteni by A. 11, Nlorri.4. 'l'hle foimeLmion SIPMI'AR i•s used.

THE CONVEX HULL FOR A FINITE PLANAR SET

If (x1 , yl), (x.,, (Y) are rn distinct points in the plane, then the following subrou-
line is available for finding the smallest convex polygon which with its interior contains the
points.

CALL HULL(X, Y, m, BX,BY, k, VX,VY, n)

It is assumed that m > 2. X and Y are arrays containiltg the abscissas xi, ... ,x, ancd
ordinates yV, ... , y,, respectively. When HULL is calle!, the points are reordered so that
yi < ... < y,. Thus X and Y may be modified when the routine terminates.

BX and BY are arrays of dimension m + 1 or largei:, and k is a v-iable. When HULL
terminates, BX a&id BY contain the abscissas and ordinates of the points (xi, yi) which lie
on the boundary of th- desired convex polygon, and k = the number of r-)inL, stored in
BX and BY. If BX and BY contain the abscissas x', .x.. xI and ordinates y', ., y', then
the points (XiY, are indexed in the order they occur when traversinL the boundary in a
counterclockwise manner. Also (x',y') = (x',y,).

VX and VY are arrays of dimension m -K I or larger, and n is a variable. When
HULL terminate3. VX and VY contain the abscissas and ordinates of the vertices f the
desired convex polygon, and n = the number of points stored in VX and VY. If VX and
VY contain the abscissas x"', .. ," and ordinates y", ... ,y", then the vertices (x",yf')I I nx i .) are
""indexed in the order they occur when traversing the boundary of the convex polygon in a
counterclockwise manner. Also (x", y") = (x"", y"'.

Example. Assume that we are given the points(-1, -- 3), (1,1) (0,3), (2,2), (-2,4), (--.1, -- 1).

When HULL N:3 called X and Y are reorderud
and we obtain:

X contains - 1, -1,1,2,0, -2
Y containm -3,-1,1,2,3,4
1BX contains -- 1,2,0, -2, --1
1BY contain3 - 3,2,3,4, -- 3
VY contain:3 1,2,- 2, -1
VY containi -3,2,4, -3

Programming. 113!,1, c ls the .ubroutinie RlISO(l{T and fuiction SItNI PAR. ItUI wi)
wrjttjr by A. [I Morris.

z'p -

AREAS OF PLANAR POLYGONS

Given a sequence of points vi = (xi, yi) (i = 1, ... ,n-+ 1) where n > 1 and v,+, : vi.
Let r denote the polygon whose boundary ar is a polygonal line which begins at point vi,
traverses the points vi in the order that they are indexed, and is the straight line segment
connecting vi to vi+1 for i = 1, ... ,n. Then the function PAREA is available for computing
A(r) = ff, dxdy. If the boundary Or is a positiv2ly (negatively) oriented simple closed
curve, then A(r) is positive (negative) and IA(r)I = the areý. of r. However, Or need riot be
simple. It may be self-intersecting or have overlapping line segments.

PAREA(X, Y, N)

X and Y are arrays containing the abscis3as xi,. XEN and ordinates y1, .YN,

respectively. The argument N may have the value n or n + 1. since ,,+l =-= v1, x,+1 and
y,+I a.e not required 'o appca; in X and Y. PAREA(X,Y, N) is assigned the value A(r).

Programmer. A. H. Mcrris

Reference. DiDonato, A. R1 and Hagernan, R. K., Conn-put ation of the Integral of the Bi-
variate Normal Distribution over Arbitrary Polygons, Report TR 80-166, Naval Surface
Weapons Center, Dahlgrei, Virginia, 1980.

39}

HAMILTONIAN CIRCUITS

Given a directed graph G containing n vertices, denoted by the integers 1, . Then
any circuit of n arcs which traverses the n vertices, say in the order il, . .. ,i,, is called a
Hamiltonian circuit. For convenience, it is assumed that for any two vertices i and j, no
more than one arc exists which begins at i and ends at j. Then the following subroutine is
available for finding the Harmijltonian circuits of G, if any exist.

CALL H:2(IND, m, n, P, A, NB, S, IWK,NUM)

The argument m is the number of arcs in the graph G. P is an integer array of
dimension n + 1 and A an integer array of dimension m. The graph is stored in P and A
as follows: For i 1, . . . ,n let

R, {j: there exists an arc which begins at i and ends at j}.

Then the vertices in R1;, ... , R,, are stored in A, where the data in R4 precedes the data in
1i-+. for i= 1, ... ,n - 1. For each i, the vertices in R1 may be given in any order in A.
The array P contains the data

P(1) =0

P(i + 1) - the total number of vertices in R,,, ... ,1R (i = 1, . . ., n).

H1ent-ce, if P(i) < P(i-+ 1) then the vertices in R1 are found in locations P(i) + 1, ... , P(ii+ 1)
of A Oth1rwise if P(i) = P(i + 1) then R, = 0 (the empty set); i.e., there are no arcs in
G which begin at i (and no Ilamiltonian circuits exist). Also, P(n + 1) m rn since there are
m arcs in G.

4 3

Example. Consider the graph where - 3

nm - 5,n = 4

R {2,4} K.3
2 '• ,3} 'R4 {3}. 2

Then A contains 4,2,1,3,3 1 2
P contains 0,2,4,4,5.

Whcn HC is called, a depth-first tree search employing backtracking is used. NB is a
variable for controlling the backtracking. If NB > 0 on input, then it is assumed that NB is
the maxinmm number cf backtracks that may be performed to find a ilamiltonian circuit.
Otherwise, if NB < 0 then it is assurned that Yo restriction is placed on the backtracking.
When HC terianates, ND -- the number of backtracks that were actually performed.

S is an integer array of dimension n. When 1IC is called, if a Jlamilonim circuit is
found which traverses the vertices, say in the order i: ... ,i,,, then the ordered vertices
i . , ,, are stored in S.

1WK is an anray of diniension N,.JMN that is - Woii space fo: the rcu tilnw. it i asP;iil no I
tlhat NUM > rn I 8n 1 20.

S411

-Lwr•

Only one Hamiltcaian circuit will be obtained on a call to HC. However, this routine
can be repeatedly called to obtain all the Hiamiltonian circuits. IND is a variable which
controls the operation of tile routine on input, and reports the status of the results on
output. It is assumed that IND = 0 on the first cal! to HC. When the routine termirates,
if no input errors are detected then IND has one of the fo!lowing values:

IND = 1 A Hamiltonian circuit was found zld the ordered vertices traversed
by the circuit stored in S. To find another circuit, reset NB and
recall the routine.

IND = 2 The maximum number of backtracks were performed. To continue,
reset NB and recall the routine.

IND - 4 No more circuits exist. The array A has been restored (see tile
remark on the storage of A below) and the procedure is finished.

We note in passing that on an initial call to the routine, the setting IND =- 4 on output
indicates that the graph contains no Hamiltonian circuits.

After a call to HC, if IND = 1 or 2 on output then the search procedure can be
continued by resetting NB and recalling the routine. Do not modify IND when the tree
search is to be continued. In this case, the storage of A has been temporarily modified
and IWK contains information needed for the search. If a new Harniltonian circuit is found
when HC is recalled, then the vertices ýraversed by the new circuit will now be stored in S.

Alter a call to HC, if IND 1 or 2 on output and it is desired that thie search procedure
be terminated, then reset IND 3 and recall the routine. In this case, the array A will be
restored and IND = 4 when HtC terminates.

Storage of A. When A ib restored, the order of the vertices of R,. in I! may be modified
for each i.

Error Return. If an input error is detected then IND is set to one of the following value,,:

IND = -1 IND < 0 or IND > 3 on input.
.ND = -2 IND was modified, being assigned a value - 3 when HC was re-

called. Reset IND to its previous output value, reset NB, and
recall IC if another circuit is wanted.

IND = -3 The input setting IND = 3 is not needed when the previous output
value for IND was 4, In this case, nothing was done.

IND =.--4 NUM <m -+ 8n + 20.
IND) 5 P(1) / 0 or P(n -f-) / mL ,
I N .. 6 --b > P(i + 1) for some i.

Ptcmarks.

(1) It is assumed that, C contains no loops.
(2) Norn.w•iy, few backtracks are needed when the number of vertices in each 1t is small,

say 10 or less. Ciisequently, the selting NB I: .. 1 is generall,' appropriate in such

-12

S,1-2

Programming. HC employs the subroutines HC1, IPATH, FUPD, BUPD, IUPD, and
RARC. The search procedure in these routines was written by Silvano Martello (University
of Bologna, Italy). The user interface involving the variable IND was written by A. H.
Morris.

Reference. Martello, S., "Algorithm 595. An Enumerative Algorithm for Finding Hamilto-
nian Circuits in a Directed Graph," ACM2Trans. Math Sooftware 9 (1983), pp. 131-138.

43

ERROR FUNCTION

For any complex z the error function is defined by

erf(z) = e--t dt

and its complement by erfc(z) = 1 - erf(z). The subroutines CERF, CERFC, DCERF,
and DCERFC are available for computing erf(z) and erfc(z) when z is complex, and the
functions ERF, ERFC, ERFC1, DERF, DERFC, and DERFC1 are available for computing
erf(z) and erfc(z) when z is real. DCERF, DCERFC, DERF, DERFC, and DERFC1 are
double precision routines.

CALL CERF(MO, z, w)

MO is an integer, z a complex number, and w a complex variable. When CERF is
called, w is assigned the value erf(z) if MO = 0 and the value erfc(z) if MO t 0.

Algorithm. For z = x 4- :y where x > 0, if z satisfies Izi < 1 or both of the inequalities
1 < Izi < v3- and x2

- y2 + .064x 2 y 2 <_ 0, then the series

(1) erf(z) = Z (V• n1Z
2 n+-1

7 >0 n!(2n + 1)

is used. If 1 < Izi < V and X2 - y2 + .064" 2y 2 > 0 then

_ 2 18

(2) erf(z) - I -ze - r,

is employed. A, and rn are the poles arid residues of the rational function approximation
for the complex Fresnel integral E(z) given in the reference. The error function is related
to E(z) by erf(z) -= 1 - i\.-SE(- z 2) for jarg(z)l < 7r/2. If Ijz > V/3-8 and x > .01 then erf(z)
is computed by the asymptotic expansion erf(z) 1 - O(z) where

(-1 2 1 .. 3... (2n....)
(3) o V ~ n~-

Otherwise, if mzl > v/38 and 0 < x < .01 then erf(z) is employed. When x (< 0
then the relation erf(-- z) ... -- erf(z) is apphied.

Programming. Written by Allen V. Hershey and A. 1l. Morris.

Reference. Hlershey, A. 11., Approximation of Functions by Sets of Poles, Report ,Ip
22564, Naval Weapons Laboratory, l)ahlgren, Virginia, 1971.

45

CALL. CERFC(MO,z,w)

MO is an integer, z a complex number, and w a complex variable. When CERFC is
called, w is assigned the value erfc(z) if MO = 0 or Re(z) < 0. Otherwise, if MO V 0 and
Re(z) > 0 then w is assigned the value e'erfc(z).

Precision. For MO $ 0, Re(w) and Im(w) are accurate to within 1 unit of the 1 2 th signifi-
cant digit when IRe(w)I > 10-280 and Im(w) $ 0.

Programming. CERFC employs the subroutine CREC and functions EXPARG and IPM-
PAR. CERFC was written by Allen V. Hershey and A. H. Morris.

Reference. Hershey, A. V, Approximation of Functions by Sets of Poles, Report TR-
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

ERF(x)

ERF(x) = erf(x) for any real x.

Precision. ERF(x) is accurate to within 2 units of the 14 th significant digit for x) 0.

Programmer. A. 1H. Morris

Reference. Cody, W. J., "Rational Chebyshev Approximations for the Error Function,"
Math Comp. 23 (1969), pp. 631-637.

"ERFC(x)

ERFC(x) = erfc(x) for any rea! x.

Precision. If x < 3 then ERFC(x) is accurate to within 2 units of the 1 4 th significant digit.
Otherwise, if x > 3 then ERFC(x) is accurate to within 4 units of the 14 th significant digit
when ERFC(x) $4 0.

Programming. ERFC employs the functions EXPARG and IPMPAR. ERFC was written
by A. H. Morris.

"Reference. Cody, W. J., "Rational Chebyshev Approximations for the Error Function,"
Math Comp. 23 (1969), pp. 631-637.

ERFC1(IND, x)

IND is an integer and x a real number. ERFCI(IND,x) = erfc(x) when IND =:- 0, and
ERFCI(IND,x) :-- emerfc(x) when IND $ 0.

Precision. If x < 3 then ERFCI(O,x) is accurate to within 2 units of the 1 4 th significant
digit. Otherwise, if x > 3 then ERFC1(0, x) is accurate to within 4 units of the 14 th

significant digit when ERlFC1(O,x) / 0. If 1NI) / 0 then ERFCI(IN1),X) is accurate to

46

within 2 units of the 1 4th significant digit for x > -1.

Programming. ERFC1 employs the functions EXPARG and IPMPAR. ERFC1 was written
by A. H. Morris.

Reference. Cody, W. J., "Rational Chebyshev Approximations for the Error Function,"
Math Comp. 23 (1969), pp. 631-637.

CALL DCERF(MO,Z, W)

MO is an integer, and Z and W are double precision arrays of dimension 2. It is
assumed that Z(1) and Z(2) are the real and imaginary parts of a complex number z. If
MO = 0 then the double precision value for w = erf(z) is computed, and if MO 7$ 0 then
the double precision value for w = erfc(z) is computed. W(1) and W(2) contain the real
and imaginary parts of tu, respectively.

"Algorithm. For z = x + iy where x _ 0, if Izi < 1 then (1) is used, and if Iz - 21 < 1 and
x < 2 then the Taylor series

2 00
(4) erfc(z) = erfc(a) + "-e- Z (--l)n H,-,(a)(z - a)n/n! (a = 2)

is employed. Here H1(a) are the Hermite polynomials. If 1 < Izj < 2.5 then (4) and the
Pade approximation A,(z 2)/Bn(z 2) for V/(2z)-1ez2 erf(z) are used where

Ao(z) = 1 Ai(z) = 1 + Jz
130(z) = 1 B,(z) = 1 - 1 z

and A, and B, satisfy

(6) Bn+i(z) 1 - (1)~2z B, (z) + 4n(4n+2)Z2 Bn.I()
6) B+z) 1-(4n + 1)(6, + 5)] (4n- 1)(4n + 1) 2 (4n-+ 3)

(see pp. 191,192, and 422 of the reference). Also, if 2.5 < jzj < 12 then An(z 2)iB, (z2) and

the Pade approximation G,1 (z 2)/-fn(z2) for ýfi-ze 22erfc(z) are employed where

Go(z) I Gi(z) = 2±+2z: (7)
(7 o(z) 1 1 (z) = 3 + 2z

and C,, and Hf, satisfy

(8) I1i1 (z) + (2z - 4n + 3).i, (z) -- 2n(2n + 1) if I(z)

(see pp. 201 arid 422 of the reference). Otherwise, if Ijz > 12 arid x > .0> then the
asymptotic expansion erfc(z) 0'(z) is used where tb(z) is given by (3). Also, if jzj > 12
and 0 < x <- .01 then erf(z) . ¢(z) is employed. Whein x < 0 the relation erf(z)
-erf(z) is applied.

47

Programming. DCERF calls the subroutines ERFCM2, CDIVID, and ECREC. I)CERF
and ERFCM2 were written by A. H. Morris. The function DPMPAR is also used.

Reference. Luke, Yudell L., The Special Functions and Their Approximations, Vol 2,
Academic Press, New York, 1969.

CALL DCERFC(MO,Z,W)

MO is an integer, and Z and W are double precision arrays of dimension 2. It is
assumed that Z(1) and Z(2) are the rea! and imaginary parts of a complex number z.
If MO = 0 or Re(z) < 0 then the double precision value for w = erfc(z) is computed.
Otherwise, if MO €- 0 wid Re(z) > 0 then the double precision value for w = el 2 erfc(z) is
computed. W(1) and W1(2) contain the real and imaginary parts of w, respectively.

Precision. For MO 0 0 and Re(z) > 0, W(1) and W(2) are accurate to within 3 units of
the 2 6 th significant digit when W(2) $- 0.

Programming. DCERFC employs the subroutines ERFCM2, DCIVID, and DCREC, and
functions DXPARG, DPMPAR,and IPMPAR. DCERFC and ERFCM2 were written by A.
H. Morris.

DERF(x)

The argument x is a double precision number. DERF(x) is the double precision value
for erf(x).

Remark.DERF must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If "xj 5< 1 then the power series corresponding to the Chebyshev expansion
given in the SLATEC library by Wayne Fullerton (Los Alamos) is used, arid if lxi > 1 then
minimax approximations are employed. The power series and minimax approximations
were obtained by A. H. Morris.

Precision. DERF(x) is accurate to within 2 units of the 28"' significant digit for x $ 0.

Programming. DERF employs the function DERFC0. DERF was written by A. H. Morris.

DERFC(xa)

The argument x is a, double precision number. DERFC(x) is the double precision value
for erfc(x).

Remark. DERFC must be declared in the calling program to be of type- I)OJBIL,
PRECISION.

Algoiithm. If xl < I then the power series corresponding to the Chebyshev expansion given
in the SLATEC library by Wayne Fullerton (Los Alamos) is used, Otherwise, iff < xj < 50

48

then minimax approximations are used, and if _x > 50 then the asymptotic expansion (3)
is employed. The power series and rninimax approximations were obtained by A. H. Morris.

FPrecision. DERFC(x) is accurate to within 2 units of the 2 8 th significant digit for x < 2.

Programming. DERFC employs the functions DERYCO, DXPARG, and IPMPAR. DERFC
was written by A. H. Morris.

DERFC1 (IND, x)

IND is an integer and x a double precision number. DERFCI(IND,x) is the double
precision value for erfc(x) when IND =0 , and DERFCI(IND,x) is the double precision
value for e'erfc(x) when IND : 0.

Remark. DERFC1 must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DERFCI(IND,x) is accurate to within 2 units of the 281h significart digit when
IND= 0 and x_< 2, and when IND $0 and x> -I

Prugramming. DERFC1 employs the functions DERFC0, DXPARG, and IPMPAR. DERFC1
was written by A. H. Morris.

4 '9

INVERSE ERROR FUNCTION

For any 0 < x < 1, the following functions are available for obtaining the value w > 0
for which erf(w) = x.

ERFI(x, y)

It is assumed that x > 0, y > 0. and x + y 1. Then ERFI(x,y) = w where w > 0
and erf(w) = x.

Error Return. ERFI(x,y) -1 if x < 0 or y < 0, and ERFI(x,y) = -2 if x -t y $i 1.

Preciaion. ERFI(z, y) is accurate to within 3 units of the 1 4 1h significant digit.

Programming. ERFI was written by Armido R. DiDonato and modified by A. H. Morris.
The function SPMPAR is used.

Reference. Blair, J. M., Edwards, C. A., and Johnson, J. H.,"Rational Chebyshev Approx-
imations for the Inverse of the Error Function," Math. Comp. 30 (1976), pp. 827-830.

DERFI(x, y)

The arguments x and y are double precision numbers where x > G, y > 0, and x+y = 1.
DERFI(x, y) is the double precision value for w where w > 0 and crf(w) = x.

Remark. DERFI must be declared to be of type DOUBLE PRECISION in the calling
program.

Error Return. DER FI(x,•) -1 if x < 0 or y < 0, and DERFI(x,y) --2 if x - y / 1.

Algorithm. If < 15/16 then an initial value for w is given Ly minimax approximations
due to A. Hl. Morris. Otherwise, if x > 15/16 then an initial value for w is given by minimax
approximations from the reference. These approximations are accurate to 17--18 digits. If
more accuracy is needed, tten a single iterate of the Newton procedure for solving F(w) =: 0
is taken to obtain w to machine precision. Here

J erf(w) x if x < 3/4

F(w) erfc(w) y if 3/4 < x < 15/16

Injerfc(w)] - ln(y) if x > 15/i6..

Prec:ision. l)!FJ(a,,,) is accurate to within I unit of the 27th significant digit.

Programming. DERF', ernloys the functions DIERF, I)EI? "CI, I)MERFCO, I)XPARG,
DPMPAR, and IPMPAR. I)ERFI was, written by A. If. Morris.

Reference. .lair, J. M., Edwards, C. A., and .Johnson> J. l1.,"l1ational Chebyshev Approx-
imations for the Inverse of the Error Function,'" Mnth. Comp. 30 (1976), pp. 827 830.

51

DIFFERENCE OF ERROR FUNCTIONS

For any real x and h, let aerf(x, h) = erf(x+ h) -erf(x h). Then the functions AERF
and DAERF are available for computing aerf (x, h).

AERF(x,h)

AERF(x, h) = aerf(x, h) for any x and h.

Precision. AERF(x, h) is accurate to within 8 units of the 1 2 th significant digit when
AERF(x,h) -/ 0.

Programming. AERF employs the functions ERF, ERFC, EPSLN, EXPARG, SPMPAR,
and IPMPAR. AERF was written by Armido R. DiDonato and modified by A.H. Morris.

Reference. DiDonato, A.R., Significant Digit Computation of the Elliptical Coverage
Function, Report NSWC TR 90-513, Naval Surface Warfare Center, Dahlgren, Virginia,
1990.

DAERF(x,h)

The arguments x arid h are double precision numbers. DAERF(z, h) is the double
precision value for aerf (x, h).

Remark. DAERF must be declaredi to be of type DOUBLE PRECISION in the calling
progrjmn.

Programming. DAERF employs the functions DEIF, DERFC, DERFCO, DEPSLN, DX-
PARG, DPMPAR, and IPMPAR. DAERF was written by Armido R. DiDonato and rood-
ified by A. H. Morris.

Reference. DiDonato, A.R., Significant Digit Computation of the Elliptical Coverage
Function, Report NSWC TR 90 513, Naval Surface Warfare Center, Dahlgrep., Virginia,
1990.

5'1

NORMAL PROBABILITY DISTRIBUTION FUNCTION

For any real x, the normal probability distribution function P(x) (of mean 0 and
variance 1) is defined by

jJ e-t2/:' dt27 -~) cr o

and its complement by Q(x) = 1 -- P(x). The following function is available for computing
P(x) and Q(z).

PNDF(x,IND)

IND is an integer and x a real number. If IND = 0 then

(P(x) if x_>-8

PNDF(x,O) P'((z) if < -8

P(x)

where P'(x) is the derivative of P(x). Otaerwise, if IND # 0 then

Q(x) if x<8
PNDF(x, IND) Q'(x) if x> 8

Q i W

where Q'(x) is the derivative of Q(x).

Algorithm. The identities P(xz- = 1 erfc(-/x/V2) and Q(z) erfc(X'N-2) are used.

Programming. PNDF calls the function ECRF(1. PNI)F waý written by A.H. Morris.

INVERSE NORMAL PROBABILITY CiSTRIBUTION FUNCTION

For any real w, the nornial probability distribution function P(w) (of intan 0 and
variance 1) is defined by

P(w) =- 1 e-'/2 dt

and its complement by Q(w) = 1 -- P(w). For any 0 < p < 1 and q = 1 - p, the following
sabroutines are available for obtaining the value w for which P(w) = p and Q(w) = q.

CALL PNI(p, q, d, t, IERR)
CALL DPNI(p,q,d,w,IERR)

PNI is used when p, q, and d ar- real numbers and w is a real variable, and DPNI is
used when p, q, and d are double precision numbers and w is a double precision variable.

It is assumed that p > 0, q > 0, p+ q = 1, and d = p- 1/2. IERR and w are variables.
When PNI or DPNI is called, if no input errors are detected then IERR is set to 0. Also,
w is assigned the value for which P(w) = p and Q(w) = q.

Error Return. IERR = 1 if p < 0, q < 0, or p + q #r 1, and IERZR 2 if d l p- 1/2.

Algorithm. Fcr y > 0, let y : erf- 1(x) when x - erf(y). If P(w) p then the identities

{ -xi2erf(--'(-- 2 p) if 0 < p < 1/2
w \. v/2 erf '(2p 1) if I > p > 1/2

are applied.

Precision. If IPNI is called thenu w is acciurite to within 3 units of the 14"' significant digit'.
Otherwise, if)I'NI is called then u) is accerate to within I unit of the 27t"1 significant digit.

Programming. I' Nvinphoys the f't-inctioris IE.F I, SPMI'AR, and IPMI 'A R, and I)I'N1 c1m-
ploys the functiniw I)EFIF, i)DE;l{, i)ERl'l(7l, 1)!ERF'(0, l)XP'AIRX, I)I'MI'AIR, and 1'PM-
-PAiW. PNI was 'written by Arindo R. I)i),onato and injific~t by A. il. Morris. I)I'NI was
adapted fr,'i I'NI by A. It. M•orris.

OIAWSON'S INTEGRAL

For any real x, Dawson's integral is defined by

j X• dt.
0.0

The following functions are available for computing F(x).

DAW(x)

DAW(x) = F(x) for any real x.

Pveci.ion. DAW(x) is accurate to within 2 units of the 1 4 th significant digit for x 0 0.

Programming. DAW belongs to the FUNPACK package of subroutines oeveloped at Ar-
gonne National Laboraitory. The function was modified by A. H. Morris.

Reference. Cody, W.J., Paciorek, K.A., and Tacher, H.C., 'Chebyshev Approxiilat.ions for
Dawson's Integral," Math Comp. 24 (1970), pp. 171-178.

D DPDAW(x)

The argument x is a double precision number. DPDAW(x) is tbe double precision
va!u, for F(x).

Remark. DPDAW must be declared to be of type DOUBLE PRECISION in the calling
progrnm.

Algorithm. If jxj -. 1 then the powei series corresponding to the 1 9 th degree Chebyshev
e'pansion given in the SLATEC library by Wayne Fullcrton (Los Alamos) is used, and
if 1 < Ijx < 4 then the 4 4 th degree Chebyshev expansion given in the SLATEC library
by Wayne Fullerton is employed. Otherwise, if Ixl > 4 then minimax approximations are
applied. The power series and minimax approximations were obtained by A. H. Morris.

Programming. DPDAW eiiploys the functions DCSEVL and DPDAWO. DPDAW was
w'ritten by A- II. Morris.

6I

COMPLEX FRESNEL INTEGRAL

For any omplex z not on the positive real axis the complex Fresnel integral E(z) can
be defined by

E(z):: e' [t.

Here it is asurned that 0 < arg(z) < 2wr and arg(ýjz) .1,/2 arg(z). E(z) can be extended
to the positive real :.xis by letting 0 < arg(z) < 2r. Then erf(z) 1= -- iv'2E(- z 2) for
-_/2 •: arg(z) < ý; ,.'2 where erf(z) is the .error function and arg(-z') = x + 2 arg(z). The
•oiJ•ving subroudine is available for computing E(z).

CALLU FRNLI(MOiz,tý)

MO is an integer, z a complex number, and w a c,)mp!e:t variable. When CFRNLI is
called, w is assigned the va.e E(z) if MO = 0 and the value e-'E(z) if MO :$4 O.

Algorithm. If z = x + iy satisfies izl "_ I or both of the inequalities I < jzj < 38 and
•-x + .016y 2 < 0, then the series

a ' F Zn

N/2- '>On!(2n + 1)

is used. If I < jzi < 38 and -- x + .016y 2 > 0 then

E(z) = ý [: , MY rn
n=1 -- bn

is employed. If Izl > 3K and Im 2-z/r > .008 then E(z) is computed by the asymptotic
expansion E(z) =- 0(z) where

e +(z). .. [1-3...(2n- 1)]
'V27rz [n>_ (2

Otherwise, if In > 38 and Im J'z/ff < .008 then E(z) = -- i/V2- + O(z) is employed.

Precision. For MO ý- 0, Re(w) anid lm(w) are accurate to within 1 unit of the 1 2 th

significant digit when Re(w) a ad Im(w) are nonzero.

Programming. CFRNLI employs the functions CPA3BS, EXPARG, and IPMPAR. CFRNLI
was written by Allen V. Htershey and A. If. Morris.

Reference. Ifernhey, A. V., Approximation o f Functiov s by Sets of Poles, Report T'R.-
2564, Naval Weapons l~aboratory, Dahlgren, Virgiiihi, 1971.

61

REAL FRESNEL INTEGRALS

For any comp!c~x z the Fresnel integrals C(z) and S(z) -an be deŽfined by

C(z) = C j x t 2 dt

') sin (t2

The fovoing subroutine As available f:c, ý.,orputiig Ct,) Rwd 45(z) when is real.

CALL FRNI.(x,C,S)

The argument x may be any rcal riumber. C and S are variables. When FRNL i•,
called C is assigned the value C(x) and S is assigned the value S(x).

Algorithm. If 0 < x < 1.65 then x-'C(2r) and x"3 S(x) are computed by minima'K polyno-,
mial apprcximations. Otherwise, if x > 1.65 ten the relations

C(z) = + f `x) sin~z - g(X) Cos2x
2 2 gx o-

S(x) 2 -- (x) cos-z.2 (z -)si-x
42 2

are invoked. For 1.65 < x < 6, xf(x) and X3g(x) are cornputcd by rational riinimax
approximaticns. Otherwi,, for x .;2 8 the auxiliary functions f(x) ani g(x) are cornputed
by the asymptotic expansionx:

f Z 1 _ v 1)j 1 .3(4i;- 1

7F(X r)2i4.

Here m = 5. If x < 0 Ihen the relation:2 C(--.x) = --C(x) and S(--:)-- ---- --SGx) are applied.

Precision. If jxj - 2 then FRNL i1; accurate to within 3 units of th,! 14t' signifirzcnt digit.
Otherwise, if lxi > 2 then FRNL is ,wcuritte to within 1 unit of the 14th significant digit.

Progr.*mming. FRNl. calLs the fui.,: ;INI, COS11, aikd IPMPAR. FRNL was vrtiten
by A. 11. Morrin;.

C. !

EXPONENTIAL INTEGkAl. FUNCTION

For any complex z € 0 not on the positive real axis the exponential integral function
Ei(z) is defined by

Ei(z) - dt.

Ei(z) is an analytic function. If z is r..pi-crd by -- z and t by -. t we obtain the related
Sfi' nction

J.) -F-t

S~t

which is defined for all z ý 0 not on the negative real axis. It, can be verified that

Ei(z) =: v + ln(-z)+ +

evecywhere in the p1 miwý cut along the positive real axis where v is the Euler constant. Thus,
the vaiues of Ei(z) on the upper and lower edges of the cut are

Ei(x ± i0) =: ei(x) -T 7ri

where ei(x) is the real function defined by

ei(x) = v+lnx V' n...
ni=1

for a > 0, The function ei(x), also known as the exponential integral function, has a zero
i. he point .0 = .37250 74107 8.1367 Ei(z) may be computed by the subroutine CEXPIJ
when z is complex, and Ei(z) and ei(z) may be computed by the subroutine EXPLI and
functions DE! and DEI1 when z i; real. DE1 and DEll are double precision fulnctions.

CALL CEXPLI(MO, z, w)

MO is an integer, z € 0 a -omplex number, and w a complex variable. When CEXPlIi
is called, w is assigned the value Ei(z) if MO 7-7 0 and the value e-2 Ei(z) if MO /- 0.

Remark. If z is a positive real number and MO ý 0 (hen w -: ei(z) +-ri

Precition. If MO =- 0 then Re(w) and In(w) are accurate Lo within 2 uni,, of the 12"'
Ssignificant digit when z is noL near a zero of Re(i(z)) orr

Programming. C.EXItLI ernploys the functions (CPAB13S and "PMIARL. -'EXI'Ll was mi-

tiafly writteri by A!len V. Ilernshey, and later reiritten by A. 11. Morris.

Referepce. hershey, A. V., Approxiationds of Funictions by Sets of J'ofp•, ,,. . 'lU-.
256,1, Naval Wc.-aons ILab(,ratory, !)ahlgr:fln, Virgimia, 1971,

CALL EXPL1(MO, x,w,).ER)

MO may have the values 1,2, or 3. The argument x is a nonzero real number and wu
* real variable. When EXPLA is called, if MO 1 ' then w is assigned the value Ei(x) for
* < 0 and the value ei(x) ""Or x > 0. If MG = 2 then it is assumed that x > 0. lin this case
w is assigned the value Ei(x). Otherwise, if MO :=3 then w is assigned the value e--zEi(x)
for x < 0 and the vaiue e-~ x.A(x) for x > 0.

Error return. IERR is a variable that reports the status of the results. If the requested
value w i;s obtained then IE1il~ is set to 0. Otherwise, IERR is ass;gned one of the following
values:

IERR =I Underfiow occurs. In this case w =0.
IER,R =21 Overflow occurs.
IERR =3 (Input er~ror) z =0.
IFERR =4 (Input error) MO :=2 and x <: 0.

The variable w is not d!fined when IERR > 2.

Algorithm. If MO -/ 2 and 4 < x < 8, then the Ghebyshev expansion in the SLATEC
library obtained by Wayne Fullerton (Los Alarnos) is used. The remnaining approximations
employed are fromn the references.

Precision. If MO ý4 2 arnd x > 0, then w is accurate to within 4 units of the 14~" significant
digit when w $? 0. Othrerwise, tv is accurate to within 3 units of the IV~' significanit digit
when -v $4 0.

Piogramming. EXPLI employs the functiois A.LNREL, CSEVL, EXPARG, and IPM)PAR.
EXPLI was written at Argonne National Laboratory for the FUNPACK packagn of special
function subroutines. E;XlLI was modified by A Hi. Morris.

Refei~ences.

(1) Cody, W. J. and Th'~acher, It. C., "Rationa! Chebyshiev Approximations for the Expo-
nential Integral Ejjx)," Math Comnp. 22 (1968), pp. 641-649.

(2) , Cliebyshev Approxirnat'ons for the Exponenitial Integral Ei(x)," Math
(7ornp. 23 (196;9), pp. 289 -303.

)E I (xý)

The argument x :/ (0 is a douable precision numnber. DEI(7 r) Is tie double Precision value
For Ei(x) whet) x < 0, and the double preci,ýion value for ei(x) when X > 0.

Remark. DEl mrust be declared in the calling progr,.un to be of type i)OUBIAN PRlE(l8ION.

A~gorithm. If .3b -' :r <4 then tlhe Tatylor series ex paitsion of ei(~around xz. is use(I
ThiL eýXpMAh31011 Wits obtaincud by) A. [It. Morris. If xj>90 then 0wo stand ard wsy niptoti(
exoam3igon for [ý"i and el Hii appl edi (therwiqt.e thec (iheby ,''vv c x pinsj :.; tile slaC!

111ira ry ob)tari b(v WAaynie l'tdlerthon (Ios A/jikw,.' a):re i~d

Programming. DEI employs the functions DE1E and DEIO. These functions were written
by A.. H. Morris. The functions DCSEVL and DPMPAR are also used.

02I1(x)

The argument x 0 0 is a double precision number. DEII(x) is the double precision
value for e-- Ei(x) when x < 0, and the double precision value for e'- ei(x) when x > 0.

Remark.DEil must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If .35 < x < .4 then the Taylor series expansion of ei(x) around x0 is used.
This expansion was obtained by A. H. Morris. If IxI > 90 then the standard asymptotic
expansion for El and ei is applied. Otherwise, the Chebyshev expansions in the SLATEC
library obtained by Wayne Fullerton (Los Alamos) are used.

Predsion. DEIl(x) is accurate to within 4 units of the 2 8 th significant digit when DEI1(x)
$0.

Programming. DEll employs the functions DE1E and DEIO. These functions were written
by A. H. Morris. The functions DCSEVL and DPMFAR are also used.

67
I (•7

SINE AND COSINE INTEGRAL FUNCTIONS

For any complex z the sine integral and cosine integral functions Si(z) and Cin(z) are
defined by

Si(z)= sint dt
t

E ~ ~~Cin(z)= "-cst d.

These are entire functions. The following functions are available for computing Si(z) and

Cin(z) when z is real.

SI(x) = Si(x) for all real x.

Precision. SI is accurate to within 2 units of the 1 4 th significant digit.

Programming. SI calls the function SPMPAR. SI was written by Donald E. Amos and
Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

CIN(x)

CIN(x) = Cin(x) for all real x.

Precision. CIN is accurate to within 2 units of the 1 4 th significant digit.

Programming. CIN calls the function SPMPAR. CIN was written by Donald E. Amos and
Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

69

EXPONENTIAL EXPONENTIAL INTEGRAL FUNCTION

For any complex z • 0 not on the positive real axis, the exponential exponential integral
function EEi(z) can be defined by

EEi(z) = -Ei(u)du
ooW U

where Ei(u) is the exponential integral function. The following subroutine is available
for computing EEi(z), where EEi(z) is extended to the positive real axis by letting 0 <
arg(z) < 27r.

CALL CEXEXI(z,w)

The argument z is a nonzero complex number and w is a complex variable. When
CEXEXI is called, w is assigned the value EEi(z).

Precision. Re(w) and Irn(w) are accurate to within 1 unit of the 1 2 th significant digit when
Re(EEi(wv)) and Im(EEi(w)) are not near 0.

Programming. CEXEXI was written by Allen V. Hershey and modified by A. H. Morris.

Reference. Hershey, A. V., Approximation of Functions by Sets of Poles, Report TR-
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

71

DILOGARITHM FUNCTION

For any complex z where jarg(1 + z)j < xt, the dilogarithm function L(z) may be
defined by

L(z In1 -Lt) dt,

L(z) is real-valued for any real z > -1, and -1 is a branch point. L(z) can be extended to
the negative real axis from --oo to -1 by letting -- ;I < arg(1 + z) < xt. Then for any real

Sx < --1

L (x) 2r/6 + t_ -dt + i~r n(--x)(i= /--)

The function CLI is available for computing L(z) when z is complex, and the function ALl
is available for computing the real part of L(z) when z is real.

CL1(z)

CLI is a complex--valued function where CLI(z) = L(z) for all complex z. CLI must
be declared in the calling program to be of type COMPLEX.

Algorithm. For izj •. 1/2 the Maclaurin series

(1) L(z) =- E
t12

is used. If Izj > 3 then

(2) L(z) =r 2/6 - L(1/z) + /21n 2 Z

is applied, and if 0 < 1z ± 11 < 1/2 then

(3) L(z) -w 2 /6 -- 14-1 -- z) + In(--z) ln(1-F+ z)

is applied. Otherwise,

L (z) dA (Debye Function)

(4) IU B W 2/ - I

U(+ +1)! 2wj < 2r

is used where w ... ln(-l + z) and 132,, are the Bernoulli rumbers 32 1/6, B4
-1. 1/30, In (3) we note that In(-z) n(1- z), 0 when z - 1.

Programming. CLI is a moodification by A. 11. Morris of the subroutine CI,GMCI, written
by Allen V. Hershey.

73

Reference. Hershey, A. V., Approximation of Functions by Sets of Poles, Report TR-
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

ALI(x)

ALI(x) = Re[L(x)] for all real x.

Algorithm. Rational minimax approximations are used when -1/2 < x < 1. if x > 1 then
(2) is applied, and if -2 < x < --1 or -1 < x < -1/2 then (3) is applied. Otherwise, if
x < -2 t.hen

Re[L(x)] L(I- +/2 In2 (X)

(whici follows from (2)) is used except when -26.63 < x < -6.97. Since Re[L(xo)] = 0 for
xo = -- 12.59517 ... , the Taylor series of Re[L(x)] around x0 is used when -- 14 < x _- -11.1.
Otherwise, if -111 < x < -- 6.97 or -26.63 < x < -- 14 then rational minimax approxim.a-
tions are employed.

Precision. ALI(x) is accurate to within 2 units of the 1 4 th significant digit when x > 0.
Otherwise, if x < 0 then ALI(x) is accurate to within 4 units of the 1 4 th significant digit
when ALI(x) - 0.

Programmer. A. .. Morri:3

Reference. Morris, Robert, "The Dilogarithm Function of a Real Argument," Math.
Comp. 33 (1979), pp. 778-787.

'1 4

GAMMA FUNCTION

For any complex z / 0, -1, ---2, ... the garnma function can be defined by

r0)= _ -+ t-ize- t dt.- -- n! z nSrt=O

Then P(z) is a meromorphic function having simple poles at 0, -1, -2, ... ,and

f 00
r(z) =- tz-'e-t dt

for Re(z) > 0. Also F(z) : 0 for all z. The subroutines CGAMMA and DCGAMA are
available for computing [(z) and In F(z) when z is complex, and the functions GAMMA,
GAMLN, DGAMMA, and DGAMLN are available for comp4.ting r(z) and In r(z) when z
is real. DCGAMA, DGAMMA, and DGAMLN are double precision procedures.

"CALL CGAMMA(MO, z, w)

MO is an integer, z a complex number satisfying z - 0, -1, -2, ... , and w a complex
variable. When CGAMMA is called, tv is assigned the value P(z) if MO = 0 and the value
in F(z) if MO 0 o.

Error retur,;. If z = 0, -1, -- 2, ... , or if Re(z) < 0 and Re(z) is too large for In F(z) to be
computed, then w is assigned the value 0.

Programmning. CGAMMA calls the functions PEXP. SPMPAtI, and IPMPAR. CGAMMA
wa.i written by A. H. Morris.

References.
(1) Kuki, Hirondo, "Complex Gamma Function with Error Control," Comm. ACM 15

(1972), pp. '262-26e'.
.12) Spira, Robert, "Calculation of th'e Garrima Function by Stirling's Formula," Math

Comp. 25 (197(), pp 317- 322.

GAMMA(t)

The argurnent. x s a real numiber. If ['(x) can be computed then G 'MMA (x) is a.signed
the value i'(r). Otherwise, if 1'(i) cannot. be computed, tile,, (;A MM A(x) is set to 0.

Algorithm. If Jx <1 15 tleen x is reduced t.) the interval [1,2) by 1'(a I) al'(a), and a
rationi 1 fripinax app:.,jx;rnation is elliploy,'d. If x 15 thei

~~~Sl (7f X ) 1.i• l(l :)

75

' -- tI=r n - r n|1 - --•! 11••ll1 ti! "r 'll " i•tJi '•' 'I' •:= 'i'111I =--



is applied. For x > 1.5

(2)

is computed where A(x) ;9 a minirnax approximation. The function A(x) is evaluated in
single precision, and a double precision value is obztained for in x. This yields a double
precision value for In 17(x). if in, 1(x) =- 4-18 where a~ is the leading portion of In r(x), then
17(x) is set to e"(1 + 8). This is permissible since 1 + 8 is the portion of the Taylor series
expansion for e6 that is significant.

The logarithm ln z is evaluated as follows: Let n be the largest integer less than or
equal to x, and let t -- (x -- n)/(x +i n). Then x =n(1 + t)1(1 - t) so that Inx=
In n + n[(1 +t)1(1 - t)]. Also 0 < t < 1/(2n). The function In [(I +t)1(1 --t)] is computed
by a polynomnial minirnax approximation in Single precision, and the valuie In ni is stored in
double precision.

Precision. If 0 < x < 2, then GAMMA(x) is accurate to within 2 units of the 14 th significant
digit. If x > 2 then GAMMA (x) is accurate to within 3 units of the 14t" significant digit.
Otherwise, GAMMA(3-) is accurate to within 5 units of the 1 4 th significant digit.

Programming. GAMMA calls the functions GLOG and EXPARG. These functions were
written by A. H. Morris. The functions SI'MPAR anid IPMPAR are a!lso used.

GAMLN(x)

GAMLN(x) =ln r(x) for all positive real x.

Algorithm. See p. 379 and appendix ID of the reference.

Precision. GAMLN(x) is accurate to within 2 units of the 14 th significant digit when
GAMLN(x) 54 0.

Reference. DiDonato, A. ft. and Morris, A. II., "Computation of the Incomplete Gamma
Function Ratiots ani Their hiverse," ACM Thins. Math Software 12 (1986), pp. 377-393.

Prograraimirig. CAM LN calls the function G.AMLN 1. 'These functions were written lby
A. 11. Morris.

CALL DCGAMA(MO, Z, W)

MO is an initeger, andI Z and~ W are (loulble preciswio arrays of' dlimiensioni 2, It is
assurned that Z( 1) and Z (2) are Lthe real andi inaginary parts of a complex numnber z . If
M () 0 then the don Lie precisiond valute for to I'(z ) Is ct 'inputed . Otherwise, if MO / ()
then thie double precisio)n value for tie III '( z) Is comzpuited. W~V(I) and W (2) contain tHie
real and Imlagilary p~arts of w', rt'5)((tI v(Iv.

Error Return. If z: (,1, I -, 2. ....... if Rc(z) - 0 antd ltc(z) is t,(o( large for III I1(z) to bec
coinltpute~d, t~livii W (I) and VV(2) aire assignied tw ho 'ale i.

7 6



Programming. DCGAMA calls the functions DREXP,DPMPAR, and IPMPAR. DCGAMA
was written by A. H. Morris.

References.

(1) Kuki, Hirondo, "Complex Gamma Function with Error Control," Comm. ACM 15
(1972), pp. 262-267.

(2) Spira, 'Robert, "Calculation of the Gamma Function by Stirling's Formula,"Math
Comp. 25 (1971), pp, 317-322.

DGAMMA(z)

The argument x is a double precision number. DGAMMA(x) is the double precision
value for I'(x) when P(x) can be computed. Otherwi3e, DGAMMA(x) is set to 0 when P(X)
cannot, be computed.

"Remark. DGAMMA must be declared in calling program to be of type DOUBLE PRECI-
SION.

Algorithm. If .xr < 20 then x is reduced to the inte:val [1,2) by P(a + 1) = ar(a), and
minimax approximations are used. If x < -20 then 1) is applied, and if x > 20 then (2)
is used. A(x) is computed by the power series correýýponding to the Ch.byshev expansion
i[i the SLATEC library given by Wayne Fullerton 'Los Alamos). The power series and
minimax approximations were obtained by A. fl. M )rris.

Precision. If 0 < x < 2 then DGAMMA(r) is accu, ate to within I unit of the 28" signifi-
:rnt digit. Otherwise, if x > 2 then DGjA'v1M L(x' is accurate to within 1 unit of the 2 5 th

isignificant digit.

Programming. DGAMMA calls the fun:tions DGAMI, DPDEL, DSINI, and DYPARG.
These functions were written by A. I1. Morris. The functions DPMPAR and( IPNI'AR are
also used.

DGAMLN(x)

The argument. x is a douhi ie pr1cision positive number, 1)GAMIN(x) is the double

precision value for In l'(x).

Remark. DG AMiN must be deciLred in the calling prograiu to be of t)pe l)()UD 11, I
m IPRECISION,

Algorithm. If .5 < . 2.5 then minimiax approximiations are used, and if x • 10 t,hen (2) iS
applied. A((x) is computed by the power series corres)on(dinlg to the ( huety'hlev exlpansim mm
in the SIA'T'E(. library -,iven by Wayne Fullerton (Los Alaumos) 'iThe p)ow'er (.ries Aiid
,immilax apl)roxitnations were (btainied I)y A. ILl Morrisi.

77



Precision. DGAMLN(x) is accurate to within 2 units of the 2 8 th significant digit when
DGAMLN(x) A 0.

Programming. DGAMLN calls the functions DPDEL, DGMLN1, DGAM1, and DLNREL.
These functions were written by A. H. Morris.

78



DiGAMMA FUNCTION

For any complex z $ 0, -1, -2, .. the digamma (or psi) function V(z) is deiiiued by

¢(z) = (Z)/F(Z)

where r(z) is the gamma function. For real x > 0, O(x) is an increasing function having a
zero at the point zx = 1.4616 32144 96836. The subroutines CPSI and DCPSI are available
for computing tp(z) when z is complex, and the functions PSI and DPSI are available for
computing V$(z) when z is real. DCPSI and DPSI are double precision procedures.

CALL CPSI(z,w)

The argument z is a complex number satisfying z y 0, -1, -2, ... , and w is a complex
vari:,ble. When CPSI is called, w is assigned the value O(z).

Error Return. If z = 0, - 1, -2, ... , or if Re(z) < 0 and Re(z) is too large for O(z) to be
computed, then w is as&;igned the value 0.

Algorithm. If z = x + iy satisfies i > 0 and zI > 6, then the asymptotic expansion

V)z nz-1 00 B2,•

(I) (z)= l z-2-z -E 2,rnz2-1 
=,

is employed. Otherwise, if x > 0 then the smallest nonnegative integer n is found for which
Iz + nr Ž 6, and the relation

ti--i

- Y(Z) .+(z + )=0 .. .+ ( + j)•-d z ±3

is applied. When x < 0 then

(2) '(z) 0 Z) -.. cot(Z)

is also used.

Programming. C'SI calls the functions REXP, SPIMPAR, and IPMPAR. CPSI was written

Iy A. II. Morris,

PSI(X)

'U, argunieit x is a real nunrier. If V,(x) can ine c,,litmted tihie PS. (T) is a-ssigned
trw va lne ,(:r). (Jthorwise, if ( xr' cannot be comtplte then PSI(x) is set to 0)

Precision. If x () the, l'S(. is ;ccuiratc to w1th1 2, nits of the 14"' sigi~ik-ar4t (i,,'It
when 'S!(r) / 0T



Programming. PSI calls the functions SPMPAR and IPMPAR. PSI was written at Argonr.e
National Laboratory for the FUNPACK package of special function subroutines. PSI was
modified by A. H. Morris.

Reference. Cody, W. J., Strecok, A. J., and Thacher, H. C., "Chebyshev Approximations

for the Psi Function," Math Cornp. 27 (1973), pp. 123-127.

CALL DCPSI(Z,W)

Z and W are double precision arrays of dimension 2. It is awsumed that Z(1) and Z(2)
are the i,.al and imaginary parts of a complex number z. When DCPSI is called the double
precision value for w = O(z) is computed. W(1) and W(2) contain the :eal and imaginary
parts of w, respectively.

Error Return. If z = 0,-1, -2, ... , or if Re(z) < 0 and Re(z) is too large for ak(z) to be
computed, then W(1) and W(2) are assigned the value 0.

Programming. DCPSI calls the functions DREXP, DPMPAR, and IPMPAR. DCPSI was

written by A. H1. Morris.

DPSI(x)

The argument x is a double precision number. If O(x) carn be computed then DPSI(x) is
the double precision value for O(x). Otherwise, if V(• cannot be ccmputed, then DPSI(z)
is set to 0.

Remark DPSI must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. if zxj < 10 then x is reduced to tlhe interval [1,2) by 0(a + 1) = i .(a), ind
the Chebyshev expansion in the SLAT EC library given by Wayne Fullerton (Los Alarnos)
is used when Ix - xol > 2 10-2. Otherwise, if Ix - xol < 2 . 10-2 then the Taylor seriks

around the zero x0 :s used. The coefficients for the Taylor series were obtained by A. H.
Morris. If x < - 10 the:n (2) is applied, and if x > 10 then tp(x) -- In x is computed by the
power series corresponding to the Chebyshev expansion in the SLATEC library given by
Wayne Fullerton. The power series was obtained by A. H, Morris.

PreLision. If 0 < x < 1 or x > 2 then DPSI(x) is accurate to within 2 units of the 2 8th

significant digit. Otherwise, if 1 < x < 2 then DPSI(x) is accurate to within 5 ur,7ts of the
28V' significant digit when l)PSI(x) - 0.

Programming. DPS! calls the functions E'CSEVL, DPSIO, DPMP.AR, and IPMPAR. I)PSl
was written by A. 11. MorriS.

80

= . .. .,. .... " I'• P'I Mr'11l ill'



DERIVATIVES OF THE DIGAMMA FUNCTION

The following subroutine is available for computing the digarnma function ik(x) And its
derivatives for real x > 0.

CALL PSIDF(x,n,m,W,IERR)

Let wnr -O(x) and w,1 0- n t)(x) where (n)(x) is the yith derivative of O(x)
n! 5 '))whr

(n= 1,2,..).

The argument x is a positive real number, n and ra are integers where n > 0 and
m > 1, and W is an array of dimension m or iarger. When PSIDF is called, w,,+i- 1 is
computed and stored in W(i) for i = 1, ... , m.

IERR is an integer variable that reports the status of the results. When PSIDF ternii-
natee, IERR has one of the following values:

IERR - 0 The values w., ... , w,+,,wi. were obtained and stored in W.
IERR I (Input error) x <0, n < 0, or m < 1.

IERR 2 (Overflow) Either x is too small or n + m - 1 too large.
IERR 3 (Underflow) Either x is too large or n + m - 1 too large.
IERR 4 This setting can occur only if n + m - 1 > 100. When it occurs,

wn+,-., cannot be computed since n + m - I is too large for x.
(However, wn+,n-I may be computable for larger values of x.)

Remark. Even though PSIDF may be used for computing w0 =- -- O(x), its primary purpose
is for computing the scaled derivatives wn(n > 1) of V(x). For x > 3, w 0 is accurate to
withiiu 2 units of the 1 4 ,h significant digit. However, far less accuracy is frequently obtained
when x < 3. In the worst case, all relative accuracy is lost for Wc when x is sufficiently near
the zero x 0 = 1-46j,6... of O(x). For x < 3, the function PSI should be used for computing

Precision. For n _ ii < 30 and x < 1000, w, is accurate to within 1.5 units of the 1 2 th

significant digit.

Programmirng, PSIDF employs the functions IPM")AR, SPMPAR, EP'SLN, and EXPAI1{G.
PSIDF is a modification by A. -. Morris of the subroutine PSIFN, written by Donald E.
Amos (Sandia Laboratcries).

Reference Amos, D. E ,'Algorithm 610. A Portable Fortran Subrout~ne for Derivatives of
the Psi Functic,n," ACM Trans. Math Software 9 (1983), pp. 494--502.

81



INCOMPLETE GAMMA RATIO FUNCTIONS

For a > 0 and x > 0 let P(a,x) and Q(a,x),Jenote the funct.ons defined by
i ~~x == 'o e..tta ,,

S-r a) " J

Q~,X = ' dt,

Then 0 < P(a,x) _< 1 and P(a,x) + Q(a,x) 1. Also, P(a, x) -* I and Q(a,x) --4 0 f',r
x > 0 when a -- 0. Hence, we may define P(O,x) =1 and Q(0,x) = C for x > 0. T1.e
subroutines GRATIO and DGRAT aze available for computing P(a,x) and Q(a,x), a:zi
the auxiliary fumctions RCOMP and DRCOMP are provided for computing e-x'z/f(a).

CALL GRATIO(a,x,P,Q,i)

It is assumt:d that a > 0 and x > 0, where a and x are not both 0. P and Q are
variables. GRATIO assigns P the value P(a, x) and Q the value Q(a,x). The argument i
may be any integer. This argument specifies the desired accuracy of the results. if i = 0 then
the user is requesting as much accuracy as possible (up to 14 significant digits). Otherwise,
if i = 1 then accuracy is requested to within 1 unit of the 6th significant digit, id if t -/ 0, 1
then the accuracy is requested to within 1 unit of the 3rd significant digit.

Error Return. P is assigned the value 2 when a or x is negative, when a = x = 0, or
when P(a, x) and Q(a, x) are indeterminant. P(a, x) and Q(a, x) are indeterminant when
x ; a and a is exceedingly large. On the CDC 6000-700(1 series ccmputers this occurs when
Ij/a - 11 < 10-14 and a > 6.6E25.

Programming. GRATIO calls the functions ERF, ERFC1, REXP, RI,OG, RCOMP, GAMI,
GAMMA, and SPMPAR. GAMMA employs the functions GLOG, 1,XPARG, and IPMPAR.
GRATTO was written by A. H. Morris.

Reference. DiDonato, A. R. and Morris, A. If., "Computation of the Incomplete Gamma

Function Ratios and Their Inverse," ACM Trans. Math !'oftware 12 (1986), pp. 377--39.*

RCOMP(a, x)

PCOMP(a,z) - e-'xo!I'(a) for a > 0 and x >, 0.

Algorithm. See page 378 of the reference.
i Programming. lRCOMI) eirploys tne fnc~tionls EXPAR(;, (JAMMNA, CAM!I, (LG.,(, ,and

RLOG. These fiuncLion; were written 1,y A. I. Morris. The functions SI MPAR and W I'Mv-.
PAR are also used.

' g~i



Reference. DiDonato, A. R. and Morris, A. A., "Computation of the Incomplete Gamma
Function Ratios and their Inrverse," ACM Trans. Math Software 12 (1986), pp. 3717-393.

CALL DGRA''(c,,x,P,Q,IERR)

The arguments a and x are nonnegative double precision numbers, where a and z are
not both 0. P and Q are double precision variables, and IERR an integer variable. Wken
1LGRAT is called, if P(a, z) and Q(a, x) car, be computed then IERR is set to 0 and P and
Q are assigned th,. double precision values for P(a, x) and Q(a, x).

Error Return. If P(a,x) and Q(-,, z) cannot be computed then P is set to 2 xad XERR is
assigned one of the following values:

IERR 1 a or ,r is negative.
1ERR 2 az= x 0.
IERR :3 P(a, x) and Q(a, x) are indeterrainant. This setting occurs only

when x -4 a a&id a is exceedingly large.

ANgorithm. A modification of the algorithm given in the refereiice is used. The functions
ck(z) appearing in the Tenirne Expansion. on page 381 are computed by minimax approxi.-
mations designed by A. H. Morris.

Programming. DGRAT ermlploys the subroutines DGR29 and DGR17, and the functions
IPMPAR, DPMPAR, [JXPARG, DREXP, DRLO., DSIN1, DERF, DERFCI, DERFC0,
DGAMMA, DGAMI, DRCOMP, and DPDEL. DGRAT was written by A. 11. Morris.

Reterznce. DiDonato, A.R. and Morris, A.H.,"Computation of the Incomplete Gamma
Function Ratios and Their Inverse, ACN1 Trans. Math Software 12 (1986), pp. 377-393.

DRCOMP(a. x)

The arguiaevts a and x are double precision numbers where a > 0 and x > 0.
DRCOMP(a, x) is the double precision value for e-xxa//P(a).

Reqark. DRCOMP must !.)o, &clared to be of type DOUBLE -rECISIGL4 in the caliing
program.

Programmn•rg. DRCO.. P •,rnploys the functions IPMPAR, DPM-PAP, 3.)XIAR(G, DRLOG,
DSINI, DGAMMA, DGAMI, end DPDEL. DRCOMP was wriLtern by A. I1. Morris.

84



INVERSE INCOMPLETE GAMMA RATIO FUNCTION

For a > 0 and x > 0 let P(a, x) and Q(a,x) denote the incomplete gamma ratio
functions defined by

P(a,x) = fxe-t ta]dt
17(a) 0

Q!~) e-*tt-' at.

Then 0 < P(a,x) :_ 1 and P(a,x) + Q(a,x) = 1. If we are given a, p, and q where
a > 0,0 < p _< 1, and p + q = 1, then the subroutines GAMINV and DGINV are available
for obtaining the value x > 0 for which P(a, x) = p and Q(a, x) = q.

CALL GAMINV(a,X,xop,q, IND)

X is a variable. If p = 0 then X is assigned the value 0, and if q = 0 then X is set to
the largest floating point number available. Otherwise, if p i4 0 and q $: 0 then GAMINV
attempts to obtain a solution x for P(a, x) = p and Q(a, x) = q that is correct to at least 10
significant digits.' If a solution is obtained then it is stored in X. The solution is normally
computed by Schroder iteration. The argument x0 is an optional initial approximation for
x. If the user does not wish to supply an initial approximation then set x0 _• 0.

IND is a variable that reports the status of the results. When GAMINV terminates,
IND has one of the following values:

IND =: 0 The solution was obtained. Iteration was not used.
IND > 1 The solution was obtained. IND iterations were performed.
IND = -2 (Input error) a < 0.
IND = -3 No solution was obtained. The ratio Q/a is too large.
IND -4 (Input error) p < 0, q < 0, or p + q $ 1.
IND -6 20 iterations were performed. The most recent value obtained for

x is stored in X. This cannot occur if x0 < 0.
IND -7 Iteration failed. No value is given for x. This may occur when

x - 0.
IND -- 8 A value for x is stored in X, but the routine is not certain of its

accuracy. Iteration cannot be performed in this case. If xo t 0
then this can occur only when p Pý 0 or q ;zz 0. If x0 > 0 then this
can occur when a z x and a is exceedingly large (say a > 1020).

Remark. If xo K 0 then 3 or fewer iterations are required.

Programming. GAMINV employs the sutbroutines ( RA(ATIO and PNI, and functions I.R F,
ERAC1, ERI, IREXI), RLOG, ALNIIL M ANvA, GAMI, GAMIN, GAMIN ,

1If a k digit floating point arithinetIc is being used where k < I0, then the routine attempts t, ubtlail ;

suolution that is correct to imachine in ,ccurracy.

85



RCOMP, EXPARG, IPMPAR, and SPMPAR. GAMINV was written by A. It. Morris.

Reference. DiDonato, A.R. and Morris, A.H., "Computation of the Incomplete Gamma
Function Ratios and Their Inverse," ACMTrans. Math Software .12 (1986), pp. 377-393.

CALL DGINV(a,X,p, q,IND)

The arguments a, p, q are double precision numbers and X a double precision variable.
If p = 0 then X is assigned the value 0, and if q = 0 then X is set to the largest double
precision number available. Otherwisc, ,i p / 0 and q 0 0 then DGINV attempts to obtain
a double precision solution x for P(a, x) = p and Q(a, x) = q that is correct to machine
accuracy. If a solution is obtained then it is stored in X.

IND is a variable that reports the status of tth< results. When DGINV terminates, IND
has one of the following values:

IND = 0 The solution was obtained. Iteration was not used.
IND > 1 The solution was obtained. IND iterations we, trformed.
IND = -2 (Input error) a < 0.
IND = -3 No solution was obtained. The ratio Q/a is too large.
IND = -4 (Input error) p <2 0, q < 0, or p + q -/ 1.
IND = -6 10 iterations were performed. The most recent value obtained for

x is stored in X (This setting should never occur.)
IND = -7 Iteration failed. No value is given foi x. This may occur when

x 0.
IND = -8 A value for x hi stored in X, but the routine is not certain of its

accuracy. Iteration cannot be performed in this case. This can
occur only when p 0 or q Pj 0

Remarks. Schroder iteration is normally used. Onr the CDC 6000-7000 series computers 4
or fewer interations are required.

Programming. DGINV employs the subroutines GAMINV, GRATIO, PNI, DGR17, DIPNI,
DGR29, and DGRAT, and functions RCOMP, DRCOMP, S PMPAR, DPMPAR, EXPARG,
DXPARG, REXP, DREXP, ALNREL, DLNREL, RLOG, DRLOG, DPINI., ERF, EFRC1,
DERF, DERFCI, DEFRCO, ERFI, DE.RFJ, GAMMA, GLOG, GAMI, GAMLN, DGAMI,
GAMLNI, DGAMMA, DPDEL, DGAMLN, DGMLNI, and IPMPAR. DGINV was written
by A. 1i. Morris.

86



LOGARITHM OF THE BETA FUNCTION

For a, b> 0 the beta function B(a, b) can be defined by

From this it follows that B(a,b) = (a)F(b)/P(a + b) where 17(a) is the gammna function.
The functions BETALN and DBETLN are available for computing In B(a, b). DBETLJN is
a double precision function.

BETALN(a, 6)

BETALN(a, b) =ln B(a, b) for a, b > 0.

Algorithm. See pages 19-2 1 of the reference.

Precision. BETALN(a, 6) is accurate to within 4 units of the 1,011 sipifiifcan digit when
a,b > 1 and BETALN(a,b) :i 0. In particular, when a-,b > 15, BETA1LN(a, v) is accurate
to within 2 units of the 1 4 1h significant digit.

Programming. BETALN employs the functions ALNREL, ALGDIV, BCORR, GAMLN,
GAMLN1, and GSUMLN. These functions were written by A. 11. Morris.

Reference. DiDonato, A. R. and Morris, A. fl., "Algorithmr 708 Significant Digit Compui-
tation of the Incomplete Beta Function Ratios," ACVW Trans. Math Software 18 (1992),
pp. 360-373.

DBETLN(a, b)

The arguments a and b are positive double precision numbers. 1)BETLN(a,b) is tile
double precision value for In B(a,b).

Remark. DBETLN mrust be declared in the calling prograrn to be of typo, DOUBLE
PRECISION.

Algorithm. Iibe algorithn for In 13(a, b) on pages 19 21 of the rcference is used. A(x) IS
computed by the power series corresponding to the Chebysliev expansion in the S LATEC'
library given by Wayne Fullerton (Los Alamnos). The poe series was obtained by A. If.
Morris

Programming. I)BEYTLN einploysi thle functions I)LNRZEL, l)LGDlIV, l)BC( 4111 lI.)Pl)lEL,
DGAMLN, DGMLNI, I)GAM I and DGSMLN. These functions were written I V Aý 11. MVor-
ris. The functio n I)PM PA I? Is also used.

Reference. IDil onato, A. HI. atnd Morris, A. If. "A lgori tfin 708 Signifiicanut DI' Ci~( X riy!)
tationl of tile Inlconp let' li' untc tioni Ratios ," ACM Triosý. Aliith Soft ware? tS19'.
pp. 3I6( :373.



INCOMPLETE BETA FUNCTION

For a, b > 0 and 0 < x < 1 the incomplete beta function is defined by

... 1 f o t b
I (a, B(a,b) 1 ta'(1 - t)b- dt

where B(a,b) is the beta function. Then we note that 0 < I.,(a,b) < 1 and

Slim 1,,(a, b) =1 for x 54 0

lim Ix(a, b) 0 for x k 1.
b--0

These limits permit Ix(a,b) to be defined to be 1 when a = 0 and b 54 0,x $ 0, and for
I.,(a,b) to be defined to be 0 when b = 0 and a =:ý O,x 4- 1. The subroutine BRATIO
is available for computing I,.(a,b) for arbitrary a,b 0, and the subroutine ISUBX is
available for computing I.(a, b) for the highly specialized cast, -ii a and b are integers or
lhalf-integers. Also, the auxiliary function ':.CCI IP is provided foi computing xayb/B(a, b)
when 0 < x < I and y = 1 - x.

CALL BRATIO(a, b• z, y, W, WI,IERR)

It is assumed that a >. 0, b > 0, 0 < x < 1, and y 1= I-x. W, WI, and IERR are
variables. If no input errors are detected then IER.R is set to 0, W is amsigned the value
Jr(a, b), and W1 is assigned the valt-ue I-- 1 f(a, b).

Errot Return. When an input error is detected, then W and Wl are assigned the value 0
and IERR is set to one of the following values:

IERR I if a < 0 or b 0
IERR 2 if a -b- 0
IERRI 3 if <0 or x I
IRR 4 if y < 0 or y/:- 1
-IERl 5 ifx y/ 1
IERR 6 if x a 0
IEtRR 7 ify b - ()

Programming. tiHATIO cinploys the subroutines IGHRA"I' anid G(RATII, and the fin•c-
io1ns A LG D1IV, A LNIEL, AMISERI, BASYM, BC(• HR, BETAIA,N, HIRA,, 1l SEt., BE

COMP, IIW MINP, BU]", ,EI, El,'(Il, FPSEI, GAIMiLN, GA,>1'.,NI, (C AMI, GSIJMVIN
PSI, ESUM, iX PAI•HG , l,, ai( RI()(GI. These sii brouthires ait i'otic! ions werO wri, t ti
•by A, 1I. NMorris. The fun( t1i)is -1)MIPAR anid JPMPIAR are also ii: i

Releretice I)i)l), iato, A. P i. ;, I horris, A. If., "Algorithiri 708 S.Viii: it ii, (:ut Hi,-
tat,joiI of tir, iF.,ci , , , I 1,,. "'-t o ho to," ( A l'ravu. , I.t .Ratio st," 18 'T IM)t ")(
ly. 36•0 373



CALL ISUBX(a, b, x, W, IERR,EPS)

It is assumed that a, b, and x satisfy the following restrictions:

(1) a >O,b>0, and x>0
(2) a > 1/2,1/2 < b < 70, and x < 1
(3) a and b are integers or half-integers

EPS specifies the (absolute) accuracy that is desired. W is a real variable and IERR an
integer variable. When ISUBX is called, if there are no input errors then W is assigned the
value I,(a,b) and IERR is assigned the value 1.

Error Return. If an error is detected then IERR is assigned one of the following values:

IERR 2 if restrictions (1) are violated.
IERR 3 if restrictions (2) are violated or a is too large.
IERR 4 if re, ,rictions (3) aro,' violated.

Also W is assigned the value 0.

Remarks. ISUBX was designed for a maximum precision EPS = 10-10

Programming. ISUBX employs the functions ALGDIV, ALNREL, BLND, IPMPAR, and
LOGAM. ISUBX was written by A. H. Morris.

Reference. DiDonat, A. R. and Jarnagin, M..P., "The Ffficient Calculation of the Incom-
plete Beta-function Ratio for Half-Integer Values of the Parameter a,b," Math Cornp. 21
(1967), pp. 652-662.

BRCOMP(a, b, x, y)

BRCOMP(a, b, x, y) - x•'y6 'B(a, b) for a, b > 0 and x,y y> 0 where x + y 1.

Algorithm. See pages 19-21 of the reference.

Programming. BRCOMP employs the functions ALGDIV, ALNREIZL, HCO H, tIETALN,
GAMI, GAMLN, GAMLNI, GSUMLN, and RLOGI. These functions were writen by
A. H. Morris.

Reference. I)il)onato, A. R. and Miorri!;, A. It "Algorit.hmn 708 Significant lDigit (Compli-
tation of t6e Incomplete Beta Func,,ioy IRati(o,. ACM Trans. Matli Software 18 (1992),
pp. 360 373.



BESSEL FUNCTICN J,,(z)

If v is complex then J,(z) is defined by

CY (_ k1( z/ 2)v,+2k
S= -:;k! r +k +,L)-

k=0

for any z 4 0 in the complex plane cut alorg the negative real axis. J,(z) is analytic in
the region. larg(z)l < 7r, and J ,(z) is an entire function, of v for any fixcd z. J,(z) can be
extended to the Pegative real axis by letting -?r < arg(z) < x. If v is an integer then J.,(z)
is also defined at 0 and is an entire function of z. The following subroutines are available
for computing J,(z).

CALL C3SSLJ(z,v,uw)

The arguments z and i. are complex numbers and w is a complex variable. It is as-
sumed that z • 0. When CBSSL,, is called, w is assigned the value J,(z).

Precibion. The real and imaginary parts of u, are normally accurate to 11-12 significant
digits when Re[J,(z)] and Im[J•,(z)] are not near 0. The only exception to this is when

Re(z) ; 0, Im(v) z 0, and 14 < jzi < 17.5+2vj2 . Then Re(w) is accurate to 11-12 signif-
icant digits, but all acouracy for the small nonzero value Irm(w) may be lost.

Algorithm. A modification of the Hershey procedure for applying the Maclaurin, Debye,
and asymptotic expansions is used.

Programmimg. CI3SSLT ompioys the subroutines CREC, CGAMMA, CBJM, CBDI3,
LCBJA a-id functions IPMPAR, SPMPAR, CPA1BS, CDIV, EXPARG, REXP, SIN1, COSI,

CGAMO, GAMMA, GLOG. CBSSLJ was writter. by Andrew 11. Van Tuyl a•id A. 1I. Morris.

Reference. Hershey, A. V., Computation of Seci(d Functions, Report TR-3788, Naval
Surface Weapons Center, alahlgren, Virginia, 1978, pp. 33-42.

CALL BSSLJ(z,n,w)

The argument .• is a complex number, n is an integer, and w is a comphlex variable.
When BSSIJ. is called, u) is assitiued the value .l,,(z).

Precision. 13SSiL. is accurate to within 5 10 '4 for real 0 . z - 35 and n (), 1.

Programmer. ,\. V. thrsfiey

Reference. lhersey, A. V., Computation of Spec(d Functionp, Ret)ort l'1' -378,•, Naval
Su,•rfac' \eVaplos ( ,Xiiter l)ahlgrcrn, V'r;-irria, 1978.

Ii



CALL BESJ(xan,W,k)

The arguments x and a are nonnegative real numbers, n is a positive integer, and W is
an array of dimension n or larger. When BESJ is called J,+i-,(x) is computed and stored
in W(i) for i = 1, ... ,n.

The argument k is an integer variable that is set by the routine. If all J,+i1-(x) are
computed then k is set to 0. Otherwise, k is assigned one of the following values:

k = -1 The argument x is negative.
k = -2 The argument a is negative.
k = -3 The requirement n > 1 is violated.
k > 0 The last k components of W have been set to 0 because of under-

flow.

Precision. For 0 < x < 35 and 0 < a < 1, BESJ is accurate to within 8. 10-13.

Programming. BESJ calls the subroutines ASJY and JAIRY, and the functions GAMLN,
SPMPAR, and IPMPAR. The subroutines were written by Donald E. Amos, Sharon L.
Daniei, and M. Katherine Weston (Sandia Laboratories).

References.

(1) Amos, D.E., Daniel, S. L., and Weston, M. K., CDC 6600 Subroutines for Bessel
Functions J,(z),z Ž 0> rv > 0 and Airy Functions A-(z),Aý-(x),--oo < z < oo. Report
SAND 75-01.47, Sandia Laboratories, Albuquerque, New Mexico, 1975.

(2) , "CDC 6600 Subroutines IBESS and JBESS for Bessel Functions I•,(x)
aand JL,(x),z > 0,v > 0," ACM Trans. Math Software 3 (1977), pp. 7692.



BESSEL FUNCTION Y,(z)

If v is any complex number not an integer, then Y,(z) can be defined by

Y.(Z) JJ (z) cosv'r -
sin v'r

for any z 6 0 in the complex plane cut along the negative real axis. For any i~lteger n we
can also define Yn(z) --- lir Y.(z). Then for any complex L,,YY(z') is analytic in the region

iarg(z)l < r. Also, Y,(z) is an entire function of v for any fixed z. The following subroutine
is available for computing Y,(z) when v is an integer.

CALL BSSLY(z, n, w)

The argument z is a complex number, n is an integer, and w is a complex variable. It
is assumed that iarg(z)l < x'. When BSSLY is called, w is assigned the value Y,(z).

Precision. If .005 < x < .785 then Y0(x) and Y (x) are ac;curate to within 3 units of the
1 4 th significant digit. Otherwise, if x > .785 then Yo(x) and YI(x) are accurate to within

4. 10-14,

Programmer. A. V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Report TR-3788, NavT,]
Surface Weapons Center, Dahlgren, Vii ginia, 1978.

'!93



MODIFIED BESSEL FUNCTION I,(z)

If v is complex then 1,(z) is defined by

00 (z/ 2 ),,+2k(vz) == F k! r(v + k T -1)"
/C=0

for any z / 0 in the complex plane cut along the negative real axis. v(z) is analytic in
the region Iarg(z)I < 7r, and 1,(z) is an entire function of v for any fixed z. TL,(z) can be
extended to the negative real axis by letting -ir < arg(z) _< r. If v is an integer then I,(z)
is also defined at 0 and is an entire function of z. The following subroutines are available
for computing 1,,(z).

"CAL.L CBSSLI(z,v, w)

The arguments z and v are complex numbers and w is a complex variable. It is assumed
that z $-- 0. When GBSSLI is called, w is assigned the value 1,(z).

Algorithm. The evaluation of I4(z) is reduced to .,(z) using

(z) /2 .J,(ze`u2) 7r < arg(z) <

Prograrnning. CBSSLI calls the subroutine CBSSLJ and functions EXPARG , COSI, and
SIN I . Also, the functions and subroutines needed for (lCSSLJ are used. CBSSI vA as
writtcni by Aidrew It. Van Tuyl and A. If. Morris

CALL. BSSLI(N,)> z, n, w)

MO() is an int.&,,,r, z a coniplex iinuniber, n an initeger, arid u? a coinplex variable. If MO
/ H then it is a.su'iied that larg(z)i A. When BSSLl is called, w I's wignned the ValIU,
I,,>) if MN(0 amd the value c I,, (z) if M() / 0

Precision. 15,ýL! is ýtuirat,' to, witbin, 5 uiitu,ý of the 13th •sjgnificant [git for re-al 0 35
alid it (, 1, . .. 40.

Programmner Alh'ii . Ilir Vy

SReference. lhtrs-ey, A. V., (Comfputaition o)f .peciai Fij-cions, Heport, '1'1H-37, Na,
Srfft'' \W\'-tipuiw ( , rler, 1)alijurti, Virgi'kit, 1978.

CALL BESI(, o Nit ,n, Wk)

NV) . '[lic -1rg ritn t il r rTal k] i iil'ers Yi S A

ti cgr, ;iri, I l Wl i-; arra y , f 1J i ii i or larg 'r. ,,i\ i t I, ,i V- ; e l, if \,I



1= then [, ,- 1 (z) is computed and stored in W(i) for i =- 1, ... ,n. Otherwise, if MO -) 2
then e- xJ4.•_i(X) is computed and stored in W(i)

The argument k is an integer variable that is set by the routine. If all I±+jl(x) or
c-x1,•+,_z(x) are computed then k is set to 0. Otherwise, k is assigned one of the following
values:

k -1 The argiment x is negative.
k -2 The argument ce is negative.
k -3 The requirement n > I is violated.
k -4 MO is not 1 or 2.
k --5 The argument x is too large for MO = 1.
k > 0 The last k components of W have been set to 0 because of underflow.

Precision. For O < x < 35 and 0 < a < 1, or 0 < x < 35 and i = 1,2 ... ,40, 1'(x) is
accurate to within 2 units of the 1 2 th significant digit.

Programming. BESI calls the subroutine ASIK and the functions GAMLN, SPMPAR,
and IPMPAR. BESI and ASIK were written by D. E. Amos and S. L. Daniel (Sandia
Laboratories).

References.

(1) Amos, D. E. and Daniel, S. I., A CDC 6600 Subroutine for Bessel Functions

I,(x), v > 0,,r > 0. Report SAND 75-0152, Sandia Laboratories, Albuquerque, New
Mexico, 1975.

(2) Amos, D. E., Daniel, S. L., and We3ton, M. K., "CDC 6600 Subroutines (BESS and
JBLESS for Bessel Functions I,(x) and J,(x), z > 0, v- > 0,, ACM Trans. Math
Software 3 (1977), pp. 76- 92.



MODIFIED BESSEL FUNCTION KI(z)

If v is any complex number not an integer, then K,(z) is defined by

H, g(z) 7- A- I-,,(Z) - 1, (Z)
2 qin va-

for any z :?: 0 in the conplex plane cut along the negative real axis. For any integer n we
can also define K,,(z) = lim K&(z). Then for any complex v, K,(z) is analytic in thea, --- tirl

region larg(z)l < •r. Also, K,(z) is an entire function of v for any fixed z. K,(z) can be
extended to the negative real axis by letting -- K < arg(z) < 7r. The following subroutines
are available for computing K&,(z).

CALL CBESK(z,v,w)

The arguments z and v are complex numbers and w is a complex variable. It is assumed
that z $ 0. When CBESK is called, w is assigned the value Ka,(z).

Algorithm. K&,(z) is computed using (*), the asymptotic expansion

2z k>1
,k) (4V 2 -) ... (40 - (2k - 1)2)

4kk!

the relation

(2) Ka,+i(z) -2L"I(z) + K_,(z)
z

along with the Miller algorithm and the power series K,,(z) > ckfk and K,, j (z)
k :>

2 >2 ck(pk - kfk) given in the refcrences, and the analytic continuation formulae
Z kA>0

K,,(z) e v"'K,(e "'z. ) i1r ,,(J "' z) (0 arg(z) 7r)

K,(z) C T F",,(e"',:) f ,•t,! (e 'z) it• argi(, ) '-0).

Precision. Frequently, II 13 digit acc iracy is obtained K.r 10 I zI - 50, (, | l 'ESl.
inainttains accuracy to with in 3 units of the 8 t)' significanit di,;it except wheln or ,(:) <r
lm ,,(2)cis near 0. or o(c c,-ioiially whol . I" oi the negative rei axx. lt 1et
For 56 Iz< 100, IHc(w) alnd Iva(u,) are normally accurate to within 3 tnliis of th- 8'1

signiificaut digit when T - I and T - 1/2. tluw,•,'r, for 1/2 1 an] " not ret], 'I- t

gra.:ually de1creia;es ;v i iicrcamse,.

Programming. CI(,'lil K emiiploysi the sthrot.irics (CKA (,Kl> (Uk •1 I, (1 l

l7



CGAMMA, CBSSLI, CBSSLJ, CREC and functions CDIV, CGAMO, COS0, COSI, SINO,
SINI, CPABS, CXP, EXPARG, SPMPAR, IPMPAR. Also, the functions and subroutines
needed for CBSSLJ are used. CBESK was written by Andrew H. VanTuyl and A. H.
Mo, ris.

References.

(1) Amos, D.E., Computation of Bessel Functions of Complez Argument, Report, SAND
83--0086, Sandia Laboratories, Albuquerque, New Mexico, !983.

(2) Temrnme, N.M., "On the Numerical Evaluation of the Modified Bessel Function of the
Third Kind," J. Comp. Physics 19 (1975), pp. 324--337.

CALL CBSSLK(z, r, w)

The argument z is a nonzero complex number, r ai real number, and w a complex
variable. When CBSSLK is called, w is assigned the value Kr(z).

Algorithm. The algorithm employed by CBES,, is used. For real r, (*) is not needed.

Programming. CBSSLK employs the subroutines CBSSLJ, CKA, CKM, CKML, CREC
and functions CPABS, COSO, CXP, GAMI, SINO, SPMPAR, IPMPAR. Also, the functions
and subroutines needed for CBSSLJ are used. CBSSLK was written by Andrew H. Van Tuyl
and modified by A. If. Morris.

CALL BSSLK(MO,z,n,w)

MO is an integer, z a complex number, n an integer, and w a complex variable. It is
assurneo that larg(z)l < 7r. When BSSLK is called, w is assigned the value K,(z) if MO
= 0 and the value ezKn,(z) if MO / 0.

Precision. BSSLK is accurate to within 6 units of the 1 4 th significant digit for real z and
n --- 0, 1.

Programmer. Allen V. ilershey.

Reference. Hershey, A. V., Computation of 5pecial F~unctions, Report TR-3788, Naval
Surface Weapons (Ceriter, Dlahlgren, Virginina, 1978.



AIRY FUNCTION4S

For any series w E a, z' satisfying the differential e-uation w" = zw, it follows
n0O

that w = aof(z) + aig(z) where

f(z) 1+ 1 1.4-..(3n-2) ,
(3n)!

g(z) I+ z.-1) +

n>1 -- (3n +1)!

In particular, the Airy functions Ai(z) and Bi(z) are independent solutions of w" zw
where

Ai(z) = cf(Z) -- c 2g(z)
Bi(z) = v'-1 [CAZ) + c2g(z)]

for ci = 3- 2 / 3 /F(2/3) and c2 = 3-1/ 3 /F(1/3). Ai(z) and Bi(z) are entire functions.

The subroutines CAI and CBI are available for computing Ai(z) and Bi(z) when z is
complex, awid the functions Al, AIE, BI, and BIE are available for computing Ai(z) and
Bz(z) when z is real. CAI and CBI also provide the dervatives Ai'(z) and Bi'(z) of Ai(z)
and Bi(z).

CALL CAI(IND,z, w, w',IERR)

IND is an integer, z a complex number, and w and w' complex variables. When CAI
is called, w is assigned the value Ai(z) and w' the value Ai'(z) when IND = 0. Otherwise,
if !ND • 0 then = e•iA(z) and w' -=eAi'(z) where 2 2.3/2

IERR is a variable that is set by the routine. When CAI terminates, IERR has one of
the following values:

iE1R -: 0 The desired values were obtained.
IERR 1 z is tco large f(or the desired values to be computed, In this case

w and u,' are assigned the value 0.

Precision. For IND / 0 theý real and imaginary parts of w and w' are accurate to within 2
units of the '2t" significant digit except near points where they vanish.

Programming. CAI cmiploys the suhroiutinzie AIRM, All, AIA, ,JA, J RI, I M, KA, KML,
INIC, nd HIM. The'w.s ,woutinrs were writtei by A ndrew 11 Van 'luyl aid modi!id bly A. 11
M(:rris. The subroutinres CAI'C ad C RE.7, and t. unctiolel CP'AHS, EX. PAW!I, II'MI'At,
and S'N'IPAR are ako used

CALL



IND) is an integer, z a complex number, and w and w' complex variables. When CBI
is c.dled, w is assigned the vi4ue Bi(z) and w' the value Bi'(z) when IND -= 0. Otherwise,

H if IND $ 0 then
-U eBi(z) if jarg(z)j x1 r/3

eý Bi(z) otherwise

e-ýBi'(z) if jarg(z)< 7r/3
w ,Bi'(z) otherwise

where !-3/2.

IERR is a variable that is set by the routine. When CBI terminates, IERR has one of
the following values:

IERR = 0 The desired values were obtained.
IERR = 1 z is too large for the desired values to be computed. In this case

w and w' are assigned the value 0.

Precision. For IND $ 0 the real and imaginary parts of w and w' are accurate to within 2
units of the 1 2 th significant digit except near points where they vanish.

Programming. CBI employs the subroutines AIRM, BRI, BIA, IA, IMC, BIM, JA, JMC,
and BJM. These routines were written by Andrew H. Van Tuyl and modified by A. H.
Morris. The subroutine CREC and functions CPABS, EXPARG, IPMPAR, and SPMPAR

are also used.

AI(x)

AI(x) = Ai(x) for real x.

Algorithm. Rational rninimax approximations are used. If x < -1 then R and 0 are
computed where Ai(x) -= le sin(r,/4 + 0).

Precision. For x J . , AI(x) is accurate to within 2 units of the 12 th significant digit when

AI(x) - 0.

Programming. Al calls the subroutine AIMP and function EXPAIRG. These subprograiis
were written by A. 11. Morris. The function II'MPAR is also used.

AlE(x)

If x '-- 0 then AJIE(C) e':Ai(i) where 2 X "/. Othierwise, if X < 0 the(, AlE(x)

A,'(:).

Algorithn-. z, a iwmal rnjinr :ix ajli)rxima.itio1S are 1•-'d. If :,: .: I ti Ln 0 nd V arc

coPnputed where Ai X) le 0( .

Precision. FK r 1 :U I AilE( ) iS' (urA.t, t: wit'hil.! 2 mnitsi of th, t.ft' s•;ýijtith',jl (! 'ri!

I OU'•



Programming. AIE calls the subroutine AIMP. AIE and AIMP were written by A. H.
Morris.

B I(X)

BI(x) = Bi(x) for real x. If x is a positive value for which Bi(x) is too large to be
computed, then BI(x) is assigned the value 0.

Algorithm. Rational minimax approximations are used. If x < -1 then R and 0 are
computed where Bi(x) = R cos(?r/4 + 0).

Precision. For x > -1, BI(x) is accurate to within 2 units of the 1 2 th significant digit when

BI(x) 5 0.

Programming. 13I calls the subroutine AIMP and function EXPARG. These subprograms

were written by A. H. Morris. The function IPMPAR is also used.

BIE(x)

If x > 0 then BIE(x) = e-ýBi(x) where j =x 3 1 2 . Otherwise, if x < 0 then BIE(x)
Bi(x).

Algorithm. Rational minimax approximations are used. If x < -- 1 then R and 0 are
computed where Bi(x) = R cos(ir/4 + 0).

Precision. For x > -1, BIE(x) is accurate to within 2 units of the 14 th significant digit.

Programming. BIE calls the subroutine AIMP. BIE and AIMP were written by A. 11.
Morris.

It



COMPLETE COMPLEX ELLIPTIC INTEGRALS OF THE
FIRST AND SECOND KINDS

If k is complex then the complete elliptic integrals of the first and second kinds can be
defined by

(k) f- / ( - k2 sin 2t)-'/ 2 dt

E(k) - k2 sin 2 t)1 /2 dt

for larg(1 - 2)1 < 7r. K(k) and E(k) can be extended to -nr < arg(1-k 2 ) < 7r. For Jkj < 1

K (k) c~ 2-

-• (1)
E(k) c, ---2 -1

n[o

where c7, (n! Also, if j2  1 -- k2 where lel - I ad -r K arg(P) < 7r, then

Kk 16 >jjK(k) I K(f) In1...-"c _

(2)-.7K1' ln-2 71Ž mrn i(2-m -- 1)
(2)J n>1 M- 1

The fun.ction CK is available for computing h (k), and the sulbroutine CKE for computing

K(k) and E(k).

CK(k, f)

(CK(k, f) ý-- K(k) for any comiiplex k an(d f where k' i f2 I and F / (f CK is a co)mplex
valued funrction which Imust be IteClare(J ini tle calliig pro)grinl to !)be of type Cw()M IJ)AEX,

Error Return. CK (k. e) P ) if f () r k2  " / I.

Remarks.

(I) (CK(k, f) miay unh erflow, y',t. ijig Ilhi 0t (, whon I !i !- sufli• io t y Lrgv
(2) ("K am! lhe suhrou)tiiue C(. 1 c"iwi.p I !( l - so•ea ;t.tl,()rit0 i t•t A (k)

10 ()



Precision. If k is real and IkI < 1 then the relative error of CK is less than 10-1 3. Also, if
k is purely imaginary then the relative error is less than i013. Ki(,,) is real-valued for only
these values of k. Otherwise, let ek = 10-12 if tkI < 0,8,ek = 2. 10-13 if 0.8 < jkj < 2, and
Ek = 10-13 if Iki > 2. Then the relative errors of the real and imaginary parts of CK are
less than Ck except when underflow occurs, IkI < 1 and Iarg(±k)I < 10-287, or kI < 1015
and 17r/2 - arg(±k)l < 10--280. In the latter two cases the relative error of the real part of
CK is less than ek, but all relative accuracy for the imaginary part may be los;.

Programming. CK calls the subroutine KL and functions ALNREL, CFLECT, KM, and
SPMPAR. CK, KL, and KM were written by Andrew fI. Van Tuyl and modified by A. 1t.
Morris.

CALL CKE(k, f, K, E, IERR)

The arguments k and f are complex number where k2 +±f = 1 and £ / 0, K and E
are complex variables, and IERR an integer varia,)le. When CKE is called, if no errors are
detected then IERR is set to 0, K is assigned the value K(k), and E is assigned the value
E(k).

Error Return. IERR =1 if f 0 and IERR = 2 if k2 +-j 2 
5 1. In these cases, K and E

are not defined.

Algorithm. For k = 0 or -- r/2 < arg(k) _< r/2, formulae (2) are used if IfI < .55, (1) are
used if If[ > .55 and kI < .55, arid approximations of the form

N

K(k) =- f
e2 J- QkV

(3)

E(k) I f lii a ,1 k tan 1b__

are i ,d if If I > .ý,5 ai:d .55 k I (3) are obtained from intcgral repres, otatic us ior

K(k) and 1(k) by ,,umnerik al qu'aA.ratui e. If £il > .55, IkI > 1, and kj If , the,

(4)
K (k) f(k k, A I 'P,

are applied where the sign in A:, is seleci,'d si that A/2 . arg(kj A1 /2. ()th,•rwl, J

55, '1k< 1, and Vl It, kel IIIA: andF,l f 1 I if// whcre hei sign Is >ivhc(i ,d

th;ttf/'2 -. arg (f1 ) P,/'2. 'Iiiei

S5)

k~ /( A ) (l(f, k) K' i,(V



are applied where s := I if Im(k) _> 0 arnd .9 , -1 ii Im(nk) < 0. If arg(k) > 7r/2 or
arg(k) x/ - 2, then K(k) = K(.-k) and E(k) :- E(--k) are applied.

Precision. If k is real and Jkl < 1, or i,' is purely imaginary, thtý he relative ,rror of El is
less than 10'-". E,(k) is real-valu 0., for only these values of k. Otherwise, let Ek := 10 12 if
Ikl < 2 a,-,d Ek 1 0-1• if Jkl > 2. Then the relative errors oi the real and imaginary parts
of E are less than Fk except Wh 0 i•nderflow occu:rs, Jkl < 1 and larg(±k)l < 10--2°0, or
Ik, < 1015 and Iwr/2 - arg(±k)l - 120 . In the latter two cases the relative error of the
real part of 1V is less dan L4, bW, all relative accuracy for the imaginary part may be lost.

Programmiig. CKE calls the sebroutines EKI, awd EKM, and the functions ALNREL,
ATN, CF ECT, and Si \4PAR. CKL w.. r•,'ri by Andrew H. VzoI Tl•yl.



REAL ELLIPTIC INTEGRALS OF THE FIRST AND SECOCND KINDS

Y 0 < 0 < ?- /2, then the elliptic integrals, of the first and second kinds are defined by

0
F(0, k) = 1 (1 - k2 sin2t) 1 / 2 dt

E(k, k) 1 1 --( k' sin 2 t)"' 2 dt

for any real k wh -e k2 < 1 and 1 - k2 sin2€ - 0. Alternatively, we may consider

RF ab,c) - f a)(t + b)(t ý- c)]-1 2 dt

where a, b, c zre noanegative and at mos( one of them is 0, and

RD(a,b, c) = (t f + a)-"•( + b)- 1/2(t + c)-3/ 2 dt

where a adt b are nonnegative such that a + b > 0, and c is positive. If a < b < c and a < c
then

C 1/2

RF (a, b, c) - F(0, k)

3c-' 3/2

where c, -i -:: a/c and k2  (c -b)/(c a). If € ?- r/2 then the integrals F(¢,k) and
E(¢,k) :-or said to be complete. Otherwise, it' < 7/2 theii the integrals are said to ht
incomp. lte. The subroutines I'LPI, RFVAL, RDVAL, DELIA'TI, I)IRFVAL, and 'RI)VA L
are available lor computing F(0, k), E(O, k), RF(a, b, c) and hL) (a, b, c). I)EL I, )I)F' VA L,
and DII)VAL are double precision routines.

S~CAI1L ELLF.(O, P, k: f, F, ]i E'I) M

The irgurnents ¢, q/, k, f are rv.i ntiib•nrs which satisfy 0 -, - O, 0 t V) ,7 /2, ,ici
k2 j f2 1. Also, if , 0 then it is assumed that P / 0. F 11'. ari1 If,'It{ al, vtri~tblhs
When EILPI is Cs:hed, if Tic iniput errurs are detected tOenl) I-i, set to 0, F Is . ss•gr'd
the vwilu, F"(0, k), .kid /H' is assignid the value t'( , k)

Error Reti..rn. I a ian Ipt error is d(teccted thln IHElI is set )H ow!;

lEi I I t- 0 ( r , . 0

lI E ItI 2 kj 1 I or 1' '
IEI'{ "; M . (3 and F ()

107



Precision. ELLPI is accurate to within 4 units of the 14", significant digit.

Programming. ELLPI calls the functions ALNREL and CPABS. ELLPI was written by
Allen V. Hershey and modified by A. H. Morris.

Reference. DiDonato, A. R. and Hershey, A. V., "New Formulas for Computing Incomplete

Elliptic Integrals of the First and Second Kind,"JACM 6 (1959), pp. 515-526.

CALL RFVAL(a, b, c, w, IERR)

The arguments 2, b, c are nonnegative real numbers, only one of which can be 0. IERR

and w are variables. When RFVAL is called, if no input errors are detected then IERR is
set to 0 and w is assigned the value RF,(a, b, c).

Error Return. If an input error is detected then IERR has one of the following values:

IERR = 1 Either a,b, or c is negative.
1ERR = 2 Either a + b,a + c, or b + c is too small.
IERR = 3 Either a, b, or c is too large.

Precision. RFVAL is accurate to within 4 units of the 1 4 th significant digit.

Programming. RFVAL was written by B. C. Carlson and Elaine M. Notis (Iowa State
Universit' ), and modified by A. H. Morris. The function SPMPAR is used.

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplic-'ion," Narnerisehe Mathe-
matik 33 (1979), pp. 1-16o

(2) __ and Notis, E. M., "Algorithm 577. Algorithms for Incomplete Elliptic

Integrals," ACM Trans. Math Software 7 (198.), pp. 398-403.

CALL RDVAL(a, b, c, w, IERIZ)

The arguments a and b are nonnegative real numbers where a - b > 0, an,' * is a
positive real number. IERR and w are variables. When RI)VAL is called, if no inp,' C. ,)
are detected then IERR is wet to 0 and( w is assigned the value JtD (a, b, c).

Error Return. If an input error is detece(d then IERR has one of the following values:

IERR I Either a,b, or c is negative.

IRIAt 2 Either a f h or c is too small.
IERR1 3 Either a,, o. c is too large.

Precison. I l)VAL is acciurats to within 4 units of the 14"' signiti'cant digit

Programming. lIl)VAL was written by B. C. Carlsoon and I"lairie M. Notis (Iowa St;Ltk.

Uniiversity), and modified by A. 11. Morris. The function SPM ,I At i, used.

I)8



References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication," Nurnerische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., "Algorithm 577, Algorithms for Incomplete Elliptic
Integrals," ACM1Trans. Math Software 7 (1981), pp. 398-403.

CALL DELLPI(O,,0, k, t, F, E, IERR)

The arguments 4, 4, k, f are double precision numbers where 4 _ 0, V _> 0, + 0 = 7r/2,
and k2 + t2 = 1. Also, if '- = 0 then it is assumed that f $ 0. F and E are double precision
variables, and IERR is an integer: variable. When DELLPI is called, if no input errors are
detected then IERR is set to 0, F is assigned the double precision value for F(0, k), and E
is assigned the double precision value for E(O, k).

Error Return. If an input error is detected then IERR is set as follows:

IERR= 1 4<0or V<0
IERR = 2 Jkl > 1 or ItI > 1
IERR=3 4=0andt=0

Precision. DEl LPI is accurate to within 5 units of the 2 8 th significant digit.

Programming. DELLPI employs the functions DCPABS, DLNREL, and DPMPAR.
DELLPi was written by Allea V. Hershey and modified by A. H. Morris.

Reference. liDonato, A. R. and Hershey, A. V.,"New Formulas for Computing Incomplete

Elliptic Integrals of the First and Second Kind," JACM6 (1959), pp. 515-526.

CALL DRFVAL(a,b,c,w,IERR)

The arguments a, b, c are nonnegative double precision numbers, only one of whictb cani
be 0. IERR is an integer variable and w a double precision variable. When I)RFVAI, is
called, if no input errors are detected then IERR is set to 0 and w is assigned die douhbl
precision value for RF(a, b,,).

Error Return. if an input error is detected then lEl,.l has one, of the following val,,es:

IERH I Either a, b, or cis negative.
!ER .. 2 Either a -t b,a i c, or b f c is too s-mall.
IERR s 3 Either a, b, or c is too large.

Programming. l)RFVAL was written by B. C. Carlkmi and i'lJiair N1. Notis (hlWi it i

Unriversity)', and rn•o(ified by A. 1. Morris. The Junction I)P'INIPAR is uscdi

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by i)[i)plicat I ot" Nurt;erische MAathe-
matik 33 (1979), )pp 1 16.

1 0)



(2) and Notis, E. M., "Algorithm 577, Algorithms for Incomplete Elliptic
Integrals," ACM Trans. Math Software 7 (1981), pp. 398-403.

CALL DRDVAL(a, b, c, w, IERR)

The arguments a and b are nonnegative double precision numbers where a - b > 0,
and c is a positive double precision number. IERR is an integer variable and w a double
precision variable. When DRDVAL is called, if no input errors are detected then IERR. is
set to 0 and w is assigned the double precision value for RD (a, b, c).

Error Return. If an input error is detected then IERR has one of the following values:

IERR = 1 Either a, b, or c is negative.
IERR = 2 Either a + b or c is too small.
IERR = 3 Either a, b, or c is too large.

Programming. DRDVAL was written by B. C. Carlson and Elaine M. Notis (Iowa State
University), and modified by A. H. Morris. The function DPMPAR is used.

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication," Numerische Mathe-
matik 33 (1979), pp. 1--16.

(2) -__ and Notis, E. M., "'Algorithm 577, Algorithms for Incomplete Elliptic
Integrals," A4CM Trans. Math Software 7 (1981), pp. 398--403.

11()



REAL ELLIPTIC INTEGRALS OF THE THIRD KIND

For any 0 < € < ir/2 the elliptic integral 1-(0, n, k) is defined by

l1(4), n, k) (1 - nsin2 0)--1(1 - k2sin2 0)-½dO

where n is any real number such that 1 - n sin 2 04 0, and k any real number such that
k 2 < 1 and 1 - k 2 sin 2 4 / 0. Alternatively, for any r $' 0 we may consider

-- R t(a, b, c, r) - --• f '(t + r)- 1[(t + a)(t + b)(t-+-c)]-.kdt
2 1,

where a, b, c are nonnegative and at most one of them is 0. If a < b < c and a < c then

Rs(a,b,c,r) -- 3c-1 [l(46,n,k) - F(O),k)]
n sin 30

where F(0), k) is the elliptic integral of the first kind, cos 2 4) = a/c, k 2 = (c - b)/(c a), and
n -- (c -- r)/(c - a). If € =--r/2 then the elliptic integral H(O, n, k) is said to be complete.
Otherwise, if 4 < 7r,/2 then the integral is said to be incomplete. The subroutines El I,
RJVAI,, DEl I, and DRJVAL are available for computing 1l(4), n, k) and Rj (a, b, c, r). DElI
and DIRJVAL are double precision routines.

CALL EPI(O, ?/,k', f2, n, rn, w,IEll)

The argumen1ts ¢, ,V, k2 , f2, n,yn are real numbers where 4 > 0,V) ;'ý 0,k f V n/2)
k• 2 0a 1, iI _< I , at)d n f ?n 1. Also, if V) -- 0 then it is assumed that 02 / t) and
n / 0. IERIM and w are variables. When Eli is called, if no input errors are detected theni

IERlIl is set to 0 and w is assigned the vadue 11(0), i, k).

Error Return. If ;n inpit ,,error i., detectt'd then iElIM has- on(- of the foflhowing val I.'lue

SllEIIt I Either ) or <',is negative, or 0 ! / ."2.

IlERIti 2 Either -n I or it in / 1.

Il 'I It 3 Fither k0 or P2 is negativ•e, or k 2  
(2 / f

I 'It It t'Either ý' and ,, are too close to 0), or V, antd f, are too cl(Se to (L

Precision. El i is acururate to within 4 Units of the 1,`'"' 11111 ,i

F j gr :Z:I).fg It vI It 1) (hys the v,1lr o ti i,"t I Z"FVAl, I .%J'VA\ ,, It 'VV. \I t I i , iact I I I, SI;'Nl
j'%A I t. iI'i was. written i A.ll Morriý;

CALL RJVAL((/,b. c, r,,,,IEIIt)

Th[ e l t ilt'rgn ns 1,6b,"c art. 1()liIInegatiVe rcal iiii ihi'r.;, only u111 ,f 4 ,A110 (;ail h (),•.l r

Is a p)(Jlti;'e r'dl wimiu'ir. IlKtIt and it ire varliaib W he} i it \.-\l. is (l d ld, if mjiit

II

L-11



errors are detected then IERR is set to 0 and w is assigned the value Rj(a, b, c, r).

Error Return. If an input error is detected then IERR has one of the following values:

IERR = I Either a, b, c, or r is negative.
IERR= 2 Either a-+ b,a+ -,b-f-c, c r is too small.
IERR = 3 Either a, b, c, or r is too large.

Precision. RJVAL is accurate to within 4 unitr of the 1 4 th significant digit.

Programming. RJVAL calls the subroutine RCVAL1. These subroutines were written by
B.C. Carlson and Elaine M. Notis (Iowa State University), and modified by A.H. Morris.
The function SPMPAR is also used.

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication." Nurnerisehe Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., "Algorithm 577,Algorithms for Incomplete Elliptic
Integr~als." ACM Trans. Math Software 7 (1981), pp. 398-403.

CALL DEPI(O, 0,k 2 , k 2 , n, m, w,IERR)

The arguments k, V,k2 ,£n,n,m are double precision numbers where 4' > 0,'P > 0,€ +
7r =r/2, k 2 +E 2 =1, In _ 1, and n + m = 1. Also, if 4 -- 0 then it is assumed that £0 :- 0

and m r: 0. IERR is an integer variable and w a double precision variable. When DEPI is
called, if no input errors are detected then IERR is set to 0 and w is assigned the double
precision value for r-(0, n, k).

Error Return. If an input error is detected then IERR has one of the following values:

IERR I Either 0 or 4 is negative, or 54' 7r/2.
IERt 2 Either nI > I or n + m 5 1.
IERR 3 Either k 2 or £2 is negative, or k2 + e2 j 1.

IERR -4 , Either 4' and m are too close to 0, or t/ and £2 are too close to 0.

Programming. DEPI employs the subroutines DRFVAL, DIUVAL, DRCVLI and function
DPMNIPAR. l)EPI was written by A.ll. Morris.

CALL DRJVAL(), b, c, r, w,IEIRR)

The argun.ents a, b, c are nonnegative double precision numbers, only one of which can
be 0, and r is a positive double precision number, IERR is an integer variable and w a
(do0u1ble precision variable. When )RJIVAIL is called, if' no input errors are detected then
I ICI is se•,t to, () 0 i (I u., is a..s-sgu d thel double precision v ie for lj(az,b,c,r).

Error Returr. If an inipot erl-Ir is detected thdien llIi ha's one of the foilowing values:

IEIR{R I Either a, b, c, or r is negative.
1IECR 2 Either a t b, , b f c, or r iJs too small.

112



IERR -- 3 Eitbc r a, b, c, or r is too large.

Programming. DRJVAL calls the subroutine Dh%.CVLI. These subroutines were written by
B.C. Carlson and Elaine M. Notis (Iowa State University), and modified by A.H. Morris.
The function DPMPAR is also used.

References.

(1) Carlson, B. C., "Computing Elliptic Integrals by Duplication." Numerisehe Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., "Algorithm 57(,Algorithms for Incomplete Elliptic
Integrals." ACM Trans. Math Software 7 (1981), pp. 398-403.

118



JACOBIAN ELLIPTIC FUNCTIONS

For any complex number k $ 0, ±1 the elliptic function sn(z, k) may be defined as the
meronorphic function w(z) that satisfies

()( ) ::- ( - W2)(1 - k w22 )
S(1) dz ,

w(0) = 0, w'(0) = J.

If k = 0 then sn(z,O) sinz satisfies (1), and if k -A1 then sn(z,k) tanh z satisfies (1).
Alternatively, sn(z, k) = sin 0 where O(z) satisfies

(2) dz) = 1 k sinJ

(0) , '(0) a 1.

The elliptic functions cn(z, k) and dn(z, k) may be defined by

cn(z,k) I - s-(z,k)V

d,(zk) v-, -sr•,(z, k"

where the roots take the value 1 for z 0. In particular, if k =: 0 then cn(z,O) cosz
"and dn(z, 0) = I, and if k - iI then cn(z, k) - dn(z, k) - / Icosh % The subroutines
ELLPF and ELPFC1 are available for computing sn(z, /), crx(z, k), and da(z, k) when k is
a real vaiue such that Fkl < 1. ELLPF may be used when z is real and ECLPFC1 when z is
complex.

CALL ELLPF(uk,j,S,C,D,IEIR)

It is assumed that uk, and £ are real numbers where k2 
j f2 S 1., ,C, and 1) are

real variables. When llIV is called, S, C, an(d !) are assignied the values S - S(u, k),
C( cn(u, k), and 1) d,,(u, k).

1ERII ;s a variable that report.s the sti.tus of the results.< Whein the routine teririatcs,
IERR h is oa of the following values:

IERR : 0 The ellbptic f tnici6os were comuted.
LI Z R I (Input, error) k" £2 / I.
I ERI 2 -t is too la..ge for k

When lFIiR - 1, no coompiutatioli is perforfiled.

Precision. Laet Kh(k) bev the cormph(Ate elliptic integral (of the first kind. For Jkl - .9.)95 tOe
relative errors of sn(u, k) and dn(,,, k) are hs:i than 10 whei ( it u 1i (k), arid tlh.
relative error of cn(uk) is less than 1( 10 " witen 0( u - .97K(k).

115



Algorithm. Let K =-: K(k) be the complete elliptic integral of the first kind. For 0 < u <
K/2 (when t $7 0), the Maclaurin expansior

) (1 4- k2 )U3  (1 + 14k2 + k')u6
sn(u, k) = u 3! 5! .

is employed when u < .01. Otherwise, if u > .01 let K' = K(t), q exp(-7rK'/K), and
r =exp(--irK/K). Then

-2nr k q= rin (2n + 1)7ru

kK4--- 1- 2n+l 2K

is used when k < f and

n k)[tanh 2' (-) 2rU]
sn(u, k) 2kK' -- 1 4 sinh 22k1 K' _ j 2ý KIJ

is used when k > f. The functions cn(u, k) and dn(u, k) are obtained from

sn(u,k)2 + cn(u,k) 2 = 1

dn(u,k)2 ±-k2 sn(u,k)2  1.

For K/2 < u < K the identities

sr(u,k) cn(v,k)/dn(v,k)
cn(u,k) Iflsn(v,k)/dn(v,k)
dn(u,k) I IfI/dn(v,k)

are applied. Hlere v - K - u.

Programming. ELLtPF employs the subroutines SCI), SC1)F, SC1)J, SCDM, E,LLPI,
SN1ICSI1 and functions ALINREL, CPABS, SPMPAI{, IPMPAI. ELLPF was written by
Andrew 11. VanTuyl and niodified by A. II. Morris.

CALL ELPFC1(z, k,£, sC, I),IERR)

'The argument z is complex, an(I k and £ are real numbers where k2 I- _ :x 12 . S, C,
and D) are complex variables. When ELLtFC1 is called S,C, and D are assigned the values
S sn(z, k), C x- en(z, k), and 1) dn (z, k).

IERlI is a variable t•at reports the status of the residits When the routine t, "inalt(s,
ll"li ha"s one of the) follow'ig values:

iEl.|{ 0 Te ellipLic, functions were copll)uite(.
I lt{'Q I (Input error) k2  j 2 f

I 11" i 2 z is too large for k.
IEIRII 3 z is a pole for til elliptic furnct,ions.

lIE;



When IERR > 1, no computation is performed.

Precision. Let x = Re(z), y = Im(z), K = K(k) be the elliptic integral of the first kind
for k, and K' = K(f). For IkI < .99995 the relative errors of the real and imaginary parts
of sn(z,k) are less than 10-12 when 0 < x < K and 0 < y !< .992K', and the relative
errors of the real and imaginary parts of cn(z,k) and dn(z,k) are less than 10-12 when
0<x< .97K and0< y_<.97K'.

Algorithm. For z = x + iy let

s = sn(x,k) s, = 8n(y,i)
c =cn(x, k) cl cn(y,f)
d=dn(x,k) di =dn(y,f)

and D c2 + kls's2. Then

sn(z, k) = (sd1 + icdsicj)/D
cn(z, k) = (cc 1 - isds I i)/D
dn(z,k) - (dcid, - ikWscs 1)/D

are applied when D $ 0.

Programming. ELPFC1 calls ELLPF, which employs the subroutines SCD, SCDF, SCDJ,
SCDM, ELLPI, SNHCSH and functions ALNREL, CPABS, SPMPAR, IPMPAR. ELPFCI
was written by Andrew H. Van Tuyi.

S!117



WEIERSTRASS ELLIPTIC FUNCTION FOR THE EQUIANHARMONIC
AND LEMNISCATIC CASES

Lei w and w' be complex numbers where Im(w'/w) > 0, and w, ::-- 2rmw + 2nw' for all
integers m, n. Then for an) complex z, the Weierstrass elliptic function P(z; w, w') can be
defined by

P(z;w,w') Z2 1

where S' denotes the sum for all m, n 0, ,±1,-±2, except m = n = 0. If w = ret9€ and
IV/= r-e where 0' --- € i 0 for 0 < 0 < 27r, then the restriction Im(w'/w) > 0 is equivalent
to assuming that 0 < 0 < 7r. P(z;w,w') is analytic everywhere except at the points Wm.,
'which are poles, and

P(z + 2w;w,w') - P(z;w,w')
P (z -F 2w'; w, IV') P (z, w, w')

for all z. The relations
z-w, IV') P(Z; w, w')

P (Az; Aw, A I') A -2 p(Zw,wII') A $ý40
also hold. A somewhat surprising fact is that only the values g2 = 60E'wm- and g3 =

140E'w- are needed for corriputing P (z; u,, w') at a point z. Hence, P (z; w, w') is frequently
denoted by P(z;g 2 ,g3 ). For A -/- 0

92 (,AvAw') - A---- 2 (w,w')

9 3 (A w, A") A-v '9g3 (W, W'

also hold. We now consider the following cases:
(1) Equianharmonic (g2 = 0 and g3 is a positive real number)
(2) Lemniscatic (g2 is a positive real number and g3 - 0)

(1) occurs when 2w - and 2w' -- :- - and (2) occurs when 2w -I and
2w' = i. The following subroutines are available for computing P(z; w, wI') and its derivative
P'(z; w, w') for these two choices of (w, w').

CALL PEQ(z, e,I1II)

The argurient z is a comp)lex number, e is a com~plex variable, and IERR, is an integerI _s Vg 2' 1 •31"
variable. It is assumed that the periods are 2w -2 and 2w' - 1 When PEQ
is called, if z is not a. pole then IERR is assigned the value 0 and c is aswsigned the value
P (z; w, tn').

Error Return. If z w.,,,, for sonic m,) then IElAR is aLssigried the value I and C - 0.

Precision. If [P(z; w, w')j -ýi theOn the absolute error is lesi than 7. 10 "'. Otherwise, the
relative error is less thaii 7 If) "U

Programming. Written by (I inch tl:ckhiardt. (I iiivtrsity of .llaibihiig, We.. ( ernmany). Mod.
ified by A. II. Morris./I 119



References.

(1) Eckhardt, Ulrich,"Algorithm 549, Weierstrass' Ellip'ic Functions," ACM Trans. Matk.
Software 4 (1980', pp. 112-i20.

(2) ,"A Rational Approximation to Weierstrass' P-Function," Math Comp.
30 (1976), pp. 818-826.

CALL PEQI(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w - ' and 2w' and 2w' + When PEQI
is called, if z is not a pole then IERR is assigned the value 0 and e is assigned the value
P'(Z; w,').

Error Return. if z = w,,, for some m, ?L then IERR is assigned the value 1 and e = 0.

Precision. If jP•(z; w, w')I < 1 then the absolute error is less than 7. 10-13. Otherwise, the
relative error is less than 7. 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.

References.

(1) Eckhardt, Ulrich,"Algorithm 549, Weierstrass' Elliptic Functions," ACM Trans. Math
Software 4 (1980), pp. 112-120.

(2) _,"A Rational Approximation to Weierstrass' P-Function," Math Comp.
30 (1976), pp. 818-826.

CALL PLEM(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERI is all integer
variable. It is assumed that the periods are 2w :-- 1 and 2w' -- i. When PLEM is calied, if
z is not a pole then IERR is assigned the value 0 and e is assigned the value P(z; t, w').

Error Return. If z = w,,.. for some m, n then IERR is assigned the value I and e - 0.

Precision. If JP(z; w, w')l < I then the i•,s bte error iý, less than 6.. Otherwise, the
relative error is less than 6 - 10 =1

Programming. Written by Ulrich Eckhardt (U.iversity oiF Ilar:uhurg, West (;crimaiiy). N)fd-
diied by A. II. Morris.

References.

(1) Eckhardt, UlTIrich,"Algorithir 549, •Veierstrdis' Elliptic Funions," A( 'Al H. Adh
Software 4 (1980), pp. 112 120.

120



(2) --- , "A Rational Approximation to Weierstrass' P-Fniction. II: The Lem-
niscatic Case," Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341-349.

"CALL PLEMI(z,e,IERR)

The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w =- 1 and 2w' = i. When PLEMI is called, if
z is not a pole then IERR is assigned the value 0 and e is assigned the value P'(z; w, w').

Error Return. If z = w,, for some m, n then IERR is assigned the value 1 and e = 0.

Precision. If IP'(z; w, w') I < 1 then the absolute error is less than 6 10-13. Otherwise, the
relative error is less than 6- 10-13.

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.

References.

(1) Eckhardt, Ulrich,"Algorithm 549, Weierstrass' Elliptic Functions," ACMTrans. Math
Software 4 (1980), pp. 112-120.

(2) ___,"A Rational Approximation to Weierstrass' P-Function. II: The Lem-
niscatic Case," Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341--349.

i !21



INTEGRAL OF THE BIVARIATE DENSITY FUNCTION OVER
ARBITRARY POLYGONS AND SEMi-INFINITE

ANGULAR REGIONS

Given a sequence of points v -= (x,, yi)(i -- 1,... ,n + 1) where n_ > 3 and v. +I = vi.
Let r denote the polygon whose boundary ar is a polygonal line which begins at point v1 ,
traverses the points vi in the order that they are indexed, and is the straight line segment
connecting vj to vj+1 for each i= 1,... ,n where vi, ý/- vr+. Then the subroutine VALR2
is available for computing the integral

P (7) j1 fe -(' 2 
y 2

)/2 dx dy
r

and the associated function A(r) ff dx dy. If the boundary Dr is a simple positively
r

(negatively) oriented closed curve, then P(r) and A(r) are positive (negative) and IA(r)I -
the area of r. However, Or need not be simple. It may be self-intersecting or have overlap-
ping line segments. If AO. is the angle between the vectors vi -- Li-i and v+1 -- vi (where
-v -= v,), then it may occur that A0, --- 7r fir some 1, in which case a portion of the polygon
may be degenerate. In general, -7r < AO, < 7r for each i where the sign of the angle is
positive (negative) if the angle is measured in a cou nterclockwise (clockwise) direction from
l,- v 1--i to vj+1 -- v,. VALR2 also computes the value k(r) 2 . AO,, which is an

integer. If the boundary is a simple closed curve, then k(r) is the winding number of the
curve aroulad alny ititeriur point of the polygon r.

Alternatively, assume that we are given three points v, -- (x,,y,)(i - 1,2,3) and let
AO denote the angle between the vectors v2  V1 and v13 V In this case, assume that
the angle AO is measured in a counterclockwise direction from v2  "I to v 3  VI, io that
0 ', LAO < 27r. Let f (Jcnote tth( s3traighit line beginning at poitr vj and passing through point,
1V2, and let i denote the straight line beginring at v" and pa)-ssing through v3 . TheII the
sulbroutirie VALR2 is also available for computing P'(r) whei r is the serii-minfinite angular
region bounded by f and f, and having the angle L\O. 0 P'(T) I for any angilar regitin
r, and P(r) ý I when AO 27r.

Anguiar rt'gioi r

CALL VALR2(X, Y, n, !P,IlM',A,lN),k)

The argiiineiit, rn is e lither I or thl ritintiwr 4f ;i)()IIits involvei! iII (hi1i1n1ig1) ;a ()!Ygo)l
If n I then it is a.sskiied that r is a strim infinite, aoigr,,,r reg iWi drli •ed by Hie uiiIt•
Lv, (xI yy,) (1 ,2,3) and t hit. ;trot X Xi arr v : h la I I t g I, I ItII !,, 11 , r .
Otherwise, if 7i / I then it is i_,suljwuid that. ; is a plyguri (a ,fi d I l V 1W Iii Iuit-:<



(X,,y,)(i 1, ... ,n± 1) where n > 3 and v,+1 = P1. In this case, X and Y are arrays
containing the abscissae X1 , . .-. ,x and ordinates yl, ... ,Yn -. Since V,+ 1 = V1 , the
values X,+1 and y,4.1 need not be supplied by the user. The routine automatically stores
x, and YI in X(n + 1) and Y(n + 1).

P, A, anrid k are variables. If n =2 1 then P is assigned the value P(r) for the angular
region r and A is assigned the value 0. In this case, k is not defined. Otherwise, if n > 3
then P is assigned the value P(r), A is assigned the value A(r), and k is assigned the value
k(r) for the polygon r.

IOP is an input argument which specifies the (relative) precision to which P(r) is to
be computed. IOP is set to 1, 2, or 3 for 3, 6, or 9 decimal digit accuracy.

IND is the variable that reports the status of the results. The routine assigns IND one
of the following values:

IND =- 0 The desired values were obtained.
IND = 1 (Input error) vi is either equal to v2 or V3 , or is too close to L 2 or

v 3 to compute P(r) for e angular region r. In this case, P is set
to 5.

1 N) rs,,. = 2 ,,,' -values were obtained. If n = I then AO n 7r. Other-

wise, if n > 3 then JA0] f 7r for some s.
IND = 3 (Input error) Either n < 1 or n = 2.

Remarks. VALR2 can be used for computing the integral of the general bivariate density
function over an arbitrary polygon or semi-infinite angular region i. Consider

P() J Jf exp { d(i-- (i )} dz

where 13 -- (1 p 2 ) /'i/2/(2a~aj), (p4,p,) is the mean, o, and or are the (nonzero)
variances, and p is the correlation coefficlen t satisfying Ipj < 1. Consider also

P2 [W 1OPz jt IndY I

Since this transformation inI.ps st.raighl., lines into straight lines, i is inaiw,. (a4 a polygon
or angular region i and we obtain I)(i) I'(,). Moreover, if i is a polygogn f(-n A(i)
ff oLZ v/I p" A(i)

Programming. VALR2 emplh)ys the flun(ti(,ms EI•tF, ICR•"(1, and SIPMPARIi. VAIZR2 was
designed by Armid() R. Dil)oiato an(d ichard K, Ilagrctian, aiini modified by A. IfL Nfiorris.

Reference. I) il) that o, A H , 4I I, Mi gm H, W• K( ,Computaliiem of the Initegral t of he i-
Sva-iate Normal Dt.istribution over Arbitrary Polygons, 1i6-imit 'Ii H 1(;( Naval 80rf t,
Wveqons ( Cente r, I )aMIgreri, \Virginri,, I)H(O

1 24



CIRCULAR COVERAGE FUNCTIOV'

The subroutine CIRCV is available for computing the circular coverage function P(R, d)
and the generalized circular error function V(K,c). V is the integral of an uncorrelated
elliptical Gaussian disiribution with standard deviations c. and a, over a circle of radius
Ko-, centered at the mean of the distribution. If oa _> a, then

V(Kc) I jj exp 2 [1 c ( + _(1--_c2)coS 0] } dOdr

where c = oa/au. P is the integral of a circular Gaussian distribution with common standard
deviation a over a circle of radius Ro whose center is offset a distance do from the mean of
the distribution.

(Rd) 1f II2exp - [(d+ rcos O)' + r 2 sini2 0 } rdOdrt'27rd 0 •; o 2o

Alternatively,

V (K, c) - le-' lo(Ar 2 )rdr (c j 0)
C 0

P( Rd) C-d2/2J e r 2j21o(rd)rdr

where A (1 c2 )/(4c2 ), I? (I c2 )/(1c2 ), and Io is the modified Bessel function
of the first ki id and order 0. Since V(K,c) erf(K/'/2) when c , 0, we may define
V (K, 0) erf(K/N/2).

CALL CIRCV(x,a, i,w,IEIR)

The argunient i may he any integ(,r. If 1 0 then the arguollc(1lt. 1 and (I aart. ass.i- • i led
to haethel( valuecs x K and a c where K () anid (0 - c 1. Otherwise, if i / (0 theni
x 1 and a 4 where / ) R d0a ().

EllCI? tlund it ;re variahles. W\,he ('Il1(V is called, if nno iillt errors are detected theii
lEII'?1is assigned the valI 0 Also, u, V (K,c) If 1 () and t,, I'(H, ,) if / 0.

Error Retuorn. If ai inprut error is deteutcd then l"-I)IIM I' sct ;LI follws:

I1l1ZI I r ((is nut saiisie,'.
IlK I l( 2 () " I r 4 • i) s IIt )t It It , ' (lI

W lwi i tit•,ir iI thea1 e,, rrtrs i ,I , I t, i is ad.s i4,.I, t ol,- volo . I,

Precision It I U4 tLh i tv is Lý( it irat t) withtlil I ni! J 'it,' 1 tk JO s Illhuti l t t dog:t. ý ,Its
I ( " , ) is L t lw, ir ) ()?hI ,rvms,, if I ) , H t(lt ti it, ir: . t,, ,sillm t I [m l! ,[ Ol , I '

ý,itlnif k, Lilt dlit I • il t 1 P'( H , 1) 4 i l eI r 0)



Algorithm. If AK 2 < 14 then V(K,c) "I 'n> is employed where

so 2,1t - BK" T ~ 3~

Sn (AK'ý'S½ Tn 2n-- I A"T /A K A -2
22 nB 2n- IN -) 

4
2n-, (n>i1).

Otherwise, if AK 2 
> 14 then the asymptotic expansion V (K, c) 1-e - K

2
/ 2 Z> IAl fnIs

used where~

A I e~ K /~2' erfc.(r K/i 2 ~ -~ic

Anj 2n- 1iC
2 (x 1 A 7 )2n- I 2r&--i (n > 1).

2" -~ 27(1n i 4AK X

If R? <~ 1.7 or Rd < 16 then IP(RI, d) TII is em~ployed where

Otherwise, if Rd I 6 aridj I? I 7 then thle aSY MIp UtC expais!0on

i'(?,I { -e'2)1 if 1? d

is used~ Where z li div'2 R1  j d V'2Ud s2 X1, ;Ind

Ii A 1  e rfc ( Z)

* 41 2,1 2 ("r, A,) r )

PrograrniinItg ( 'ffl(' v1111,14,lvs the Vii Ri' liVCl '(IIHl(H, V XI PA~( R AN1

Sl'NPARl mjid WINIP'Af ýLre W;,,vtd(l J''x':j writtten b~y Ariiindn P. l~)iI)ui;Lt0 ;111J

ill1hilfird by A. If MNirris

Refererices.

I~~~A it ,~i )ra AHve StuItjt~cIio'(4 rProcyjres j,. BASIC for Decsktop C( )nrzmte'ri4

kcewrt NSWA( '1 j I3 1, XNa~jjj llf~ WeAlmil Center, 1 dig-i V82~. ~
(2) J Iirii -tgi ii NM. P A Afet'hod for ( ornpti~jt I 'Fi thef (L: elair~dzzed

C ircula~r Error Funvction cull t he ( ,rculur ( overrs~e Fuiu ct 01iors, I 7p( ;t 176S,
I AhAtr, ),.Ii'r~ \u~ll 196.2



ELLIPTICAL COVERAGE FUNCTION

The subroutine PKILL is available for evaluating the integral of an uncorrelated el-
liptical Gaussian distribution over the area A of a circle (x -- h) 2 + (y - k)' 7-- R2 . The
probability to be computed is given by

1~ Y2)1( Ry, =auh, k) f 1 exp [- + ( xy

where u. is the standard deviation in the x direction and au is the standard deviation in
the y direction. Then

P (R, ax,ov, h, k) =P (R, a y, a .,,k, h),

P(R, o,oa, h,k) = P(R,ax,01,,IhI,IkI), and
P (R,aor,a,, rh, k) = P(aR, aar,•, aoy, ah, ak)

for any a> 0. Also P= 0 when R = 0.

CALL PKILL(R, a,,,o or, h, k, P)

R, a:_ o,,, h, k are real numbers and P is a variable. It is assumed that R > 0, ao > 0,
and aor > 0. When PKILL is called, P is assigned the value P(R,or,,o, ,h,k).

iError Return. P = 1010 if ao < 0 or or, <0

Precision. P is accurate to within 1 unit of the 6 th siginificant digit when P > 1020 and
jhi, Ikl, h2 + k2 are not near R.

Programming. PKILL employs the subroutine GRATIO and functions SPMPAR, ERF,
[PMPAR, EPSI.N, EXPARG, REXP, RLOG, ERFC, ERFCI, AERF, GAMMA, GAMI,
GLOG. PKILL was written by Armido R. I)i)onato.

Reference. I)il)-)nato, A. I., Significant Digit Computation of the Elliptical Coverage
_Function, Report NSWC TR 90 513, Naval Surface Warfare Center, l)aligren, Virginia,
1990.

127



COPYING POLYNOMIALS

If p(x) _ a3xJ and the coefficients aj are stored in an array A, then the following
i'=0

subroutines are available fcr copying the first rn coefficients a, into an array B.

CALL PLCOPY(Aka, m,B,kb,n)
CALL DPCOPY(A, ka, m, B, kb, n)

A and B are arrays. PLCOPY is used if A and B are real arrays, and DPCOPY is
used if A and B are double precision arrays.

The arguments m, n, ka, kb are positive integers. The coefficients aj are r tamed to be
stored in A where A(! + j.ka) aj for j = 0, 1, ... , -- 1. The routine stores the first n
coefficients aj in B where B(1 +j.kb) = aj for j 0,1, ... , n - 1.

Note, If n > m then B(1 + j.kb) =0 for j> m.

Programmer. A. If. Morris.

129



ADDITION OF POLYNOMIALS

If p(x) - a ,x and q(x) >j bjxI then the following subroutines are available for
j~c J-0

computing the first n coefficients of the polyniomial p(x) I- q(x) = E. cxj.

CALL PAD D(A, ka, f, B1, kb, m, C, kc, n)
CALL DPADD(A, ka, f, B, kb, rn, C, A:c, n)

A, B and C are arrays, PADD is used if A, B and C are real arrays and DPADD is
used if A, B and C are double precision arrayo.

The arguments t, m, n, ka, kb, kc are positive integers. The coefficients aj and bj are
assumed to be stored in A and B where

A(l + ika) =a. (i =0,1,...f. 1)

B(l + j.kb) b,. (j = 0, 1, ?n 1).
The routine stores the first n coefficients cj of p(x) + q(x) in C where C(1 + j. kc) = c. for

-- --- j = 0,1, .. ~ -1.

Remarks. The array C may begin in the same location as A or B. If C begins in the same
location as A then it is assumed that kc = ka. In this case, the result C will overwrite
the input data A. Similarly, if C begins in the same location as B then it is assumed that
kc = kb. Otherwise, if C does not begin in the same location as A or B, then it is assumed
that the array C does not overlap with the arrays A and B.

Programmer. A. if. Morris.

1l3 1



SUBTRACTION OF POLYNOMIALS
t- 1 f7 --

If p(X) - a1 : (x) . bjx- then the following subroutines are available for
•--j-:0 j-,0

computing the first j ie~s of the polynomial p(x) -- q(x) =.¾ c xI

CALL PSU3V, k a,f,B, kb, m,C, kc, n)
CALL DPS LI I , ka, e, F1, kb, m,C, kc, n)

A, B and C are ,, PSUBT is used if A, B and C are real arrays and DPSUIBT is
used if A, B and C wa4, t)le precision arrayu.

'The arguments f, ka, kb, kc are positive integers. The coefficients aj and b, are
assumed to be storec nd B where

A(1 + j.ka) (jU= 0,, f...,- 1)
B(1 + j.kb) (U = 0, 1, .,M -- I).

The routine stores thE si n coefficients ci of p(x) - q(x) in C where C(1--+.ikc) ý- c3 for
i =O0,!1 ., n -1.

Remarks. The array C may begin in the same location as A er B. If C begins in the same
location as A then it iP assumed that kc = ka. In this case, the result C will overwrite
the input data A. Similarly, if C begins in the same location as B then it is assumed that
kc - kb. Otherwise, if C does not begin in the same location as A or B, then it is assumed
that the array C does not overlap with the arrays A and B.

Programmer. A. H. Mor-:s.

, 33



MULTIPLICATION OF POLYNOMIALS

If p(x) = >. axj and q(x) bj b1x" then the following subroutines are available for
-- 7_j=0 j--O

:omputing the first n coefficients of the polynomial p(x)q(x) . ""x

CALL PML1LT(A, ka,e, B, kb, m, C, kc, n)
CALL DPMULT'(A, ka, f, B, kb, rn, C, kc, n)

A, B and C are arrays. PMULT is used if A, B arid C are real arrays and DPMULT
is used if A, B and C are double precision arrays.

The arguments t, m, n, ka, kb, kc are positive integers. The coefficients aj and b. are
assumed to be stored in A and B where

A(1 + j.ka) a= (j .. 0, 1, , . , , 1 1)
B(1 + j.kb) b, (j = 0, 1,...,r --m1).

The routine stores the first n coefficients -j of p(x)q(x) in C where C(1 + j . kc) = cj for
j --:: 0, 1, .. ., n - 1.

Remarks. It is assumed that the array C does not overlap with the arrays A and B.

Programmer. A. H. Morris.

I1 5



DIVISION OF POLYNOMIALS

If p(z) E ajx) and q(x) = E bjxj where bo -/ 0, then the following subroutines
j' j-- 0

are available for computing the first, n coefficients of the series p(x)/q(x) =: Ej cjxj.

CALL. PDIV(A,ka,e,B,kb,rn,C,kc,n,IERR)
CALL DPDIV(A, ka, e, B, kb, r,C, ke, n,IERR)

A, B and C are arrays. PDIV is used if A, B and C are real arrays and DPDIV is
used if A, B and C are double precision arrays.

The arguments t, m, n, ka, kb, kc are positive integers. The coefficients a, and bj are
assumed to b( stored in A and B where

A(1 +.jka) = aj (j = o, 1, ... , - 1)
B(l -j.kb)=b,. (j= 0, 1...,m- 1).

IERR is a variable. When the routine is called, if b0 : 0 then IERR is assigned the value
0 and the first n coefficients cj of p(x)/q(x) are stored in C where 0(I + j.kc) = c3 for
j = 0, 1, . ,,n - 1.

Error Return. IERR =1 if b0 = 0. In this case, ao computation is performed.

Remarks. It is assumed that the array C does not Gverlap with the arrays A and B.

Programmer. A. H. Morris.

137



REAL POWERS OF POLYNOMIALS

rM-I
If r is real and p(x) E ayx-' where a0 > 0, then the following subroutines are

3'=0

available for computing the first n coefficients of the series p(x)r = - bjxY.

CALL PL.PWR(r, A, ka, m, B, kb, n,IERR)
CALL DPLPWR(r, A, ka, m, B, kb, n,IERR)

A and B are arrays. PLPWR is used if A and B are real arrays and r a real number,
and DPLPWR is used if A and B are double precision arrays and r a double precision
number.

The arguments m, n, ka, kb are positive integers. The coefficients aj are assumed to be
stored in A where A(1 + j.ka) = aj for j = 0, 1, ... , rn -- 1. IERR is a variable. When the
routine is called, if a0 > 0 then IERR is assigned the value 0 and the first n coefficients b.
ofp(x)r are stored in B where B(1 + j.kb) = bj for j 0,1, ... ,n - 1.

Error Return. IERR = 1 if a0 <0. In this case, no computation is performed.

Remark. It is assumed that the arrays A and B do not overlap.

Algorithm. If q pr then pq' rqp' where p' and q' are the derivatives of p and q.
3

Consequently, bj E- • (ri + i - j)aibj-i is used for j > 1. Also b0 = a'.

Programmer. A. 11. Morris.

-I-3



INVERSES OF POWER SERIES

Given an analytic function w -- f(z) -- arz' where f(0) --: 0. Then tihe inverse
i>1

function z = f'-'(w) exists when a, / 0, and f -'(w) - djwi. The subroutines PINV
-- 1>1

and DPINV are available for obtaining the coefficients di when the coefficients a, are real.
DPINV is a double precision routine.

CALL PINV(A, D, n,WK)
CALL DPINV(A,D,n,WK)

"If PINV is called then A, D, and WK are real arrays. Otherwise, if DPINV is called
then A, D, and WK are double precision arrays.

It is assumed that n > 2. A is an array containing the coefficients a,, ... ,a, and D is
an array of dimension n. When PINV or DPINV is called, the coefficients d1 , ... ,d, are
computed and stored in D.

WK is an array of dimension n(n + 1)/2 or larger. WK is a work space for the routine.

Programmer. A. 1H. Morris.

Reference. Chang, Feng-cheng,"Power Series Unification and Reversion," Applied Math
and Computation 23 (1987), pp. 7-23.

_ 1.1



DERIVATIVES AND INTEGRALS OF POLYNOMIALS
~n__I.

Let f(x) E aix' be a polynomial with real coefficients aj. The polynomial can be

differentiated and integrated by the following subroutine:

CALL MPLNMV(MO,xo,n, A, w)

A is an array containing the coefficients aj where A(i) = a -. 1 for 3 =: 1, ... ,n. The
argument xo is an arbitrary real number and w is a variable. MO may have the values
-1,0, 1,2. When MPLNMV is called w is assigned the value:

' "fo f(x) if MO -1t (Xo) ifMNO= 0
w= f'(Xo) if MO I

f"(Xz) if MO = 2

Programmer, Allen V. Hershey.

143



EVALUATION OF CHEBYSHEV EXPANSIONS

For any complex numbei z and integer n = 0, 1, ... let

To(z) 7: 1, T,(z): z

T,,+ 2 (z) = 2zT,-+,(z)- -"'(z).

Then Tn(z) is a polynomial of degree n having the leading coefficient 2---1 when n > 1.
Also Tn(t) = cos(nO) when t = cosO(0 < 0 < 7), so that iTs(t) < !1 for real t where
It[ . 1. The polynomials T,,(z) are called the Chebyshev polynomials (of the first kind). If

1(T) ao/2-I. - aT 1 (x) where a, is real, then the following functions are available fori-=1

computing f(x) when x is real.

CSEVL(x, A, n)

It is assumed that n > 1. and that A is an array containing a0 ,aj, ... ,a,-.i where
A(i) := a.-I(i = 1, -.. ,n). Then CSFVL(x, A, n) f(x) for any real x.

Programmer. A. I1. Morris.

DCSEVL(x, A, n)

It is assumed that n _> I and A is a double precision array containin, ao, a, ... a,,

where A(i) = aj- 1 (i = 1, ... , n). Then for any double precision value x, DCSEVL(x, A, n)
is the double precision value of f (x).

Remark. DCSEVL must be declared in the calling program to be of type DOUBLE

"PRECISION.

Programmer. A. H. Morris.

145



LAGRANGE POLYNOMIALS

Let a,, ... , a, be n distinct real numbers. Then the ith Lagrange polynomial is defined
by

O,( ) = (x - a,)(x - a2 ) -. (X -- ai_)(x - ,,+:)... (X -- a,,)
(a, - at)(a,- a2 )... (a, - a,_)(a, - a,+,) . . (a, - ar)

for i -=- 1,2, ... , n. The Lagrange polynomials have the property that Oj(a,) == 1, 0j(ay) = 0

for j ' i, and p(z) = p(a,)0S(x) for any polynomial of degree n - 1. For convenience,

di (a - al)(a -- a2 ). (a, - a,._i)(a, - a+1) ... (aj - a,.,)

is called the normalization divisor of O,(x). The following subroutines are available for
computing the Lagrange polynomials and their normalization divisors.

CALL LGRNGN(A,n,D)

"A and D are arrays of dimension n. The arguments al, ... , a, are given in the array
A. The normalization divisors d, •. •, dn are computed by the routine and stored in D.

Programmer. Allen V. Hershey.

CALL LGRNGV(MO,n, xo, A, D, F,DF,DDF)

A and D are arrays of dimension n. The arguments a,, ... ,a, are given in A and
the normalization divisors d1 , ... , d,, are given in D. The argument x 0 is an arbitrary real
number and F,DF,DDF are arrays of dimension n.

The argument MO may take the values 0, 1, 2. If MO = 0 then the polynomials O (x)
are evaluated at x0 and the values 4,(x0) stored in F. If MO 1= then the function /,(x)
and its derivative 0'(x) are computed at xo. In this case, 4,(xo) is stored in F(0) and 0'(xo)
is stored in DF(i) for i = 1, ... ,n. Similarly, if MO = 2 then the function k,(x) and its
first and second derivatives are computed at x0. The values q$(xo) are stored in F, the first
derivatives are stored in DF, and the second derivatives are stored in DDF.

Note. If MO -.- 0 then DF arid DDF are ignored by the routine. Similarly, if MO I ticii
DDF is ignored.

Programmer. Allen V. Hershey.

CALL LGRNGX(A, i, C)

A is an array of diniveiioiioi it and C an array of diniciion YL ' (n I ) 'l'ht, ;rgUnt,.ii
a,, ... ,a, are given in A. The purpose of the routine is to cl)[iputc thie co,•licicrits .•, Cof

the L~agranige t)poly nornials

k 0

1,17



When LGRNGX is called, the coefficients of Oj(x) are stored in the j"h column of C for
j < n. Also, the first n coefficients of the polynomial

-.. n g(x) = (x -- a,) ... (x -- a,,)

are stored in the (n + 1)8t column of C.

Programmer. Allen V. Hershey.

I -I



ORTHOGONAL POLYNOMIALS ON FINITE SETS

Let u., u,, be n distinct real numbers. For any real-valued functions /,g defined
on the points ui let (f,g) = Z f(u,)g(u,). Then (f,g) is an inner product when f and

g are regarded as functions defined only on uj. Thus, an orthonormal set of polynomials
{0o,4),..., On- I}I exists where the degree of ¢O' is j for j < n. The polynomials Cj. are
defined recursively by

1 [(u -- b,),(u) - aj. , IOj_- I(u)]

where aj = (oj.+,,uo,) and b -j Here it is assumed that &i a__ 0 and
Oo(u) - 1/V/t. The following subroutines are available for computing these polynomials.

CALL ORTHOS(U,m,Pn,R)

U is an array containing the values ul , u,1 arid m is an integer such that I < m < n.
P is an array of dimension n x mn and R an array of dimiensionr 2m - 2. When ORTHOS is
called, 0_,-(u,) is computed and stored in P(i,j) for I' < n and j < in. Also the coefficients
ao0 ,bo,a,,bj, _. ) am2,bm.-2 are stored in R.

Programmer. Allen V. Hershey.

CALL ORTHOV(MO,n, u, R, in, F,DF,DDF)

The argument u is a ical number and in an integer such that I < rn '- n. t? is an
array containing the coefficients ao, b, al , b, .. ,am -21b,, 1  2 ad t.,i)F, 2)1) I are arrays of
(dinlension in.

NMO may take the valuies 0, 1, 2. If N() 0 ther l ,, are eval u at,'sl at,
u arid the values C, 1(u) st ored in IF. I M(.) I then l art ilts ehrivative (ý are
c,),lprlteld at1 u. In this case, 0, (u ) is stored ini '(3) aid <,h I(u) is stor,ed inl I)(V )
fo r j 1, ... , m . Sim ilarly, if N() 2 theii q6 1 arid it.Is first, and sv(')i(id d( rivatIivs ar;
evalatld at u. The values q, I ((u) are store¢d in /i', thli first dt'rivatives art store-d in 1)1"'
and thc second derivatives are stored in I)I)1'.

Note. If M 0) tten l)1.' aDr 1)1 )t, art, ig ,orcd hy tmlo,, routine. Siml•ihrly, if M() I the'n
1)1)1" is ignored.

Prograimner. Alhl n \ I lh'ershy

CALL ORTHOX(7 ,, It, hm,

T h , ;'LI i;gl , t,,i'l 1 i t iI ,Ill i.2 , , tlLkr I r I I( I t 1l17, 1h7 I 1 ) 1 'i m 'l , It Lj iIL , t

I I Ir 
Y.



ZEROS OF CONTINUOUS F'.XCTIONS

Let F(x) be a continuous real-valuzd function defined for a < x < b, and assume that
F(a) and F(b) have opposite signs. Then the following functions are available for finding a
point z in the interval [a, b] for which F(x) = 0.

ZEROIN(F, a, b,AERR,RERR)

F(x) is a user defined function whose arguments and values are assumed to be real
numbers. ZEROIN returns a value x in the interval [a,b] for which F(x) = 0.

AERR and RERR are the absolute and relative tolerances to be satisfied (AERPI
> 0 and RERR > 0). One may set RERR = 10-k if it is desired that x be accurate to k
significant decimal digits. If RERR = 0 then it is assumed that machine accuracy is desired.

Remark. F must be declared in the calling program to be of type EXTERNAL.

References.

(1) Brent, Richard, Algorithms for Minimization without Derivatives, Prentice-llall,
1973.

(2) Forsythe, G.E., Malcolm, M.A., and Moler, C.B., Computer Methods for Mathemat-
ical Computations, IPrentice-liall, 1U77.

Programming. ZEROIN is a slightly modified translation of the ALGOL 60 procodurc

ZERO giveni in reference (1). The code was distributed by G.. E. Foisyth(c, N1. A. Malcolm,
and C. 11. Moler (Un iiversity of New Mexico), and modified by A. If. Moris. The functio0n
S I>MPAR is us1e(d.

DZERO( F, a, b,AERIl{,REI? !)

The arýiunnnts a, b, AEUIP, and REIM R are don bhe precision n r iubers, amd F(x) Is a •ser
dehined fuinction whose arguments ar•d values are vssi.nzaed to be double precision. nuilamrs.
I)ZEI(O returns a doukhble precision vJlue x in the interval , 11! fo)r whil, 1i (x) ().

AE'RI and Idl'Rl!'? are the a•solute and relative tolhrani-cs to( s)a,,;tti'dit d (A.lIlRl
(10 arll Ri • 0 ). On)e may set I'PHl1 10 k if it iV desired that j be uclir;at, k) tok

sigilificani. decimal digits. If HERE ( 0 then it is s-.qimie', that inach iie accuracty is d(u.;red

Remarks. F must be d(eclare.d i the, callig program to ble o)f type I)()U.l•, I{IK((-)N
and EX'I'ITIENAL., ind 1)ZEI'I() ioust b•e decLarcedt be of tYt) lw)( l I4 Plfl'I( UISI( )N

References

(1) lireint, ]vRichaird, Algorithms for Aitfariynizthon uith.lout 1)¢rt *ttit,, lient II
_-: 1pi73

-- (t) It, - ytNl1e ; , Nlch li. N. A ,o Nmid ,r ( ' m ('ot itepultr Afelhl•ds f,,i Auhlticozt

iced ("oYtluptih.ttots, I'r,,ikt, Ik I '. l It 77



Programming. DZERO is a slightly modified translation of the ALGOL 60 procedure
ZERO given in reference (1). The codc was distributed by G. E. Forsythe, M. A. Malcolm,
and C. B. Moler (University of New Mexico), and modified by A. H. Morris. The function
DPMPAR is used.

--- mY2



SOLUTION OF SYSTEMS OF NONLINEAR EQUATIONS

Let fi(x) = 0 (i = 1,...,n) denote a system of n equations in n unknowns where
x = (xj, . . . ,z,). Assume that each f,(x) is differentiable and that an initial guess a =
(a , ... , an,) to a solution of the equations is given. IThen the following subroutine is available
for solving the equations to within a specified tolerance.

CALL HBRD(F,n,X,FVEC,E- ES,TOL,INFO,WK,e)

X and FVEC are arrays of dimension n or larger. On input X contains the start-
ing oint a = (a1 , ... ,an). When tHBRD terminates, X contains the final estimate x
(x 1 , ... , xn) of the solution vector and FVEC contains the values of the functions fi, .. , ,

at the output point in X.

The argument F is the name of a user defined subroutine that has the format:
CALL F(n,X,FVEC,IFLAG)

Here X and FVEC are arrays of dimension n and IFLAG is an integer variable. The array
X contains a point x = (xI, . . . ,x,,). Normally F will evaluate the functions fl,..ý,fh,
at this point and store the results in FVEC. However, if x does not lie in the domain of
fl, ...1 , fn then this cannot be done. In this case, the argument IFLAG (which will have
been assigned a nonnegative value by IIBRD) should be reset by F to a negative value.
This will signal HI3RD to terminate. F must be declared in the calling program to be of
type EXTERNAL.

EPS is an input argument which specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant decimal digits then one
may set EPS - 10-k. It is required that EPS > 0. If EPS = 0 then it is assumed that F
produces results accurate to machine precision.

TOL is an input argument which specifies the desired accuracy of the solution. The
Euclidean norm I \I - V/>_",XI is employed. If k denotes an actual solution of the equations,
then IIBRI) terminates when anl iterate i is generated for which it is estimated that HIx
: I < TOL ,. xj I is satisfied. It is required that T01, > 0. In order for the convergence test
to work properly, it is, recorimmended that TOL always be smalier than 10 5

WK is ani array of dimension f that is used for a work space. It is assumed that, the
argu ment t is greater than or equal to n(3n 1 13)/2.

INFO is an integer varidale that rcporti the stat usl fthe .uOL l ts. When I! hRI) terri-
nates, INFO has one of the followilg valucs:

INFI") 0 This 1Soccurs when the user terinniates the execution of iiII I,) by
res,'tti, g the argunerlt Ii I,A(, in the subroutiie F to a negativc
value. 'lhio IN[N () th, . valuhe( Of ItL" A(;ý

IN O (4 ( ,in ,.t Error) n7 I, EI'S , 0,'1()l, 0 0, or f, n(3, 1
I1 N ( I A se iutiok ,:*vin 0w?.lie dcIred ;o:cuircy w s oH btalned.

153f



INFO 2 The number of calls to the subroutine F has rea,:'hed or exceeded
200(n + 1).

INFO 3 TOL is too small. No further improvement in the accuracy of x is
possible.

INFO 4 The routine is making very poor progress.

When HBRD terminates, if INFO 7' 0 then X contains the final iterate that was gener-
ated. Also, if INFO > I then FVEC contains the values of the functions fl, ... , f" at this
iterate. If INFO = 2 then it may be helpful to continue the procedure by recalling IIBIRD
with the current point in X as the new starting point. However, this is not advisable when
INFO = 4. This setting can arise when x = 0 is a solution or when entrapment occurs.
HBRD searches for a solution to the eqviations by minimizing j, f,(x) 2 . In doing this, it
can become trapped in a region where the minimum does not correspond to a solution of
the equations. This is what occurs when the equations have no solution. When entrapment
occurs and the equations are known to have a solution, then it is recommended that the
user try a different starting point.

Scaling. If the convergence criterion jix - xfl -< TOL. ] 1ilj is sati,,fied and TOL = 10-k,
then the larger components of the final iterate x may be accuiate to k significant digits but
not the smaller components. For example, if TOL = 10-5 and x = (1.2,.34E-4), then 1.2
may be accurate to 5 significant digits while .34E-4 is accurate to only 1 significant digit.
If it is suspected that the smaller components do not have acceptable accuracy, then it is
recommended that the variables in the original problem be rescaled and the problem rerun.

Algorithm. A modified form of the hybrid Powell procedure is employed.

Programming. HIBRD is a slightly modified version of the MINPACK-1 subroutine IlY-
BRD1. The MINPACK-1 subroutines IIYBRD, ENORM, DOGLEG, FPDIAC1, QFORM,
QRFAC, R1MPYQ, and R11UPDT are employed. The subroutines were written by Jorge J.
More, Burton S. Garbow, and Kenneth E. Hlillstrom (Argonne National Laboratory). The
function SPMPAR is also used.

References.

(1) More, J. .1., Garbow, B.S., and Ilillstrom, K. E., User Guide for MININACK 1,
Argonne Nation Laboratory Report ANi, 80 -74, Argonne, Illiiois, 1980.

(2) Powell, M.J. 1)., A llybrid Method for Nonlinear Eq(uations," Numerictd Methods
for Nonline~ir Algebraic Equations, 1. R•binowitz (evd.), Gordon and Bre•ah, Lon-
don, 1970.

I 5q.1



SOLUTIONS OF QUADRATIC, CUBIC, AND QUAR'IC EQUATIONS

Given a polynomial ao + aiz + .... -- az" with real coefficients where a, $ 0 and
n -, 2, 3 or 4. The following subroutines are available for computing the roots zI, ... ,z,' of
the polynomial.

CALL QDCRT(A,Z)
CALL CBCRT(A,Z)
CALL QTCRT(A, Z)

It is assumed that A is a real array and Z a complex array. QDCRT is used if n = 2,
CBCRT is used if n = 3, and QTCRT is used if n =::.- 4. A is the array of coefficients
where A(k) :=- ak-1 for k = 1,2, . . .,n + -1, and Z is an array of dimension n. When the
appropriate subroutine is called, the roots z1, . .. , z,, are stored in Z. The real roots precede
the complex roots. The real roots are ordered so that I7,y < jzy+11. The complex roots are
unordered except that complex conjugate pairs of roots appear consecutively with the root
having the positive imaginary part being first.

Programming. Q'TCRT calls the subroutines CBCRT and AORD, and CBCRT calls the
subroutine QDCRT and function CBRfT. The routines were written by A. H. Morris and
CBCRT was modified by Wm. Davis (NSWC). The function SPMPAR is also used.

CALL DQDCRT(A,ZR,ZI)
CALL DCBCRT(A,ZR,ZI)
CALL DQTCRT(AZRZI)

It is assumed that A,ZR, and ZI are double precision arrays. DQDCRT is used if n - 2,
DCB, RT is used if n -- 3, and DQTCRT is used if n = 4. A is the array of coefficients
where 4(k) = ak-I for k = 1,2, .. , n A- 1, and ZR and ZI are arrays of dimension n. When
the appropriate sabroutine is calhed, the real parts of the roots z1 , . . . , z,, arn stored in ZR
and the imagmiary parts are stored in ZI. The real roots precede tLe complex roots. The
real roots are ordered so that jzj, < jz_,+1. The complex roots arc unordered except that
complex conjugate pairs of roots appear consecutitvely with the root having the positivw
imaginary part being first.

Programming. DQTC• R ••1calls the routines DAORID, DCSQRT, and DCB(,I•?3 . DCBCIRT
calls the subroutine l)QT)CIT and function Dci .'ni c routinTc ..... wiitt.. 1)y A. 11.
Morris The function I)1'MPAR is also used.

-'• 155

I---_



DOUBLE PRECISION ROOTS OF POLYNOMIALS

Given a polynomial a0 + a, z + -. -+ az" of degree n > 1. The subroutines DRPOLY
and DCPOLY are available for obtaining the roots zi, -. , zn, of the polynomial. DRPOLY
may be used if the coefficients aj are real, and DCPOLY is applicable if the coefficients are
complex. These subroutines perform the calculations in double precision.

CALL DRPOLY(A, n,ZR,ZI,NUM,WK,DWK)

A is a double precision array containing the coefficients where A(j) - a,ni+l for
j 1, ... , n + 1. ZR and ZI are double precision arrays of dimension n or larger, and NUM
is an integer variable. When DRPOLY is called, if no errors are detected then NUM -- the
number of roots that are obtained. If NUM > I then the real parts of the roots are stored in
ZR(j) and the imaginary parts in ZI(j) for j = 1, . . . ,NUM. The roots are unordered except
that complex conjugate pairs of roots appear consecutively with t~he positive imaginary part
being first.

WK is a real array of dimension n + 1 or larger, and DWK is a double precision array
of dimension 6(n + 1) or larger. WK and DWK are work spaces for the routine.

Error Return. NUM =.-- 1 if n < 1 or a, = 0.

Programming. DRPOLY employs the subroutines DRPLYI,FXSIIFR,QUADIT,REALIT,
CALCSC, NEXTK, NEWEST, QUADSD, and QUADPL. These routines exchange infor-
mation in a labeledi common block named GLOBAL,. The routines were written by M. A.
Jenkins (Queen's University, Kingston, Ontario), and modified by A. H. Morris. The func-
tions SPMPAR, DPMPAR, and IPMFAR are also used.

References.

(1) Jenkins, M. A.,"Zeros of a Real Polynomial," ACM Trans, Math Software 1 (1975),
pp. 178--189.

(2) Jenkins, M. A. and Traub, J. F.,"A Threc-Stage Algorithm foi Real Polynomials using
Quadratic Iterations," SIAM J. Numerical Analysis 7 (1970), pp. 545-566.

CALL D CPOLY((AR,AI,r.t,ZRZI,NUM,I)WK)

AAR and Al are double precision arrays containing the real and iriiaginary parts of the
coefficients where ARH(j) .... Re .4 ) and Al(j) .m.(a, for j 1, ,n 1. ZR

and ZI are double precision arrays of dimension n or larger, and NUM is an integer variable.
When DCPOLY is called, if no errors are detected then NUM --ý the number of roots that
are obtained. If NUM > I then the rcal parts of the roots are stored in Z R(j) and the
rimaginary parts in ZI(j) for .I, ,N1JM.

DWK is a double precrlion array oi dimension 10(n f 1) or larger that is a work space
for the routine.

157



Error Return. NUM = -1 if n < 1 or a, = 0.

Programming. DCPOLY employs the routines DCPLY1, CAUCHY, NOSHFT, FXSHFT,
VRSHFT, CALCT, NEXTH, POLYEV, CDIVID, and the functions SCALCP, ERREV.
These routines and functions were written by M.A. Jenkins (Queen's University, Kingston,
Ontario) and J. F. Traub (Bell Laboratories), and modified by A. H. Morris. The functions
DPMPAR, IPMPAR, and DCPABS are also used.

References.

(1) Jenkins, M. A. and Traub, J. F., "Algorithm 419, Zeros of a Complex Polynomial,"
Comm. ACM 15 (1972), pp. 97-99.

(2) _ -, "A Three-Stage Variable-Shift Iteration for Polynomial Zeros and its Relation
to Generalized Rayleigh Iteration," Numer. Math 14 (1970), pp. 252-263.

i58



ACCURACY OF THE ROOTS OF POLYNOMIALS

Let zl,... , z, be approximations for the roots of a real or complex polynomial p(z)
a0 +alz-+ +a,nz of degree n > 1. Then for each zj, the subroutines RBND and CBND
obtain the radius ri of a disk Di = {z : Iz - zi <. r,} centered at z, which contains a
true zero of the polynomial. The radius r, is an upper bound on the absolute error of the
approximation z,.

For each zi, the subroutines also compute the number ki of disks Di (including the disk
Di) which overlap with Di. The value ki is the number of roots of p(z) that are clustered
near zi. If ki = 1 then z, approximates a simple root.

Example. In the figure
kc= 1, Ik2 =3, kc3  2,VIT
and k 4  2.. • Z4

0 -

'3

CALL RBND(n, A, Z,R,RERR,K,IERR)
CALL CBND(n,, A, Z,R,RERR,K,IERR)

A is a real array if RBND is used, and A is a complex array if C13ND is used. A
contains the coefficients ao, a1 , ... ,a,, where A(i) = a,__1 (I -- 1,... ,n + 1), and 2 is a
complex array containing the approximate roots zl,... ,Zn

IERR is an integer variable, R a real array of dimension n or larger, and K an integer
array of dimension n or larger. When RBND or CBND is called, if no input errors are
detected then IERR is assigned the value 0, the radii r1 , ... , r,, are cornputed and stored
in 1?, and the values ki, ...- ,k,, are computed and stored in K.

RERR is a real array of dimension n or !arger. If zi ( 0 then RI'RItl(t) is set to I by
the routine, and if z / 0 then RERIR(i) .- the estimated iiaxinium relative (rror of .,.

Error Return. IER 0 -t I when n < I and IlERR 2 when ,l, 0. In these caises no

computation is performed.

Programming. RIBN1) and CIANI) enploy the fu c tiois CPABS antd !I M•IARAI. IR. NI)
and CBNI) were written by Carl B. Bailey and modified by Wiliharm It. (Gavin (Sand ia
Laboratories). The formats of the snbroiutine.i were nmiodlfid by A. 1I. N(orris.

15')



COPYING VECTORS

A copy of a vector X = (xj, ... ,x,) can be made and stored in the array Y by the
following subroutines:

CALL SCOPY(n, X, kx, Y, ky)
CALL DCOPY(n, X, kx, Y, ky)
CALL CCOPY(n,X,kx,Y,ky)

The argument kx is an integer which specifies the interval between successive compo-
nents xi of the vector X. If kx > 0 then it is assumed that xi is stored in X(1 + (i - 1)kx) for
i = 1, ... , n. Otherwise, if kx < 0 then it is assumed that xi is stored in X(1 + (n -- i)!kxl).
Similarly, the argument ky specifies the spacing of the components of Y.

SCOPY is used if X and Y are real arrays, DCOPY is used if X and Y are double
precision arrays, and CCOPY is used if X and Y are complex arrays. When any of these
routines is called, if n < 0 then the routine immediately terminates. Otherwise, if n > 1
then the components xj of X are stored in Y according to the spacing specified by the ky

parameter.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. TV. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., "Basic Lin-
ear Algebra Subprograms for FORTRAN Usage," ACM Trans. Math Software 5 (1979),
pp. 308-323.

I-- I



INTERCHANGING VECTORS

The components of two vectors X = (xi, ... ,x,) and Y = (y1, ... ,Y,) can be inter-
changed by the following subroutines:

CALL SSWAP(n, X, kx, Y, ky)
CALL DSWAP(rn,X,kx,Y,ky)
CALL CSWAP(n, X, kx, Y, ky)

The argument kx is an integer which specifies the interval between successive compo-
nents xi of the vector X. If kx > 0 then it is assumed that x, is stored in X(1 + (i - 1)kx) for
i = 1. ... , n. Otherwise, if kx < 0 then it is assumed that xi is stored in X(i + (n -- i)IkxI).
Similarly, the argument ky specifies the spacing of the components of Y.

SSWAP is used if X and Y are real arrays, DSWAP is used if X and Y are double
precision arrays, and CSWAP is used if X and Y are complex arrays. When any of these
routines is called, if n < 0 then the routine immediately terminates. Otherwise, if n > 1
then the components xi and yj are interchanged for i = 1, ... ,n. Thus, when the routine
terminates X = (Y1, -.. ,y,) and Y = (xi,...,x,).

Programming. These routines are part of the BLAS package of ba3ic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, The
routines were w'itten by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson., C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., "Basic Lin-
ear Algebra Subprograms for FORTRAN Usage," ACM Trans. Math Software 5 (1979),
"pp. 308-323.



PLANAR ROTATION OF VECTORS

Let X =(xi, x,x) and Y =(yi, .. ,Y.) be vectors and c and s be real numbers
such that c 2 

+I a2  A. ' and Y can be replaced with cX +t 81' and -sX + cY by the
following subroutines:

CALL SROTr(n, X, kx, Y, ky, c, s)
CALL DROT(n,X,kx,Y,ky,C,S)
CALL CSROT(n, X,kx, Y, ky, c, 8

'rhe argument kz is anl integer which speci~fies the interval between successive compo-
nents x,, of the vector X. If kx > 0 then it. is assumed that xi is stored in X(1 + (i - 1) kx) for
i =1, ... , n. Otherwise, if kx < 0 then it is assumed that x1 is stored in X(1 + (n - i)IkxI).
Similarly, the argument ky specifies the spacing of the components of Y.

SROT is used if X and Y are real arrays, DROT is used if X and Y are double precision

arrays, and CS ROT is used if X and Y are complex arrays. The arguments c and s are
real numbers when SROT and CSROT are used, and are double precision numbers whlen
DROT is used. When any of these routines is called, if n < 0 then the routine immediately
terminates. Otherwise, if n I then the components xci and y.; are replaced with cx1 +- sy,
and -sz, + cyi for i= 1, .,n.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dortgarra (Argonne Natioual Laborat-)ry)

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and lirogh, F. T., "LBaSic U~n-
ear Algebra Subprograms for FOR.TRAN Usage,"' ACM Trans. Math Software 5 (1979),
pp. 308 -3 23.



MODIFIED GIVENS ROTATIONS

If a, and a2 are real numbers where r 2 = a' + al 2X 0, then there is an orthogonal

matrixG ( c s)such that G (a) = (r). In this case c = ali/r and s = a2/r.

The matrix G represents what is called a Givens rotation. Given A a(, ] , the matrix

G is uniquely defined up to the sign of r.

Alternatively, assume that instead of having A we are given D O d2 0 and B

(bi) where di > 0 (i = 1,2) and A = D1/2 B. Then th-re exist matrices D

Sand t1 (h 2  h 2l ) where d1 andd 2 are positivc values andS~h21 h22

HB =

GD 11 2 = obll/2H (a ±1).

In this case, GA -- GD1/ 2 •B a'_1 /2(HB).

If' dibi > 112 b2 then I! and F) can be defined by

1d2 b2

b2(2) h 2 1  /1b22z- 1

u 1 
hL1 2

1
12 1

di 4 (12  (12 /ti

III Wh'iich cýLse ['I ul'i *k1d a s gI I (r). ()lierwise, if dlb I db h ii ~i!I ~~b
(defilId by

d. b2

U 11 I
Il Wý ) h h ,il I .



Any H which satisfies (1) is called a modified Givens rotation matrix. H is frequently
preferred to G since its use may require fewer multiplications, and square roots are avoided.
For convenience, if b2 = 0 or d2 = 0 then H is defined to be the identity matrix and D = D.
Otherwise, if b, -z 0 or d1 = 0 then formulas (3) are applied.

It is normally assumed that d, > 0. However, there are applications where it is
convenient to let d2 < 0. If d, > 0 and d2 < 0 then D and H can be defined by (2) or (3)
depending on whether ldib~l > Id2 b2j or Id~bl <_ Id2b•I. If (3) are used and u / 0, then

d, < 0, which is not compatible with the requirement d, .> 0. Consequently, d2 < 0 is
permitted only when Idib, > Id2 b2I, and we note that 0 < u < 1. Since u can be near 0,

D and H may have to be rescaled to avoid overflow and underflow. Rescaling may also be
needed when d2 > 0 (in this case 1 < u < 2).

The subroutines SROTMG and DROTMG are available for obtaining D and H, and

the subroutines SROTM and DROTM are available for computing H (x for any (

CALL SROTMG(D 1 ,D 2 ,B 1 ,1B2 ,Q)
CALL DROTMG(D 1,D 2 ,1B1 ,1B2 ,Q)

DI, D2 , 13, B2 are real variables and Q a real array if SROTMG is u.ýed, and I, ,

[B1, 112 are double precision variables and Q a double precision array if DROTIMG is used.
Q iN an array of dimension 5.

It is assuml(ed that Di - di arid Hi -- bi (i -- 1,2) on input, and that d, > 0. 'The
argument d2 may be negative or nonnegative. If d2 < 0 then it is assumed that Fdbb1 >

2(2b 21. When SRO'TMG or I)ROTMG is called, 1), and 2)2 are reset to di and d., and B,
is reset to bl. 13,2i s not modilied, a;Il It is stored in Q as fol lows.

Q(I) is aii indicator which specifies the ,leirrerits of 11 that are stored iII Q. If Q(1) I
their afl thie elir-nvts are stored and

Q (2) hi 9(4) I112

Q 1(:)) IL,21 Q (5) h

()th.rwise., Q(I) has (ri, ()f thie folo)wing values:

Q(I) ) i1 i.s ,(,(,fied by (2). Q(3) ,2, wi a d Q(4) /, Q.. ,(2) arid Q(5)
:.r' nt ,(hli ned(

Q( 1 11 :',s dehfinied iby (3). 9(2) hII aid-(I Q(5) h.. Q(3) arid Q(4)

,1)(1) 2 H Is the,. idnil ity .i..trix. Q(2), (. ) ,i,, n,, d, , ,rid.

Error Retturn. If ,1 1 ( r w- th l • 1t.,0 l ri h (. , thI'n 1) .trol 11' iLr- ij't it, t(l Z(.I(r ,
ir;tirix i:o ,i 1)r ( h !it hi, case,, Q(I) I :0 f Q(t) (f, i 2

Programm ing 'l'fi , i t sit •l iarl jhi Id t hc \,AS pI k:,tkg o )f Ifit, loi. ,dt1 u;l
.- in nir i ntis,: e l - i• ' Iy (C I .- w ii, ( I ., I llahit I) .I' K i).,ii , I" l'' [ I[( 'h

.aI'M ; :l I )I'( )'I'\ wer,• t liiirul , * II cM o ris



Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., "Basic Lin-
ear Algebra Subprograms for FORTRAN Usage," ACM Trans. Math Software 5 (1979),
pp. 308-323.

CALL SROTM(n,X,kx, Y,ky,Q)

CALL DROTM(n,X,kx,Y,ky,Q)

Let. X =(x, . . . ,xz,) and Y - (yi, ... ,y,) be vectors, and Q be the array obtained
by SROTMG or DROTMG. If H is the modified Givens rotation matrix stored in Q, then

SROTM and DROTM are available for computing (2' ii H i)( ,..,)

The argument kx is an integer which specifies the interval between succesive cornpo-
nents x, of the vector X. If kx > 0 then it is assumed that xj is stored in A(I+(i- 1)kx) for
i = 1, .. ., n. Otherwise, if kx < 0 then it is assumed that xj is stored in X(l + (n - i)[kix).
Similarly, the argument ky specifies the spacing of the components of Y.

SROTM is used if X,Y, and Q are resd arrays, and DROTM is used if X,Y, and Q
are double precision arrays. When SRGTM or DROTM is called, if n < 0 then the routine
immediately termiiiates. Otherwise, if n > 1 then the components x, and yi are replaced
with x, and qj for i = 1, ... ,n.

Programming. These subroutines are part of the BLAS package of basic linear algebra
subroutines designed by (C. L. Lawson, R. J. Hlanson, 1). R. Kincaid, and F. T. Krogh.

Reference. Lawson, C. L., !laison, R. J., Kincaid, 1). I., and hrogh, F. T., "Ba5ic Linear
Algebra Subprograns for FOTHTAN Usage," ACM Trans. Math Software 5 (1979),
tl). 308 323.



DOT PRODUCTS OF VECTORS

The following functions are available for computing the sums r- xiyi and j •y,

where X = (x,,...,x,) and Y = ly,,...,y,) are real or complex vectors.

SDOT(n,X, kz,Y, ky)
DDOT(n, X, kx,'Y, ky)
CDO TIC (n, X, kx, Y, ky)
CDOTU(n, X, kx, Y, ky)

The argument kx is an integer which specifies the interval between successive compo-

nents x, of the vector X. If kx > 0 then it is assumed that xi is stored in X(1 + (i - 1)kx) for

i = 1, ... , n. Otherwise, if kx < 0 then it is assumed that x, is stored in X(1 + (n -- i)IkxI).

Similarly, the argument ky specifies the spacing of the components of Y.

SDOT is used if X and Y are real arrays, and DDOT is used if X and Y are double

precision arrays. SDOT is a real function and DDOT is a double precision function. When

either of these two functions is called, if n < 0 then the function is assigned the value 0.

Otherwise, if n > 1 then the function is assigned the value Ex iy,.
__ ---- :t -= 1

CDOTC and CDOTU are used if X and Y are complex arrays. CI)OTC and CDOTU

are complex functions. When either of these two functions is called, if n < 0 then the func-

tion is assigned the value 0. Otherwist, if n > I then CI)OTC(n, X, kx, Y, ky) is assigned

the value >j x±y, and Cl)(OTU (n, X, kzr, Y, ky) is assigned the value > xy,.
i : 1 t-i

Rernark. D)DOT must be declared in the cý.llng prograin to be of type D)OU BLE PII{ECI-

SI0N, and ("1)O''(T and CI)O)TV must be declared to be of type COMPLEX.

Programnming. These functions are part of the BLAS package of b)a-sic linear algebra sub-

routines d,]signeo Iby C. L. Lawsoit, R. J. Hlanso, 1). R. Kiowaid, and I". T. Krrogh. 'lFht

fu mm tiois were written by Jack l),•ongarra (Argon tie Nationmal lab,)ratory)_

Reference. Law~i.o,, (. L., Hlanson, R. ,J., Kinc aid, D). H., and Krogh, iF. T., "Hlasic LiP-

car A.lg ebra Subl)t)Orgrai ttI for FO(R)TR'A{AN Usi ,,," ACM Trans. Afah Software 5 (1979),
pp. 308 323

171



SCALING VECTORS

If a is a real or complex number and X = (x 1 , ... ,X,) a vector, then the vector X can
be replaced with the vector aX by the following subroutines:

CALL SSCAL(n,a,X,kx)
CALL D,.CAL(n,a,X,,kx)
CALL CSCAL(n,a,X,kx)
CALL CSSCAL(n, a, X, kx)

The argument kx is a positive integer. It is assumed that the component x, is stored
in X(1 + (i - 1)kx) for i = 1, ... ,n7.

SSCAL is used if a is a real number ind X a real array, DSCAL is used if a is a double
precision number and X a double precision array, CSCAL is used if a is a complex number
and X a complex array, and CSSCAL is used if a is a real number and X a complex array.
When any of these routines is called, if n < 0 then the routine immediately terminates.
Otherwise, if n > 1 then each xA is replaced with axi. Thus.!. when the routinc t-arninates
X 7= (aX 1 , ... , azx)

Programming. These routines are part of the ELAS package of 1h,.sic linear algebra sub-
routines designed by C. L. Lawson, R. J. Ii,.nson, D. R. Kincaid, and F. T. Krogh. The
rou.,ines were written by Jack Dongarra (Argonne National I.aboratcry).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., "Basic Lin-
ear Algebra Subprograms for FORTRAN Usage," ACM T,-ans. Math Software 5 (1979),
pp. 308-323.

173

|L



VECTOR ADDITION

If a is a real or complex number and X - (x, ... ,x,) a vector, then any vector
Y - (yl, 1..., y) can be replaced with the vector aX + Y by the following subroutines:

CALL SAXPY(n,a,X,kx,Y,ky)
CALL DAXPY(n, a, X, kx,V',k y)
CALL CAXPY(n,a,X,kx I',ky)

The a:gument kx is an integer which specifies the interval between successive compo-
nents xi of the vector X. If kx_ > 0 then it is acsumed that xz is stored in X(I+ (i - 1)kx) for
i 1, ... , n. Otherwise, if kx < 0 then it W assumed that xz is stored in X(1 + (n - i)jkxI).
Simitrb, the argument ky spec;fes the sp ing of the components of the vector Y.

SAXPY Y sed if a is a real number aiA X, Y are real arrays, DAXPY is used if a
is a double precision n,inbet and X, Y are double precision arrays, and CAXPY is used
if a is a complex number and X, Y are complex arrays. When any of these routines is
called, if n < 0 or a = 0 then the routine immediately terminates. Otherwise, if n > 1
then y. ;s replaced with axi + yi for i - 1, ... ,n. Thus when the routine terminates
Y -(a I+ i . • . , a " Yý

Programming. These routines are part of Lhe BLAS package of basic linear algebra sub--
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Referenm.. Lawscn, C. L., Hanson, R. J., Ki: caid, D. R., and Krogh, F. T., "Basic Lin-
ear Algebra Subprograms for FORTRAN UIage," ACM Tranr . Mat. Software 5 (1979),
pp. 308--323.

17 5



L, NORM OF A VECTOR

The following functions are available for computing the L, norrm of a real vector or a
modified L1 norm of a complex vector.

SASUM(n, X, kx)
DASUM(n, X, kz',
SCASIJ M(n, X, kx)

X -- (xi, ... x,,) is a vector and kx a positive integer. It is assumed that xi is stored
Sill X(1 + (i - llkz) for i- = 1, ... , n,

SASUM is used if X is a real array and DASUM is used if X is a double precision
array. SASUM is a real function and DASUM a double precision function. When either of
these functions is called, if n < 0 then the function is assigned the value 0. Otherwise, if

n
a > I then the function is assigncd the value , Ixil.

SCASUM is used if X is a complex array. SCASUM is a real function, When SCASUM
is called, if n < 0 then the function is assigned the value 0. Otherwise, if n > 1 theln

SCASUM(n,X,kx) is assigned the value ' [IRe(xi)I + IIm(z,)j].

Remarks.

(1) DASUTM must be declared in the calling program to be of type DOUBLE PRECISION.
(2) SCASUfA(n,X,kx) is the norm of the complex vector X = (xt, .. ,x,) when X is

regarded as a real vector of dimension 2n. This norm is frequently preferred over the

standard Li norm E jxdj since it takes less time to compute.

Programming. These finctions are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hlanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratory).

Reference. ,awsoni, C. L., Hanson, R. J., Kincaid, 1). R., and Krogh, F. T., "Ba. ic Lin-
ear Algehra Subprmgrams for FORITRAN Usage," AC.'M Trans. Maih Software 5 (1979),
pp. 30&--'23.

17's'



L2 NORM OF A VECTOR

The following functions are available for computing the L2 norm of a real or complex
vector.

SNRM2(n,X, kx)
DNRM2(n, X, kz)
SCNRM2(n, X, kx)

X -= (x 1 , . .. ,x, ) is a vector and kx a positive integer. It is assumed that xj is storc,
in X(1 + (i -- I)kx) for i= 1, ... , n.

SNRM2 is used if X is a real array, DNRM2 is used if X is a double precision array,
and SCNRM2 is used if X is a complex array. SNRM2 and SCNRM2 are real fur ctions
and DNRM? a double precision function. When any of these functions is called, if r, < 0
then the function is assigned the value 0. Otherwise, if n > 1 thea the function is assigned

the value [, xi 12

Remark. The function DNRM2 must be declared in the calling program to be of type
DOUBLE PRECISION.

Programming. These functions are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kiricaid, and F. T. Krogh. The
functions were written by Charles Lawson (Jet Propulsion Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, I). R., and Krogh, F. T. "Basic Lin-
ear Algebra Subprograms for FORTRAN Usage," ACM Trans, Math Software 5 (1979),
pp. 308-323.

179



Lo, NORM OF A VECTOR

The following functions are available for finding the largest component xi of a vector
X = (X, -,).

ISAMAX(n, X, kx)
IDAMAX(n, X, kx)
ICAMAX(n, X, kx)

The argument kx is a positive integer. It is assumed that the component xj is stored
in X(1 + (i - 1)kx) for i = 1, ... ,n.

ISAMAX is used if X is a real array and IDAMAX is used if X is a double precision
array. ISAMAX and IDAMAX are integer functions. When either of these functions is
called, if n < 0 then the f,.ction is assigned the value 0. Otherwise, if n > 1 then the
function is assigned the value i where i is the smallest index such that jxij = max{lxjI :.
S1, n}.

ICAMAX is also an integer function. It is used when X is a complex array. If
n < 0 then ICAMAX(n, X, kx) is assigned the value 0. Otherwise, if n > 1 then the
function is assigned the value i where i is the smallest index such that IRe(x 1)I + jIm(x,)j

max{IRe(xj)l + IIrn(xj): j 1,.. . ,h}.

Note. The ma' ping X-- max{IRe(-j)l + Ltn(zj)j 1 1,...,n} is the L,, norm of the
complex vector X = (x., . ,x,,) when X is regarded as a real n x 2 matrix. This norm is
frequently preferred over the standard L. norm irax{IxIl :j-= 1, ... , n} since it takes less
time to compute.

Programming. These functions are part of the BIAS package of basic linear algebra sub-
rolitines desigped by C. L. Lawson, R. J. Hanson, D. F,. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratory).

Reference. Laws)n, C. L-, Hanson, I. J., Kincaid, 1). 11., and Krogh, F. T., "Basic Lin-
ear Algebra. Subprograms for FORTRAN U.sage," ACIV Trans. Math Software 5 (19'79),
po. 308-323.

S~181



PACKING AND UNPACKING SYMMETRIC MATRICES

An n x n symmetric matrix A (aij) can be represented by either its lower triangular
elements

•hin[all 212 a13 ...
Sa21 a 2 2 a 2 3  .

a 3 1 a32 a 3 3  "'"

or its upper triangular elements. If the lower triangular elements are used, then the
packed form for the matrix is an array of dimension n(n A- 1)/2 containing the elements
a11a21a2 2 a31 a3 2a3 3  Similarly, if the upper triangular elements are used then the packed
form for the matrix is an array containing allal2 alna22,223 , a2'l Currently the
lower t.riangular elements are used for packing symmetric matrices. The following
subroutines are available for packing and unpacking real symmetric matrices.

CALL MCVFS(A, ka, n, B)
CALL [)MCVFS(A, ka, n, B)

A is an n x n symmetric matrix and B an array whose dimension is equal to or greater
than n(r. + 1)/2. The routines store the packed form of A in B. MCVFS is used if A and
B are real arrays and DMCVFS is used if A and B are double precision arrays. The input
argument ka has the following value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka > n.

Note. A and B may begin in the same location.

Programmer. A. H. Morris.

CALL IMCVSF(A,/ka,rn,B)
CALL IDMCVSF(A,ka,n,JB)

_B is an array containing the elements of a packed na x n symmetric matrix and A is an
array oF dimension ka x n where kaa > n. The routines unpack 13 and store the results in
A. MCVSF is; used if A and B are real arrays an(d I)4CVSF is used if A and 13 are double
precision arrays.

Note. A and 1B may begin in the same location.

Programmer. A. I1. Morris.

I 113



CONVERSION OF REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The subroutines MCVRD and MCVDR are available for converting real matrices to
and from double precision form.

CALL MCVRD(m, n, A, ka, B, kb)

A is a real rn x n matrix and B a double precision 2-dimensional array. MCVRD stores
the matrix in double precision form in the array B. The input arguments ka and kb have
the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in tl., cilling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

CALL MCVDR(m, n, A, ka, B, kb)

A is a double precision m x n matrix and B a real 2-dimensional array. MCVDR stores
the matrix in single precision form in the array B. The input arguments ka and kb have
the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling pi )gram

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

185



STORAGE OF REAL MATRICES IN THE COMPLEX MATRIX FORMAT

The following subroutine is available for storing a real matrix A in the complex matrix
format.

CALL MCVRC(m, n, A, ka, B, kb)

A is a real m x n matrix and B a complex 2-dimensional array. MCVRC stores the
matrix in complex form in the array B. The input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

it is assumed that ka > m and kb > Tf, and that B contains at least n columns.

Programmer. A. H. Morris.

187



THE REAL AND IMAGINARY PARTS OF A COMPLEX MATRIX

If A = (ai,) is a complex matrix then let Re(A) - (Re(a,,)) and Im(A) = (In(a~j))
denote the real and imaginary parts of A. The following subroutines are available for
obtaining Re(A) and Im(A).

CALL CMREAL(m, n, A, ka, B, kb)

A is a complex m x n matrix and B a real 2-dimensional array. CMREAL obtains
Re(A) and stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

CALL CMIMAG(m,n,A,ka,B,kb)

A is a complex mi x n matrix and B a real 2-dimensional array. CMIMAG obtains
Im(A) and stores it in B. The input arguments ka and kb have the following values:

ka the number of rowj, in the dimension statement for A in the calling program
kb the number of rows in the dimension statement for B in the calling program

It is assumed that ka > rn and kb > in, and that B contains at least n columns.

Programmer. A. H. Morris.

-- 189



COPYING MATRICES

The following subroutines are available for copying matrices.

CALL MCOPY(m,i, A, ka, B, kb)

A is a real rn x n matrix and B a real 2-dimensional array. MCOPY makes a copy of
the matrix A and stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka >_ m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

CALL SMCOPY(n, A, B)

A is a real packed n x n symmetric matrix and B a real array whose dimension is equal
to or greater than n(n 4- 1)/2. SMCOPY makes a copy of the packcd symmetric matrix A
and stores it in B.

Programmer. A. H. Morris.

CALL DMCOPY(m,n,A,ka,B,kb)

A is a double precision r X n i matrix and B a double precision 2-dimensional array.
DMCOPY makes a copy of the matrix A and stores it in B. The input arguments ka and
kb nave the following values:

ka the number of rows in the dimension statenient for A in the calling program
kb the number of rows in the dimension statement for B in the calling program

It is assumed that ka .> rn and kb > rn, and that B contains at least n columns.

Programmer. A. 11. Morris.

CALL CMCOPY(n, r,n, A, ka, B, A h)

A is a complex rn x n matrix a.id B a comtplex 2-dimensional array. CMCOl Y nwkes a
copy of the matrix A and stores it in B. The iiput arguments kn and kb have the following
values:

Sk,,i the number of rows in the dimekision statement for A in the calling prograrn
kb = the number of rows in the dimension statement for B3 in the ca!ling program

It is assumed that ka > rn and kb > rn, and that B contaiwi "t least n columns.

Programnmer. A. 1t. Morris.

191



COMPUTATION OF THE CONJUGATE OF A COMPLEX MATRIX

If A = (ai.) is a complex matrix then let A = (di) denote the conjugate of A. The
following subroutine is available for computing the conjugate matrix A:

CALL CMCONJ(m, n, A, ka, B, kb)

A is a complex m x n matrix and B a complex 2-dimensional array. CMCONJ computes
A and stores the results in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > m, and that B contains at least n columns.

Remark. A and B may reference the same storage area when ka = kb.

Programmer. A. H. Morris.

193



TRANSPOSING MATRICES

The subroutines TPOSE, DTPOS IW, (C fPOSE and TIP, DTIP, CTIP are available for
transposing a matrix A. TPOSE, DTPOSE, and CTPOSE are used if the results are to be
stored in a separate storage area B. TIP, DTIP, arid CTIP are used if the results are to be
stored in A (i.e., if the transposition is to be done in place).

CALL TPOSE(m, n, A, ka, B, kb)
CALL DTPOSE(m,n,A,ka,B, kb)
CALL CTPOSE(m, n, A, ka, B, kb)

TPOSE is called if A is a real matrix and B a real array, DTPOSE is called if A is a
double precision matrix and B a double precision array, and CTPOSE is called if A is a
complex matrix and B a complex array.

A is a matrix having m rows and n columns, and B a 2-dimensional arrary. The routine
transposes A and stores the results in B. The input arguments ka arid kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > n, and that B contains at least n columns.

Programmer. A. H. Morris.

CALL TIP(A, rn, n, MOVE, k, MDIM)
CALL DTIP(A, m, n, MOVE, k, MDIM)
CALL CTIP(A, m,n,NMOVE,k,MDIM)

TIP is called if A is a real array, DTIP is called if A is a double precision array, and
CTIP is called if A is a complex array.

A is an array of dimension mn which contains an mnqx n matrix to be transposed. The
routine transposes the matrix aind stores the results in A. If na --- t then the arguments
MOVE, k, MI)IM are ignored.

If m / n then k may be any integer. If k , 0 then MOVE is ignored. Otherwise, it'
k > I then MOVE is assumed to be an array of dimension k. MOVE is a storage area for
saving information that may help speed up the transposition pro(ess. If no information is

saved then TIP, i)TI'l, and CTIIP may run 2 10 tines slower than TPIOSE, I)I'IO'S1',, and
CTPIOSE. However, the use of a storage area may or may not actually speed uII) the tranis-
position jproce.-s. This depends entirely on the values of ft and ?I. MI)1 IM is a vri;rahlr tUat
is set by the rou tine. After the routine terminiatte, MI)IM will be the estinmatedl opt ioln I
setting for k for tihe en rrent valoes of rn and I.

Programming. The routines T'I', I)TII', ;aid ('I'll C1mlo)1y 0he s.•,brouti INI'("IT'I
The rotitines we•re written by Norman; Hri-rnr r (DIe)t- of 'Larth arid P lret;lry ,"r,'ii'.

NI.s'lac'hisetts Institute of Technology)) and nrioihfi,,d by A.lH. Nlorris.

195



Reference. Brenner, Norman, "Algorithm 467. Matrix Transposition in Place," Comm.
ACM 10 (1973), pp. 692--694.



COMPUTING ADJOINTS OF COMPLEX MATRICES

If A = (aij) then let A* = (gj) denote the adjcint of A. The following subroutines are
available for computing A*.

CALL CMADJ(m, n, A, ka, B, kb)

A is a complex rn x n matrix and B a complex 2-dimensional array. CMADJ computcs
A* and stores the results in B. The input arguments ka and kb have the following values:

"ka the number of rows in the dimension statement for A in the calling program
kb the number of rows in the dimension statement for B in the calling program

It is assumed that ka > m and kb > n, and that B contains at least n columns.

Remark. CMADJ combines the following operations:
CALL CTrPoSE(m, n, A, ka, B, kh)
CALL CMCONJ(n, rn, B, kb, B, kb)

It is assumed that A and B are different storage areas.

Programmer. A. H. Morris.

CALL CTRANS(ka, n, A)

A is a complex array of dimension ka xn whicb contains an n X n matrix. CTIIANS
computes the adjoint of the nmatrix and stores the results in A. It is assumed that ka > ni.

Programmer. George J. Davis (Georgia St!ate University)

(97



MATRIX ADDITION

The matrix sum C = A + B can be computed by the following subroutines:

CALL MADD(Yn n, A, ka, B, kb, C, kc)

A and B are real m x n matrices and C a real 2-dimensional array. MADD computes
A+ B and stores the results in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc = the numb ,r of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > in, kc > in, and that C contains at least n columns.

The array C may begin in the same location as A or B. If C begins in the samne locatiozi

as A theii it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if C does not begin in the same location as A or B, then it iq assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > in),

Progradmmer. A. H. Morris.

CALL SMADD(n,A, B,C)

A and B are real packed n x n symmetric matrices and C is a real array whose dimension
is equal to or greater than n(n d 1)/2. SMADD computes A + 8, which is also a symmetric
"matrix, and stores the results in packed form in C.

The array C may begin in thl same location as A or B. If'C begins in the same location
as A then the result C wi.l overwrite the input data A. Similarly, B will be overwritten if
C begins in the same location as B. Otherwise, if C does not begin in the same location
as A or B, then it is assurned that the storage area for C does not overlap with the storage
aieas for A ai ý B.

Programmer. A. If. Morris.

CALL DMADD(m,n, A, ka, 13, kb, C, kc)

A and B are double precision Yn x n matrices aud C a doiillc precision 2-diiiensi',nal
array. 1)MADID computes A f I3 and( stores the -esults in C. The arguieiit,,s ka, kb, kc
have the following valies:

ka the rnriber of rows in the dinivision stLat(lciClit for A in the callinig proý,,rna
kb the niiniber of rows Di tlit(I danelnsioi statcIllent for !. iPi the calling program
kc the nimiber of rows in the (lililerisill stwxallwit for (' in the calling progrrn.i

it is, iviw• i.d that, kit rma, kb 711, kA ni, aiid that c< o'ntaii ilat IvLst 71 CohLIIIIII.



The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assumed that, kc -..:. ka. In this case, the result C will overwrite the input
data A. Siinilarly, if C begins in the same location as B then it is assumed that. kc- •,kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that, the
storage i:rea for C does. not overlap with the storage areas for A and B. In this case thcre
is no restriction on kc (other than the -.ustomary restriction that kc >_ n).

Programmer. A. H. Morris.

CALL CMADD(m, n, A, ka, B, kb, C, kc)

A ald B are complex rn x n matrices and C a complex 2-dimensional array. CMADD
(.omputes A -4- B and stores the results in C. The arguments ka, kb, kc have the following

ýa :-the numrnber of rows in the dime,1nsIoD statement for A in the calling program
Vý: the number of rows in the dimension statement for B in the calling program
kc the number of rows in the dimension statement for B in the calling program

It is assumed that ka > rn, kb > n-, kc > rn, and that C contains at least n columns.

The array C may begin in the same location as A or B. If C begins in the same location
a.s A (.hen it '.s assumed that kc = ka. In this case, the result C will overwrite the input
data A Similarly, if C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on ke (other than the customary restriction that kc > ri).

Pirograt- ýier. A. H1. Morris.

S~2(X)



MATRIX SUBTRA.C1 ON

The matrix difference C::- A -- B can be omputed by the following subroutines:

CALL MSUBT(rn,n, A, kz, B,k&,Ckc)

A and B are real m. n matrice:.. ind 6" a real 2-Admnensional ic.--ay. MSUBT cortouLts
A- B and stores the resilts in C. '.iw unput arguments -. kb, kc have the following vaiues:

ka the number ,f rows in the dimensio!. statement ý.)r A in the calling program
kb the numhber of rows in the dimension itatement Pbr B in the calling program
kc the number on rows in the dimension statement f(,T C in the calling program

It is assumed that ka > y, kb > m, kc > rn, and that C contains at lea:st n columns.

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assmuned that kcc :- ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed that k-c 7 kb.
Otherwise, if C does not begin in the same location as A or B. then it is assurned that the
storage area for C does not overlap with the storage areas for A and B. In this case there
irý no restriction on kce (other than the customaxy rest:riction that kc .> r).

Programmer. A. 71 Morris.

CALL SMSUBT(n, A, B, C)

A and B hre real packed n x n symme tric matrices wnd C is a real array wlire mension
is, equal to or greater than n(It + 0)/2. SMSUBT computes A -B, wh~ich is &J(5 a syrmncrt:rc
nmatrix, and stores the results in packcd lorm in C.

The array C may Legin in the 3anie location as A or B-. If C.. begiýýs in 2'he same location
as A then the result C will overwrite the input data A. Similarly, B wilt be overwritt(t[ if
O begins in the same location as B, Other twise, if C dces nic, bc.•in in t0 9ame location
as A or B, then it is assumed that the storage areia for C does not overlap with the storage
areas for A and B.

Programmer. A. It. Morris.

CALL. 0•l SU BT(m, n A, ka, B, .kb, C, ic)

A and B are ,,c !-et\" p.,mse si~o w x 1 1 r.atcrccw arnd C' a du.Ariole precisioi 2-dimeý:'io,.:f
array. DMSIJBT .on.pt, cs A -- 3 and slore,4 the reitults i;: C. '1 ',e argi.kuevft k,.., kb, kc
have the falluqwig ,'aloeý

ka . the r "im r *-f r.ov- i thl • • • iýsiori , 4aeriient f1w A Am i -, t id[ i:ng pr ,r. ,,
kb 7I the iaiombn oi rwv: i tOw d • rm n sio, st;•,t .ý,lw t for 1 3 tIie .-:aliIg p;rogl a ,i
kc- the ire rmnLe,,:- kJf row • i t , d' ( avn '' .i forr .:e, (e" 1:! the ca' i 'g progrmni

It' i assumed thi ka > , ,' ' ,' ' , -mad that C. I olaiwrs ai, h1aLt n celunnn.

7!)



The array C may begin in the same location as A or B. If C begirs in the samle l,,cati
as A then it is assumed that kc -- ka. In this case, the result C will overwrite th-ý input
data A. Similarly, if C begins in the same location as U then it is assumed that kc - kb.
Otherwise, if C does riot begin in the same location as A or B, then it is assumed that the
storage area for C decs not overlap with the storage ares for A and B. In this case there
is no re-stricti.)n on kc (other than the customary restriction that kc > rn).

Progr.irmer. A. 11. Morris.

CALL CMSUBT(rn,^A,ka,B,kb,C,kc)

A and B are complex rn x n matrices and C a comnpiex 2-dimensional array. CMSUI3T
computes A - B and stores the results in C. The input arguments ka, kb, kc have the
following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
kc -- the number of rows in the dimension statement for C in the calling program

It is assumed that ka > rn, kb > r, kc "> m, and that C has at least n colunirs.

The array C may begin in the same location as A or B. If C begins in the same iocation
as A thea it, is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if G begins in the same location as B then it is assumed that kc - kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > m).

Programnier. A. H. Morris.

202



MATRIX MULTIPLICATION

The matrix product C := AB may be computed by the subroutines MTMS, DMTMS,
CMTMS or MPROD, DMPROD, CMPROD. MTMS, DMTMS, and CMTMS can be used
if the storage area for C does not overlap with the itorage areas for A and B. Otherwise,
if the components of C axe to be stored in the stcrage area for A or B, then MPROD,
DMPROD, or CMPROD must be used.

CALL MT'MS(tn, n, f',A, ka, B, kb, C, kc)
CALL DMTMS(vn, n, , A, ka, B, kb, C, lc)
CALL CMTMS(m, n, t, A, ka, B, kb, C, kc)

SMTMS is used if A and B are real rmatrices awid C a real array, DMTMS is used if A
wic. B a•e double precision matrices and C a double precisicri array, and CMTMS is used
if A and B are complex matrices and C a complex array.

A is a matrix having Yn rows and n columns, B a matrix having n rows and t columns,
and C a 2-dimensional array. The routine cornputes the product AB and stores the results
in C. The input arguments ka, kb, kc have the following values:

ka the number of rows in the dimension statement for A in the calling program
kb the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

It is assumed that ka > rn, kb > n, kc > m, and that C contains at least f columns.

Remark. It is assumed that the storage area for C is separate from the storage areas for A
aand B.

Programmer. A. Ht. Morris.

CALL. MPROD(tn, n, ,A, ka, B, kbC, ke,WK)
CALL DMPROD(m, n,e, A, ka, B, ký,C, kc,WK)
CALL CMPROD(m, n, ., A, ka, B, kb, C, kc,WK)

MPROD is used if A and B are real matrices anid C and WK are real arrays, DMPROD
is used if A and 1? are double precision matrices and C and WK are double precision arrays,
and CMIPROD is useo if A and B are complex mnatrices and C and WK are complex arrays.

A is a matrix having m rows and n columns, B a matrix having n rows and t columns,
and C a 2.-dimensional array. The routine comnputies the product AB and stores the results
in C. The input argurneits ka, kb, kc ha~e the following values:

ka . the number of rows in the dimension statement for A in the calling program
kb - the narrber of rows in the, diminnsion statement for 13 in the calling program
Sk e thi number of rnw,,i ini tihe dimnension statement for C irn the calling prograrn

It is aussijried that ku > "n, kb n, kc r in, and that C containis at least F columns.

203



WK is an array that serves as a temporary storage area. The matrix C may begin in
the same location as A or .B. If C begins in the same location as A, then it is assumed
that kc = ka and that the dimension of WK is equal to or greater than t. In this case, the
result C will overwrite the input data A. Similarly, if C begins in the same location as B
then it is assumed that kc = kb and that the dimension of WK is equal to or greater than
tn. Otherwise, if C does not begin in the same location as A cr B, then it is assumed that
the storage area for C does not overlap with the storage areas for A and B. In this case,
the array WK is not referenced.

Remxk. If C begins in the same location as A or B, then it is assumed that the storage
areas for A and B are distinct storage areas.

Programming. MPROD employs the subroutines RLOC and YCHG, DMPROD employs
the subroutines DLOC and DYCHG, and CMPROD employs the subroutines CLOC and
CYCHG. The routines were written by A. H. Morris.

204



PRODUCT OF A PACKED SYMMETRIC MATRIX AND A VECTOR

Let A denote a packed symmetric matrix of order n and x a column vector of dimension
n where n > 1. Then the following subroutines are available for computing the product Ax.

CALL SVPRD(A,n,x,y)
CALL DSVPRD(A,n,xy)

The argument y is an array of dimension n. SVPRD is called when A,x,y are real
arrays and DSVPRD is called when A,x,y are double precision arrays. When either of
these routines is called, Ax is computed and stored in y.

Programmer. A. H. Morris.

205



TRANSPOSE MATRIX PRODUCTS

If At denotes the transpose of A, then the matrix product C =z AtB can be computed
by the following subroutine:

CALL TMPROD(m, n, i, A, ka, B, kb, C, kc)

,A is a real matrix having m rows and n columns, B a real matrix having in rows and f
columns, and C a real 2-dimensional array. TMPROD computes AtB and stores the results
in C. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program
k5 = the number of rows in the dimension statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program

Here it is assumed that ka > m, kb > m, kc > n, and that C conta;ns at least t columns.
Also it is assumed that the storage area for C does not overlap with the storage areas for
A and B.

Note. All inner products Z akibkj are computed in double precision and the results stored
k

in single precision.

Programmer. A. H. Morris.

207



SYMMETRIC MATRIX PRODUCTS

If At denotes the transpose of A, then the matrix product AtA can be computed and
its packed form stored in the array 1) by the following subroutine:

CALL SMPROD(rn, n, A, ka, B)

A is a real m x n matrix and B a real array whose dimension is equal to or greater
than n(n + 1)/2. SMPROD computes AtA and stores its packed form in B. The input
argument Ica has the following value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka > m.

Note. All inner products F akiakj are computed in double precision and the results stored
k

in single precision.

Programmer. A. ff. Morris.

2 09



KRONECKER PRODUCT OF MATRICES

If A is an m x r, rnmtrix and B a k x f matrix, then the Kronecker product A 0 B is
defined by

A®B (liB "

B ... amr B

From this definition we ob'ýain:

(1) (Trarispose Equality) (A ® B)t= A'® B'.
(2) (A ® B) ® E -= A ® (B ® E) for any matrix E.
(3) (A® B)(C 0 D) =- (AC)® (BD) ii C is a matrix having n rows and D a inatrix having

f rows.

If A and B are complex square matrices of orders Yr. and k respectively, then from the Jordan
canonical forms of A end B the determinant equality det (A® B) - (det A)k (det B)"' can
be verified. Moreover, if A and B are nonsingular then (A,® B)-ý' =. A-' & B-' frorr. (3).

The following subroutines are available for computing C = A0 B.

CALL KPRC)(A, ka, n, n, B, kb, k,?, C, kc)
CAL.L DKPROD(A, ka,m, n, B, kb, k, , C, kc)
CA LL CKPROD(A, ka, m,n, B, kb, k,f,C, kc)

It is assumed that A is an m x n matrix, B a k x £ matrix, and C a 2-dimensional
array. KPROD is used if A, BC ate real arrays, DKPROD is used if A, B,C are double
precision arrays, and CKPROD is used if A, B,C are complex arrays. When the routine is
called, A 0 B is computed and stcred in C.

The arguments ka, kb, and kc ha-• the following values:
ka the number of rows in the lirnensioim statement for A in the calling progiam
kb the number of rows in the dimensioi, statement for, B in the calling program
ckc the number of rows in the dimension statement for C in the calling program

It is assumed that ka > m, kb > k, ic > ink, and that C contaýýis at least ne columns.

Remark. It is assumed that the array C does not overlap with ,; or B.

Programmer. A. H. Morris.

211



RANK OF A REAL, MATRIX

The following subroutines are available for obtaining lower and upper bounds for the
rank of real matrix.

CALL RNK(A, ka, m, n,RERR,AERR,k, ko,WK,IWK)
CALL DRNK(A, ks, m, n,RERR,AERR,k, koWK,IWK)

A and WK are real arrays and RERR and AERR real values if RNK is used. .4 and
WK are double precision arrays and RERR and AERR double precision values if DRNK is
used.

A is an rn x n matrix where m,n > 1, and ka is the number of rows in the dimension
statement for A in the calling prog.,arn. It is required that ka > m. A is destroyed by the
routine.

RERR is an argument which specifies that relative accuracy of the data in A. If it
is estinidcd '.hat the elements in A are accurate to u' significant digits then one may set
RERR = 10-14. It is iequired that RERR > 0. If RERR = 0 then it is assumed that the
elements in A are accurate to machine precision.

AERR is an argument which specifics the maximum absolute uncertainty of the data
in A. For example, if it, is estimated that the elements aij of A have the relative accuracy
RERR except when Iajjl < 10-30, then one may set AERR = 10-3 0 . It is required that
AERR > 0.

The arguments k and k0 are variables. When RNK or DRNK is called, the rank of A
is bound(.d from above and below using the tolerances RERR and AERR. The variable k
is set to the upper bound and k,0 to the lower bund.

WK is an array of dimensio.TA 5. mir{m, n} or larger, and IWK ark array of dimension
m + n or larger. WK and IWK are work spaces for the routines.

Remarke. Normally k0 =- k, ia which case k is the rank of A. However, if k0 4- k then it
iq recommended that the least squares routine IIFTI2 or I)!IFT2 be used for obtaining the
most appropriate value for ',he rank. When HFTI2 or DIIF'3 12 is used, B may be selected
to bk. the rn x in identity mnatri:., aiid the size of the elements of the solution matrix X
shouid be considered (in additicn to the values of the residual norms). Frequently, the lower
bound ko will be found to be the most appropriate value for the rank.

Programming. RNK employs the subr utines UIILS, UllUS, ISWAIP, SSWAP, SAXIY,
SSCAL a id functions SDOT, SNRM2, ISAMAX, SPMPAR, YPMIPAR. I)RNK employs the
subroutines DUIULS, DUl iilS, !'SWAt', DSWAP, I)AXPY, DSCAL and functions l)DO',
V NWM2, I)AMAX, DPMIPAIH, li'MPAR. IhNK aid I)lNK wcre written by A. It. Morris,
anid U I, ,S, U] 1US. DUI I LS Ull ;S, were written by r. Mant;,ulme (Los Alanios).

Reference. MariteuftiW, T'I, An Interval Analysis Approach to Rank Determlfination

213



in Linear Least Squares Problems, Report SAND 80-0655, Sandia Laboratories, Albu-
querque, New Mexico, 1980.

2_1-



INVERTING GENERAL REAL MATRICES AND SOLVING
GENERAL SYSTEMS OF REAL LINEAR EQUATIONS

The subroutines CROUT, KROUT, MSLV, MSLV1, NPIVOT, DMSLV, and DMSLV1
are available for inverting real matrices A and solving systems of real linear equations
AX = B. CROUT, KROUT, MSLV, ,ISLV1, and NPIVOT solve single precision problems,
and DMSLV and DMSLV1 solve double precision problems.

All the routines except NPIVOT are general-purpose, employing partial pivot Gauss
elimination. NPIVOT can only occasionally be used since it uses Gauss-Jordan elimination
with no pivot search. Normally CRO ýfT and KROUT produce the same results, and MSLV
and MSLV1 produce the same resu>,s. Since many of the calculations are performed in
double precision in CROUT and KR _UT, these subroutines will be slower than MSLV and
MSLV1, but they may be more acc:-frate.

CALL CROUT(MO, n, ,n, A, ka, B, kb, D, INDEX,TEMP)

A is a real matrix of order n wherc n > 1. If MO = 0 then the inverse of A is computed
and stored in A. If MO - 0 then the iverse is not computed.

The argument rn is a)! integer. If m > 1 then B is a real matrix having n rows and ra

columns. In this case the inatrix eqi Ltion AX = B is solved and the solution X is stored
in B. If rn < 0 then there are no eqiations to be solved. In this case the argument B is
ignored.

The argument ka is the .,uriber of rows in the dimension statement for A n the
calling program, arid kb t,!- nt m,iber of rows in the dimension statement for B in the calling
program, It m -: 0 then the argument kb is ignored.

D is a real variable. When CROUT is called, D is assigned the vahie det(A) where
det(A) is the determiina n* of A. If D is found to have the value 0 then the routine iiin(,di-
ately terminates.

INI)EX is an arra y of dtimension n I or larger that, is u•id by the rontine for keepilig,
trrack of the row inter, hanges that are made. If MO / 0 then IND E X is ignored.

Tl't, ) U is a real .rray of dinieision n or larger that is a work sF; Uwe for the rotrtlilw.. If
MO / 0 then T'EMiP i ign)ored.

Remarks.

(1) K IM UT shoulI d ') used in .atad I of ( I ()T 'I' when the d( trriIii•a•t 1) is tiot )L iivc, iL

(1 i (Irtlow or overt](ow i11 thei c njc I lII oi i of I) n11ay (a Ise (0 l )t,'W ' to() t ,rhioIII. t Vt , Ii;i-

turely.
(2) 'lhvi matrix A is. (es'stroy e'

2 1



Algorithm. The Crout procedure is used. All inner products are computed in double
precision and the results returned in sing~e precision. Partial pivoting is performed.

Programming. GROUT calls the subroutine CROUTO. These routines were written by
A. H. Morris.

CALL KROUT(MO, ni, m, A, ka, B, kb,IERR,INDEX,TrEmP)

A is a real matrix of order n where n > 1. If MO =0 then the inverse of A is computed
and stored in .4. If MO /- 0 then the inverie is niot computed.

The argument m is an integer. If m > 1 then B is a real matrix having n rows and m
columns. In this case the matrix equation AX =B is solved and the solution X is stored
in B. If tn < 0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the number of rows iii the dimension statement for A in thE
calling program, and kb the number of rows in the dimension statement for B in the calling
program. If rn < 0 then the argument kb is ignored.

INDEX is an array of dimension n -- 1 or larger that is used by the routine for keeping
track of the row interchanges that are made. If MO 54 0 then INDEX is ignored.

TEMP- is a reied array of dimension n or larger that is a work space for the routine. If
MO $0 then TEMP is ignored.

Error Return. iiH.JRR is a variable that reports the status of the results. When the routine
termrinates WIERR has one of the following values:

11EA11 0 The requested results were obtained.
IERR, 1 - Either irt, ka, or kb is Incorrect. In this case, A and 11 have riot,

been modified.
IE1RRI k The k11' columin of A li as been reduced to a± coluinri containing

oiyzeros.

When an error is detected, the routn I e Itin !rediately terminirates.

Remark. TIhe inatrix A is destroyed.

Algorithm. The ( POUT procedure is lisud1 All Inner produllcts ae c(hitipntedh In (fo~l)l('

precision and: the resuilts returned )ii single jprt~cisiori Partial pivoiting is pe~rformied.

Programming. K{ ( M1'1 c alls the subroirtiMe KWl~) IITO. 'l'lie roult~ines4 were writ!,i kii

A. It. Morris.

CALL. NPIVOT(ti, i,& ,A, ka, H?, k4, 1), !Lltl)

A is it real zinatrix of ordeýr it w.here Yi , 1 Wheii NPI'VOTI.,)'i called the Hinvr.s( o)I A i.s

cOmnIoI~t#e aw~l sh rctd in A.



The argument rn is an integer. If mn > I then B is a real matrix having ni rows and rtn
columns. In this case the matrix equation AX = B is solved and the solution X is stored
in 13. If tn < 0 then there are no equations to be solved. In this c-ase the argument B is
ignored.

The argument ka is the number of rows in the dimension statement for A in the
calling program, arid kb the number of rows in the dimensio statement for B in the Calling
program. If rn < 0 then kb is ignored.

D is a real variable. On input D must. be assigned a value by the user. If the input
value is r, then when NPIVOT terminates D =- Td where d is the detcrminant of A.

Error Retu~rn IERR is an integer variable. If inversion is successful then IERR is assigned
the value 0. Otherwise, IER.R = 1. if NPIVOT cannot invert the matr'x.

Algorithm, The Gauss-Jordaii procedure is used. However, no pivot searching is done.
NPIVOT terminates (with IERR set to 1) whenever a zero pivot element is encountered.

Remarks. Since pivot search is frequently needed to invert a mnatrix, and since pivot search
is normally required to obtain accurate results, NPIVOT should not be used except on
tL~ose occasions when pivot search is known to be super flosous.

Programmer. A. H. Morris.

CALL MSLV(MIO, n, mn,.4, ka, B, kb, D, RCONDIER11;IWK1',WK)
CALL DMSLV(MO, n, m, A, ka, ýB, kb, D, RCOND,IERRIWK,WK)

A is a matrix of order ri where ni > 1. If MO 1--- 0 Lhen the inverse of A is comnputed
and stored in A. If MO /- 0 then the inverse is not computed.

The argument rni Is an integer. If mn > I then B is a ma~trix having n rows and mn
columnns. In this case the matrix equation AX ýýB is solved and the solution X is stored
in 13. If rn .< 0 then there are no equations to be solved. In this case the argurrient B is
igixored.

Thei argumen`rt ka is the number of rows in the dimiension statemrent for A inI the
caliing 1.rograni, and kb the number of rows in thie dimension statement for d3 In the callilig
program. If vra < (0 then the argument ktc is ignored.

D is an array of dimerision 2. When either routine is called the determinant det( A) of

the mniarix A Is compuited. J" dvý( A) :d. 10" wherf- I < Id (J 1 and k an Integer, thien dI
is stored in1 1)(1) and the exponent k Is stored iii floating point formt inI D)(2).

IWONOI is a variable. When elthier m( ut'zne is -l4 the roi, ii~e mrakes an (ti trriAt'(' C
of he ondtin rurntrof the( mxatrix A (rr!ti vv to the Li niorn). VCOND ) s avssignud

die Valuie I /r

I W' V~ an arr;,y of diiiiti'O2Ui n~ or latrger i h~it is used hy the-it otiries ftur k, pimg t~r;!.l

217



oif the row interchaiigesi that are made. WK is an array of dimension n or larger that is
used as a work space.

Remarks.

(1) If MSLV is called then it is assumed that A and B are real matrices, D and WK real
arrays, and RCOND a real variable. Otherwise, if DMSLV is called then it is assumed
that A and B are double precision matrices, D and WK double precision arrays, and
RCOND a double nrecision variable.

(2) RCOND satisfies 0 < RCOND < 1. If RCOND Pt; 10 then one can expect the results
to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if MSIV is used to invert a matrix in the 14 digit CDC sing!c pr9cision
arithmetic and RCOND = .4E--3, then the zomputed coefficients of the inverse matrix
should normally be accurate to about 11 digits, In general, RCOND characterizes how
well or poorly conditioned the problem is. If RCOND ; 1 then one should expect the
results to be almost as accurate as the original data A. Ho,-ver, if R.COND P 0 then
one should expect the results to be nonsense.

(3) The matrix A is destroyed.

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that 1 +
RCOND > 1, then IERR is set to 0 and the problem is solved. Otherwise, if 1+RCOND = I
then IERR is set to 1 and the routine terminates. In this case, A will have been destroyed
but B will not have been modified. Also the deterininant will not have been computed.

Algorithm. The partial pivot Gauss elimninatien procedure is used.

Programming. MSLV and DMSLV are driver routines for the LINPACK subroutines
SGECO, SGEFA, SGESL, SGEDI and DGECO, DGEFA, DGESL, DGEDI. The subrou-
tines were coded by Cleve Moler (University of New Mexico). The subroutines employ the
vector routines SSWAP, SDOT, SSCAL, SAXPY, SASUM, ISAMAX and DSWAP, DDOT,
DSCAL, DAXPY, DASUM, IDAMAX.

References.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart. G. W., LINPACK Users'
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

(2) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. If., "An Estimate for the
Condition Number of a Matrix," SIAM Journal of Numerical Analysis 16 (1979),
pp. 368--375.

CALL MSLVI(MO,n, in, A, ka, B, kb,IERR,IWK,WK)
CALL DMSLV1(MOn, rn, A, ka, i, kb,IERR,IWK,WK)

A is a matrix -f order n where n > 1. IfMO- 0 then the inverse of A i.; computed
and stored in A. If MO / 0 then the inverse is not computied,

The argument in is ati integer. If nim > i then 1B is a niatrix having 71 rows :-lI(l
ra colunins. hi this civ:e die matrix equation AX 1? is solved ari tdhe solutioti X
is st,)red in 13 If ma < () then there are no equation.,s to be solved. In this case the



argumnent B is ignored.

The argument ka is the number of rows in the dimension statemrenst for A in tlhe
calling program, and kb the number of rows in the dimension statemnelt fo- B ill the
calling progiarn. If m •< 0 then the argument kb is ignored.

IWK is an array of 'dimension. rt or larger that is used by the routines for keeping
track of the row interchanges that are made. WK is an array of dimension n or larger
that is used for a work space. If MO /- 0 then WK is ignored.

F.emarks.

() If M/SLV1 is called then it is assumed that A and B are real matrices and WK r
real array. Otherwise, if DMSLV1 is called then it is assumned that A ani B are
double precision matrices and WK a double precision array.

(2) The matrix A is destroyed.

Error Return. IE RR is a variable that reports the status of the results, When the routine
terminates IERII has one of the following values:

IERR 0 The requested results 'were obtained.
IERR ---1 Either n, ka, or kb is incorrect. In this case, A and B have not been

modified.
IERRt A. 'he kOh column of A has been reduced to a column containing only

zeros.

Algorithm. The partial pivot Gauss elimination procedure is used.

Programming. MSIV1 and DMSLV I are driver' routines for the UINPACK subroutines SGEFA,
SGESL, SGED1 and DGEFA, DG'ESL, DGEDI. The subroutines were coded by Cleve Moler
(University of New Mexico). The su~broutines employ the vector routines SSWAP. SDOT, SS-
CAL, SAXPY, SASUMk, ISAMAX and D)SWAP, DDOT, DSCAL, DAXPY, DASUM, IDAMAX.

References.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LUNPACK Users' Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1979.

(2) Cline, A. K., Moler, C. B., Stewart, G W., arid WilkiDSOD, LJ H., "An Estimrate for
the Condition Number of a M~atrix," SIAM Journal of Numerical Ai alysis 16 (1979)),
pp. 368--375.

2 19



SOLUTION OF REAL EQUATIONS WITH ITERATIVP IMPROVEMENT

Given a real ri 7i n matrix A and column vector b. The foflowin:, siibroutine is av.fl,•Ie
for :solving the equation Ax = 6. Iterativc in.•provemient. :s p.rfolrcied ,.0o Ite o th luiion
x to machine accuracy,

CALL 3LVMP(MOCn, Ai, o.,b,X.WK,,IWK,IND)

MO is an input argument which specifies f SLVMP i9 being called for iike first time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional real array of dimension ka x n containing the rfatrix A, b a, real
vector of dime.nsion ji, and X a real array of dimension n. When SLVMIt is czaled, A,7- ,b
is solved and the solution stored in X. A and b are not modified by the routine.

WK is a real array of dimen.ion n2 +n or larger, and IWK an integer array of dimension
n or larger. These arrays are for internal use by the routine. On an ivitial call to SLVMP,
Sk LU decomposition is obtained for A and stored in WK and IWK. Then the equation
Ax =- b is solved.

IND is an integer variable that reports the status of the results. On an initial cal' to
SLVMP, when the routine terminates IND has one of the following iva!ues:

IND = 0 The solution X was obtained to machine accu, cy.
IND 1= X was obtained, but not to machine accuracy.
IND = -k The kth column of A was reduced to a column containing only

zeros.

When IND = -k, no solution is obtained.

After an initial call to SLVMP, if IND 0 or 1 on output, then the routine may be
called to solve a now set of equations Ax = without having to redecompose the matrix
A. In this case, the input argument MO m.ty be sAt to any n.oczero value. When MO :/ 0
it is assumed that only b has been modified. The routine employs the LU decornpoz-ition
obtained on the initial call to SIYMP to solve the new set of Nquations Ax := b. On olutput
X will contain the solution to the new s.: :, J equations. As before, A and b are not iiodifie,..
by the routine.

If SLVMP is recalled with 1MO) / 0, tben when t1he routire terminates IND ha3 oil, of
the following values:

IN[) (0 The solutiot_ X was obtained to machine ý,ccuracy.
INI) I X was obtained, but not to machine accuracy.

Programming. SI, AIP caiIs t hi, viiil'rouhtr in LU IMP. These roiutines were writt.,ii by A. }1
Morris. Thfv subroutiries: MC( () I' Y, I;iA, S(G LSL, SSCAL,, SA X PY and funt•tiino n:SI -.
PAR, Sl)(, T, ISAMAX are alsre I pi yed.



SOLUT4ON OF ALMOSi BLOCK DIAGONAL SYSTEMS
OF LINEAR EQUATIONS

Consider a system Ax - b of line~r~ equations where A is an n . ni matrix having the
block structure

-J [- -0

.4 [A37

0
Here it is assumed that Ac is an rn x ci matrix for i 1, .. . rn, and that Aj and Ain± omay

m
have 6i columns in common for i < m, Th'lus \~r :n and block A, begins in columrn

i_: t--1

Z_' (Ck -6 'k) 4 1 for i > 2. It is .Aso assumed that three successive blocks A,- 1 , Aj, A,+i

do riot haive colurMns in com. mon. Thus 6,_ + 6j < ci for i = 2, ... n -- 1. If mr > 2 then
the following subroutines are available for solving Ax =- b.

CALL ARCECO(nS,MTR,m ,IWK,b,XIND)

V"
E is an array of dimension 7 r,,ci or larger. On iniput S contains the blocks A;., ... , Am

of the rnatrax A. The blocks are stored in sequence. A1 is stored in the first r1 c1 locations
of S, A2 is stored in the next r2,?2 locations, etc. For each Ai, the columns of Ai are stored
in sequence in S,

Example.

a ' .1 a12 a1 3  0
0a ', (2 3 a 3 ,

ff A a.12 (~233 a34]
a~~ 42 4i &4.

0 0 o 0 o

th'a u• 5, t'o' 3, J .. 2, and 62 0. AIso, 5 is an iirray corntaining the data a61 , a 21,
a1 "2,(1%,'2, ()t13,a ,j a1 3 •(;t 2,1'42, a 3-3,a4"243 a 34 , a44 a55,.

M'rT{ is an inte(ger miatrix of dimension 3 x mn containing the block informatioin of the
matrix., A4:

J M 'I 'J t ( 1 , , ) .. .. i ( t 1 , . . , t

c( )1- ; , ( 1 : i, ,

C'u t crmtnrvc , , routim! sets N/1T(3, m)

223
,K•>,



X i8i an array of dimension n or larger. When ARCEICO is called, A is decomposed ard
then the equations Ax = b are solved. The decompositon of A is stored in S, overwriting
the initial input data A, and the solution x is stored in X. The vector b is destroyed by the
routine.

IWK is an array of dimriension n or larger for internal use by the routine. The pivot
iirdices involved in the decomposition of A are stored in IWK.

IND is a variable that reports the status of the results. When ARCECO terminates,
IND has one of the following values:

IND = 0 The system of equations was solved.
IND = I (Input Error) Either n, mr, or MTR is incorrect, or three successive

blocks A,- 1, Ai, Aj+I of A have columns in common.
IND =--1 A is a singular matrix. The equations cannot be solved.

Usage. After a call to ARCECO, if IND = 0 on output then the subroutine ARCESI. (see
below) may be called to solve a new set of equations Ax = b without having to redecompose
the matrix A. ARCESL employs the decomposition of A obtained by ARCECO.

Algorithm. A modification of the alternate row and column elimination procedure by Varah
is used.

Programming. ARCECO employs the routines ARCEDC, ARCEPR, ARCEPC, ARCESL,
ARCEFS, ARCEFM, ARCEFE, ARCEBS, ARCEBM, and ARCEBE. The3e routines were
developed by J. C. Diaz (Mobil Research and Development Corp., Farmers Branch, Texas),
G. Fairweather (University of Kentucky), and P. Keast (University of Toronto).

Reference. Diaz, J. C., Fairweather, G., and Keast, P., "FORTRAN Packages for Solving
Certain Almost Block Diagonal Linear Systems by Modified Alternate Row and Column
Elimination," ACM 7Tran8. Math Software 9 (1983), pp. 358-375.

CALL ARCESL(S,MTR,m,IWK,b,X)

The argument m is the number of blocks A1, ... ,A, in the matrix A. ARCESL
may be used only when IND = 0 on output from ARCECO. In this case, S contains
the decomposition of A obtained by ARCECO and IWK contains the pivot indices of the
decomposition. The argument b is a vector of dimension n, and X an array of dimension
tn or larger. When ARCESL is called, the equations Ax = b are solved and the solution
stored in X. The vector b is destroyed by the routine.

Programrmiing. ARCESL calls the subroutines ARCEFS, ARCEFM, ARCEFE, ARCEBS,
ARCEBM, and ARCEBE. These routines were developed by J. C. Diaz (Mobil Research
and Development Corp.,Farmers Branch, Texas), G. Fairweather (University of Kentucky),
and P. Keast (University of T( onto).

224



SOLUTION OF ALMOST BLOCK TRIDIAGONAL SYSTEMS
OF LINEAR EQUATIONS

Consider a system Tx =2 b of linear equation, where T is a square matrix having tile
block structureSA 1  B1  01

("2 A 2  B2 0
C3 A3  B3

T =

0.*
C:-_ An-- B. ,1

Bn Cn A.

Here it is assumed that Ak, Bk,Ck (k =, .. ,n) are mr x m matrices, and that b is a
column vector of dimension mnn. If ? 4 4 thea w following subroutine is available for
solving Tx - b.

CALL B'TSLV(MO,ti, n, A, 1?,C, X,IP,IND)

MO is an input argument which specifies if BTSLV is being called for the first tiuie.
On an initial call, MO ... 0 and we have the following setup:

A, B, C are 3 dimensional arrays of dimension mx rn x n where the (t,j")--th elements
of the matrices Ak, [lk,Ck are stored in A(ij,k), B(i,j,k), C(i,j,k) for k = 1,..,
"A, B,C are modified hw the routi",,.

X is an array f ,riznesioýr rn or larger. On input, the vector b is stored in X. When
BTSLV is called, 0'a solu.6io x is obtained for Tz = b then the solution is stored in X.

IP is an array of dimension mn or larger that is used by the routine ,,. listing the row
"interchanges that are made.

On an initial call to the routine, a block 1.11 decomposition is performed on T, the
results of which are stored in A, BC. This decornpositibn involves row interchanges only
within the diagonal blocks Ak; i.e., no row interchangc:t are performed between rows of
different blocks Ak and At. Thus it may occur that the decomposition of a nonsingular
matrix T cannot be completed. IND is a variable that reports the status of the results.
When BTSLV terminates, IND has one of the following values:

IND = 0 7' was decomposed and the equations Tx = b solved.
IND =..1 (Input Error) Either rn < 1 or ni < 4.
IND = k The decomposition process failed in the kt" diagonal block. The

routine cannot solve the equations in thei[ present form.

After an initial call to BITSLV, if INI) () then th- routine may be recalled with MO
0 0 and a new b. When MO / 0, then it, is assum(-t Ihat A, B, C, and It' have not beer-

irodified and that, X contains the new b. Tb e routint retrieves from AI, B, C, and I1' til
block decomposition that was obtain(ed on0 the in itial all ito •'TISIV, 'ld solves the nre',

225



system of equations Tx = b. The solution is stored in X. In this case, INI) is not referenced
by the routine.

Programming. BTSLV employs the subroutines DECBT, SOLBT, DEC, and SOL. These
subroutines were written by Alan C. Hindmarsh (Lawrence Livermore Laboratory).

Reference. Hlindmarsh, A. C., Solution of Block-Tridiagonal Systems of Linear Al.e-

braic Equations, Report UCID-30150, Lawrence Livermore Laboratory, 1977.

22G;



iNVERTING SYMMETRIC REAL MATRICES AND SOLVING
SSYMMETRIC SYSTEMS OF REAL LINEAR EQUATIONS

The subroutine,. SMSLV and I)SMSLV are available for inverting symmetric real matri-
ces A and solving systems of real linear equations AX'= B. SMSLV handles single precision
problems and DSMSLV handles double precision problems, it is assurned that the matrix
A is in packed form. If the inverse of A is computed, then the verse is a symmetric matrix
which will be stored in packed form.

Note. All eigenvalues of a real symmetric matrix A are real. The inertia of A is the ordered
triple (7', v, f) where A- i3 the number of' positive eigenvalues of A, v the number of negative
eigenvalues of A, and S the number of aero eigenvalues of A. Thus, if n is the order of A
then 7r -+- v + ý = n. Also A is positive definite (positive semi-definite, negative definite,
negative semi-definite) if •r : n (v = 0, v 1= n, -= 0).

CALL SMSLV(M(0 n, ,, A, B, kb, D,i .• ;t NI),INER`r,IEdIZ,IPVT,WK)
CALL DSMSLV(N.. ,n, 1, A, B, kb, D,RCOND,INERT,IERR,IPVT,WK)

A is aln array of dimension n(n + 1)/2 containing the elements of a packed n x n
symmetric matrix where n > 1. If MO = 0 then the inverse of A is computed and stored
in A in packed form. If MO ýL 0 then the inverse of A is not computed.

The argument rn is an integer. If m > 1 then B is a matrix having n rows ard m
columns. In this case AX -- B is solved and the solution X is stored in B. If rn < C then
there are no equations to be solved. In this casLc B is ignored.

The argument kb is the number of rows in the dimension statement, for B in the calling
program. If m <' 0 1 en kb is ignored.

P is an array oi dimension 2. When either routine is called thn determinant det(A) of
the miatrix A is col ipued. If det(A) d l 0 k where I < Idl < 13 and k an integer, then d
is stored in D(1) and the exponent k i. stored in floating point forim in D(2),

RCONL) is a variable. When eitlu routine is called, the rounine makes an estlimate c
of the condition number of the matrix A (rei:Atiwve to the L, norin). RCOND is assigned
the value I/c.

INERT'I is art inut.ger array of dimension 3. W.i,. eiher rotdine is -i 'd e iner'i
of the inia iax A is co!nputed IN ER'I( I) is set to ti ntumzber of po> itive , cige v e!,s• of A,
IN tlI'l'(2) Ii,ýlet t he iztri ,r of negattive cigenva• : ; iI id I NI'I KIT(3) is ., t,' t Ii 1 m4111 ,wr

Z f ~ ce~ I ray of;iirsu ri~ t 1( I v I
.11 'V 'P )ý ;i 1 , |,, ;.1" 1,4~Y• of ( i I nc sl,"' )I ?, ()r Lru .! ýitt 1'ýý 11scd I• I} , routhres• 1, i

li ,pi.g ( k "I he row arid c•huim ilterhanigt•s t': at trý Ale N I.] 1 I1..•

Y1 l; 1ýg ! i "hat 1(1ýw .1i d' "vork .

227



Remarks.

(1) If SMSLV is called then it is assumed that A and B are real matrices, D and WK are
real arrays, arid RCOND i:* a real variable. Otherwise, if DSMSIN is called then it is
assumed that A and B are double precision matrices, D and WK are double precision
arrays, and RCOND is a double precision variable.

(2) RCOND satisfies 0 < RCOND < 1. If RCOND ;., 10-- then one can expect the reýsults
to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if SMSLV is used to invert a matrix in the 14 digit CDC single precision
arithmetic and RCOND --: .4E-3, then the computed coefficients of the inverse matrix
should normally be accurate to about 11 digits. In general, RCOND characterizes how
well or poo)rly conditioned the problem is. If RCOND ; 1 then one should expect the
results to be almost as accurate a&, the criginal data A. However, if RCOND ;-z 0 then

ne should expect the results to be nonsense.

(3) T'he data in A i• destroyed.

Error Return, IERR is an intege-:r variable. If RCOND is sufficiently large so that I +
RCOND > 1, then IERR is set to 0 and the problem is solved. Otherwise, if 1 -+- RCOND
= 1 then IERR is set to 1 and the routine terminates. In this case, A will have been de-
scroyed but B will not have been modified. Also the determinant and inertia will riot havw
been (:omputed.

Algorithm. Toe diagonad pivoting factorization procedure is used. Partial pivoting is
employed.

Precision. SMSLV and the more general routine MSLV have approximately the same ac-
curacy, and DSMSLV and DMSLV hive approximately the same accuracy.

Efficiency. Zvc! though SMSLV performs approximately half the number of multiplica-
tioris and divisions as MSLV, normally one can expect SMSLV to take aý,out 70-80% of the
time required by MSLV Ilowevei, for sparse matricet SMSIN may be 20-30% slower than
MSIV. Similar commerits hold for DSMSIV and DMSLV.

Programming. ýiMSLV and I)SMSIN are driver routines for the LINPACK subrouiines
SSPCO, SSPFA, SSIS!L, S:. 1 H) and DSlPCO, DSPiI AF, I )Sl"S,, l)SI )!. SSI'CO ;nid )8s,'( O
were written by ChwveN M,1,,r Wiversity ot New Mexico). The remaining, N'ACK NPbrou-
tines were written iby ,James hin, ch (University of (Cdifornia, San l)iego). 'l'lie subrovt .mes
employ the vector routines, PY , 8;WAI', SI )(T, 8SCAI,, SAXPIY, SSUIM, ISAMAX
and I)SWAIP, i)i)()T, 1)SC;( ,L, I)AXPY, IDASUM, Il)AMAX.

References.

(1) Bouith, J. P(. ;nd1 ett,, B. N , "l ijevct M(eth(l.s 1',r S •lvm ig Sym ni(tric t hrw t,,11il,
_ _ •'4 ti • e f liir I'fi i.ti(r:t, SIAM J. Nurmerical A,4 alys36 8 $1.7!), p!). C:,3'! (C55.

'2) hunch, .. -1 A (J the iuiul I ivi,, Ni•vthoMet " hu ',trAM J. Nutnricra An(J-



(3) Bunch, J. R., Kaufman, L., •nd Parlett, B.N., "Decomposition of a Symmetric Matrix,"
Numerishe Mathematik 27 (1975), pp. 95-109.

(4) Bunch, J., and Kaufman, L., "Some Stable Methods for Calculating rlertia and Solving
'3ymmetric Linear Systems," Math Comp. 31 (1977), pp. 163-179.
C(5) Cline, A. K., Moler, C. B., Stewart, G. W , and Wilkinson, J. H., "An Estimate for the
Condition Number of a Matrix," SIAM Numerical Analysis 16 (1979), pp. 368-375.

(6) Dongarra, J. J., Bunch, J. R., Mol-ir, C. B.,. and Stewart, G. W., LJNPACK Users'
Guide, Society for Induztrial and Applied Mathematics, Philadelphia, 1979.

.......... 2 29



INVERTING POSITIVE DEFINITE SYMMETRIC MATRICES AND SOLVING
POSITIVE DEFINITE SYMMETRIC SYSTEMS OF LINEAR EQUATIONS

The subroutines PCIIOL and DPCHOL are available for inverting positive definite
symmetric real matrices A and solving systems of real linear equations AX = B. PCHOL
handles single precision problems and DPCHOL handles double precision problems. It is
assumed that the matrix A is in packed form. If the inverse of A is computed then the
inverse is a symmetric matrix which will be stored in packed form.

CALL PCHOL(MO,n,rm, A, Bkb,IERR)
CALL DPCHOL(MOn, m, A, B,kb,IERR)

A is an array of dimension n(n + 1)/2 or larger containing the elements of a packed
n x n positive definite symmetric matrix where n > 1. If MO =- 0 then the inverse of A is
computed and stored in A in packed form. If MO : 0 then the inverse is not computed.

The argument in is an integer. If m > 1 then B is a matrix having n rows and m
columns. In this case AX = B is solved and the solution X is stored in B. If rn < 0 then
there are no equations to be solved. In this case B is ignored.

The argument kb is the number of rows in the dimension statement for B in the calling
program. If m < 0 then kb is ignored.

Remarks.
(1) If PCIIOL is called then it is assumed that A and B are real arrays, and if DPCILOI,

is called then it is assumed that A and B are double precision arrays1.
(2) T'", data in A is destroyed.

Error Return IERR is ai integer variable. If A is positive definite then IERR is set to 0
and the problem is solved. Otherwise, IERR = k if the leading k x k subrniatrix of A is not

_ pck~tive definite.

Algorithm . The Cholesky proct lure is used.

Preci&ion. The results lbtained by )l('1101, anid l)l'CI l() l are occasioiially less accurate

('I)' to i .ý gi ilhciant digit) than the rýult.su obtained by SMSIN and I)SMSINV

Peogra, eýAiing. PCI.I( I, amid DI)(iI )I, are driver routines1 for the LINI>ACK stibroutiacs
'PPF'A, SPI, ;;'l)l anid IlI'IFA, I)IDI'I,, I)DI'I)I, These subrotuines were written by
k"ieve Moler (l iver.sity olr New Mexico). The fil ntitons 81))' I)1)01'OT and slhbroiiiin
SAX .Y . ,,S)CAL, DI)A , •)SU(AI, are al.o used.

Pefercnce l)oti',arra, J. .J, B•,urch, .J. H., N ,,i r, (7 It.) anl Si;htwart. (; W ., LINPA'CK
fli~ rsu' (~t'dze, Soely for hiudk~riý,i~ aLid Appji~~ ~iitda s ltliadcllphla, 1979~

g 721



SOLUTION OF TOEPLITZ SYSTEMS OF LINEAR EQUATIONS

An n x n Toeplitz matrix is a matrix of the form

Sa 0  a-, a- 2  .an+.

a 1  a0  a- 1 , . a-f+2

a 2  a• a0  ... a.n.a-3

-an- an-2 an- ., an

For convenience, we denote this matrix by An for n > 1. If An is a real matrix where a0 4 0
and b is a real column vector, then the subroutines TOPLX and DTOPLX are available
for solving the system of equations Ax = b. TOPLX is a single precision routine and
DTOPLX a double precision routine.

CALL TOPLX(A, b, x, n, G, H,IERR)
CALL DTOPLX(A, b, x, n, G, H,IERR)

TOPLX is used if A, b, x, G, I1 are real arrays, and DTOPLX is used if A, b, x, G, H are
double precision arrays.

A is an array of dimension 2n-- 1 or larger containing the coefficients A(j) = aj._n (j ---
1, ... ,2n - 1) of the matrix An. The argument x is an array of dimension n or larger, and
IERR is an integer variable. When the routine is called, if Anx = b is solved then IERR is
set to 0 and the solution is stored in x. A and b are not modified by the routine.

G and I, are arrays of dimension n or larger that are work spaces for the routine.

Error Return. IERR - i if tb0c equations cannot be solved by the routin,.

Remarks. The Levins,)' ly)-,'t•rring procedure is used. This procedure is inductive, be-
ginning with the iolution x. ... b /a,) of' the equation aix, z_ bI. Given a solution for

a, jx b i , . .. , where N/ < n, then a solution for EN "a
_, xj b, (i )N) -

1, ... , N I- 1) i • obtained where x , . , N I is con iut ed from x , . , '. This procedure
fails when somne subrriatrix AN is singular (e.g , when ,;o 0). Also, the procedure may
yield poor results when Sonme AN is exceedingly ill-conditioned. lII such situatioMS one 0C inst
use a more gen eral equation solver. Ih T()tPIX and I)T()IPI,X 4(11 1)( floating additions
and 4n (n 1) integer/floating multiplications zr (liv isroms are used when V-2. C'rse.

quently, these rounires are considerably more eli( It than genieral equation solvers s110 1n:
KIROUT and INMSINV, but in,)re re•trictive and freq uently less ;=:ctirate.

Programming. T'(()PL'lX arid I)T()IPIX are niod•tiications by A. It. Morris of twe .iubrokitW
T[)OEI'i) LZ, writt en by (4eurge thybhikl.

Reference. l'.ess, W. If, Ikianiticy, h P , Tvuklsky;. A., riud Vettcrbirn, W. T., Nu
Srnerical fReci pes: The Art of Scienrtif* ( iomputiiiy, ('ii irl dg ivtrvi t r, ss I ¶

4). ,17 52



INVERTING GENERAL COMPLEX MATRICES AND SOLVING
GENERAL SYSTEMS OF COMPLEX LINEAR EQUATIONS

The 3ubroutines CMSLV, CMSLVI, and DCMSLV are available for inverting complex
matrices and solving systems of complex linear equations. CMSLV and CMSLV1 solve
,single precision problems and DCMSLV solves double precision problems.

CALL CMSLV(MO,n, m, A, ka, B, kb, D,RCOND,IERR,IPVT,WK)

A is a complex matrix of order n where n > 1. If MO = 0 then the inverse of A is
computed and stored in A. If MO $ 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a complex matrix having n rows
and m columns. In this case the matrix equation AX = B is solved and the solution X is
stored in B. If m < 0 then there are no equations to be solved. In this case the argument
B is ignored.

The a:rgun-tent ka is the number of rows in the dimension statement for A in the calling
program, and the argument kb is the number of rows in the dimension statement for B in
the calling program. If m < 0 then the argument kb is ignored.

ID is a, complex array of dimension 2. When CMSLV is called the determinant det(A)
of the matrix A is coliiputedi. If det(A) -- d . 10W where I < Re(d)j +- I'rr(d)l < 10 and k
an integer, theni d is stored in D(I) and the exponent k is stored as a complex number in
1)(2).

RCONI) is a real variable. WVhe:n CMSIN is called, the rouitine tiakes an ustiniate
c Of the c(idition nuinber of the matrix A (relative to the modificd L,1 norm where ach
absolute valuie jz is rep laced withi Re( z)l Ii ~(z) ). RCONDI is azisigmi(( the val tie l/c.

IIPVT is an Integer array of dimensiion n or larger that is used by thl( r, ýutinc for keepi ing
track of the row interchanges that arc msa(i. WK is a cormpi•lx array of dinmiision it or
iarger th, ai. i js..d as a wý1 rk spwve.

Remi arks.

(I ) ON(I) lati~fies I,•) l()NI) D 1. If I(()fND) 10 A themn (omo ca expect thi, r-,I•lt,
t,) h vwe approximatlwel k fewer sigiifici'awt digits (of aiv oracy thanl the elh',llnts )f A
For *'Xamlnr:l, if (AiSLV, is'i iuid to invert i inat-rix in the 1-1 digit. ( 1)(' Niuile prvlrsi-u
aritbfultic ainJ RC(XND! 41", 3, hIIc (hitioIpittld I flIlit-its of01 til lieImltr1\
shiii iiormii;dly bto a curatc to abouti I I digits. fit gcizwra, W( NI) teh; r riI.-, h,,
W'l1 o)r jl)((rly (trildtioni, , th, f)r(Ih)lh il i,s H If l(('()NI) ) I Ohw ()in • l h,iihld cpt,( t thl,
restilt.- to he adiniost. ;i,sac ýiil~ L - the fl orig'inia! h~iat, A1 lI II if t )wf - i)

(2) f Ihe matrix A iS.- aJ1AAs hdt ,! I'(,

E-rror Return. If'1 ? IS Mi I



RCOND > 1, then IERR is set to 0 and the problem is solved. Otherwise, if I+RCOND .= 1
then IERR is set to 1 and the rototine terminates. In this case, A will have been destroyed
but B will not have been modified. Also the determinant will not have been computed.

Algorithrmi. The partial pivot Gauss elimination procedure is used. The pivots aki are
selected so that IRe(ak,)! + IIm(ak,)l = max {iRe(aj)! +- Im(a1 j)I: i -7 j,...,n}.

Progiamrming. CMSIV calls the INPACK subroutines CGECO, CGEFA, CGESL, and
CCEDI. These subroutines were written by Cleve Moler (University of New Mexico). The
subroutines CSWAP, CSCAL, CSSCAL, CAXPY and functions CDOTC, SCASUM, ICA-
MAX are also used.

Referenc:s.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users'
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 19Y9.

(2) Cliae, A. K., Moler, C. B., Stewart, G. W., and Wilkinsc~n, J. H., "An Estimate for the
C(,ndition Number of a Matrix," SIAM Journal of Numerical Analysis 16 (1979),
pp. 368-375.

CALL CMSIVI(MO,n,m, A, ka, B, kb,IERR,IPVT,WK)

A is a complex matrix of order n where n > 1. If MO = 0 then the inverse of A is
computed and stored in A. If MO / 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a complex matrix having rt rows

and m columns. In this case the matri.x equation AX 3 B is soived and the solution X is
stored in B. If n < 0 then there are no equations to be solved. In this case the argument
B is ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, anru the argument kb is the number of rows in the diniension statement for B in

the calling program. If Yn < 0 then the argument kb is ignored.

IPVT is an integer array (f diuuimension n or largir that is used by the routines for
keeping track of the row ;intevchangmes that are made.

WK is a coriplex array of dimension n or larger that Is a work space for the routine.

If MO /1 0 then WK is ignored.

Erroor Return. lEI• RV it variable that reports the status of the results. When CMSIVI
teuriinatti I EIR has9 one of the following values:

1llVR~ 0 The re.1pieted rewoilts we-re }bktlthjcd.

Il .IHRt 1 ''ithcr YL,ka, )r kb . ill:tcorrvct. In this ca,ýe, A ,ndr ! have i;t,

jlýýRl{ k '." I i e k ( r of ._ lao l;,, jhi- rei d to r(•:1 c lr(lr I Itaillling

zcr(s. Tht rc(jIiistcd, rrý;ttlt ( :oin1. ht,~



Remarks.

(1) The matrix A is destroyed.
(2) CMSLV and CMSLVI produce the same resulLs for X and the inverse of A.

Algorithm. The partial pivot Gauss elimination procedure is used. The pivots ak, are
selected so that jRe(aj)I + jIm(ak1 )1 = max {IRe(a,,)l + jlm(a 1 )j: i = i,...,n}.

Programming. CMSLV1 calls the LINPACK subroutines CGEFA, CGESL, and CGEDI.
These subroutines were written by Cleve Moler (University of New Mexico). The subrou-
tines CSWAP, CSCAL, CAXPY and finctions CDOTC, ICAMAX are also used.

Refererce. Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK

Users' Guide, SIAM, 1979.

CALL DCMSLV(MO,n, rn,AR,AI,ka,BR,BI,kb,IERR,IPVT,WK)

AR and Al are double precision matrices of order n > 1. AR and Al are the real and
imaginary parts of the complex matrix A whose inverse is to be computed or for which
AX = B is 'to be solved If MO = 0 then the inverse of the complex matrix is computed
and the results stored in AR and Al. If MO X 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then BR and BI are double precision matrices
having n rows and m columns. In this case, BR and BI are the real and imaginary parts
of the complex matrix B for which AX = B is to be solved. When DCMSLV is called, the
real and imaginary parts of the solution X are computed and stored in BR and BI. If m < 0
then there are no equations to be solved. In this case BR and DI are ignored.

The argument ka is the number of rows in the dimension statements for AR and Al in
the calling program, arid the argument kb is the number of rowi in the dimension statements
for BR and BI in the calling program. If rn < 0 then the argument kb is ignored.

IPVT is an integer array of dimension n or larger that is used by the routine for keeping
tra.k of the row interchanges that are made.

WK is a double p'rec'ision array of dineision 2 n or larger that is a work space for the
royutine, If MO / 0 then WK is ignored.

Error IFleturn IERR is a dariable that reports the status of the results. Wheii, D)CMjSIV
terminates IERIZ has ont of' the fohowing vl ues

IHERI 0 The requested results were obtained.
IERR I 1Either nka, or kb is incorrect. In this case, Alt, Al, 1M1, 11 have

riot been nofi fi-d
I ERIR k The k'" crolunin (4 AIt and Al have bec.l reduced to c(olufins

(onrtaining zvr,.s [.hc requested rsrilt.,; were tiot t)btwirrnd

Remark 'l'Tlr iratri(cs A h aol A.I are cstMcoyrý'd

287



Algorithm. The partial pivol, GaUss elimination procedure is used. The pivots Ak, are
selected so that IR(ak.,)I + =Ir(uk,)I - max {tR.e(,t,)- + Ilri('a~j) : i = j,. .. , r.,

Programming. DCMSLV calls the subroutines DCFACT, DCSC'L, and DCMINV. These
routines were written by A. H. Morris. The functions CDIViu and DPMPAR are also
used.



SOLUTION OF COMPLEX EQUATIO• S
WITH ITERATIVE IMPROVEMENT

Given a complex n x n matrix A and a complex column vector b. The following rourtine
is available for solving the equation Ax -- b. Iterative improvement is performed to compute
the solution x to machine accuracy.

CALL CSLVMP(MO,n, A, ka, b,X,WK,IWK,IND)

MO is an input argument which specifies if CSLVMP is being cal!ed for the first time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional complex array of dimension ka x n containing the matrix A, b a
complex vector of dimension n, and. X a complex array of dimension n. When CSLVMP
is called, Ax = b is solved and the solution stored in X. A and b aro not modified by the
routine.

WK is a complex array of dimension n2 + n or larger, and IWK an integer array of
dimension n or larger. These arrays are for internal use by the routine. On an initial call
to CSLVMP, an LU decomposition is obtained for A and stored in WK and IWK. Then the
equation Ax = b is solved.

IND is an integer variable that reports the status of the results. On an initial c"all to
CSIVMP, when the routine terminates !ND has one of the following values:

IND = 0 The colution X was obtained to machine accuracy.
IND = 1 X was obtained, but not to machine accuracy.
IND =--k The k"h columni, of A was reduced to a column containing only

zeros. In this case no solution can be obtained.

After an initial call to CSLVMl), if IND) 0 or 1 on output, then the routine may be
called to solve a new set of equations Ax b without having to redec,'mpose the matrix
A. In this case, the input argumnient MO may b( set to any nouzvero value. When MO) / 0
.t is assunied that only b has bieein modiiied. The routine employs the LU decow position
obtained on the initial call to (,SLVNII' to ,Olve the new set of equations AT -r b 0oi
motput X will contain the solution to the n(w set of equations. As Lcfore, A and b are not,
mnodified by the routline.

If CSIN M4) is recalled with M() / 0i, lien when the routine terminiates IND) has (nie
of the hll'wilg values:

INI) 0 '1 lhe soluticin wats L,taiI d( I'oo cIiA i( 111t-in c Uracy.
INI) I .X , blai k-' b t, Lc Imt, tt, li'th iic uracy.

Prt 'taraNil't;d thc ,,ti1)rouiii ( iw Thý:, ru~t~nc:i %ore wri~to-v hV
A tI 1 r. [he si ria=, (NI()!"Y, (MrIt"A, .(11;5. , 'A I, TWAXXPY Awln •im,



SINGULAR VALUE DECOMPOSITION OF A MATRIX

If A is at comnplex m x n matrix then there exists an rn x m unitary matrix U and an
n x n unitary matrix V such that DL= U *AV is a diagonal matrix'. Let d,, . . . , dk be
the diagonal elements of D where k -- min{m,n}. Then U arid V can be selected so that
the diagonal eleinents are real numbers and d, Ž! d2 > .. > dkŽ 0. The nonnegative
diagonal elemente di are unique, and if A is a real matrix then LI and V can be chosen to
be real orthogonal matrices. The decomposition D =:U*AV is called the singuslar value
decomposition of A. The elements dj, . .. , 4 are the singlgtar values of A, the columns
of U are left vingudas' vectors, and the columns of V are right singlgkar vectors.

Remark. For m > n), D D,' where D, =diag(di, . .. ,d,,). Consequently, if LI is

partitioned into LTU (U1, U2 ) where U, has it columns, ther, it follows that A =-U.DV 4

U,D,V'. The decomposition A =U 1D1V* is frequently also called the singular value
decomposition, and in many applications it suffices.

The following subroutines are available for finding the singular talue decomposition
D =U*AV of a matrix A.

CALL SSVDC(A, ka, rn, n, D, F, U, ku, V, kv,WORK,JOB,INFO)
CALL DSVDC(A, ka, m, n, D, E, U, ku, V, kv,WORK,JOB,INFO)
CALL CSVDC(A, ka, mn, n, D), E, U, ku, V, kv, WORK, JOB,INFO)

A is a 2-dimensional array of dimension ka x< n containing the rn x n matrix whose
singular value decomposition is to be computed. D is an array of dimension min{m +.1, n}.
When any of the routines is called, the singular values of A ai~e computed and stored in
descending order of magnitude in 1)(1), . .. , D(k) where k r--in (fin, n).

JOB is an integer t~hat controls the computation of the singular vect~ors. It is assumred
that JOB -- I -10 h J when 1, J ý-0, 1, ... , 9. 1 an(] I1 have the following niteaning.

Iý 0 Do not comnpute the left singular vecitors.
I ý-I Comipute all rri left singular vec~tors

I > I Compute the first mini { r, n } lft siriguiitr vectors. (1 lere we cuom-
pute the decomnpositior, A U- U 1I) V*.

J 0 lDo riot compu)Lte the right, sinigular vecto.rs.
J > 0 Coimpute the righlt sin,-ular vec~tors.

U1 is a 2--dimlensional ;'-'ray Which cotid diiP the lcft singiflar ve; tors thl~;t are rq~~ i

;wyl ku liý the- iinuher of rows .1n th.:, duicc orJ~a mt ocomert. for I) iL theit c;JllilK p~rciV'1rao It

is ý1ýLM Rn.et 01at, hU> it. If fio left ;i'ilrvictor,,, anrejoc (ie." ifJO j - 10) the1n 11

1)in)rc in the Y mi( tei ~'. ( ) I nerwis !" 1u, w I di kfii&.:l A-1 " m if -ill ill ick!ýfi sigui i

S tusare rz-np1.0st, 1, and I" 1innnst, !( of k ' o u iin v, i if die tirsi. 10 ,1 d

11f ~.i ~; uir %Ictiorsl arc cye, c



V is a 2-dimensional array which contains the right singular vectors that are requested,
and kv is the number of rows in the dimension statement for V in the calling program. It

is assunmed that kv > n. If no right, singular vectors are requested then V is ignored by
the routines. Otherwise, V must be of dimension kv x n if the right singular vectors arc
requested.

E is an array of dimension n or larger, and WORK is an array of dimension m or
larger. E and WORK are storage areas for the routines.

Remarks.

(1) If SSVDC is called then it is assumed that the arrays A,D,E, U,V,WORK are real
arrays, if DSVDC is called then it is assumed that the arrays are double precision
arrays, and if CSVDC is called then it is assumed that the arrays are complex arrays.

(2) The contents of A are destroyed by the routines. If left singular vectors are requested
and there 'is sufficient storage in A to hold the vectors (there will be sufficient storage if
rn < n or JOB > 20), then one may set. U A. Similarly, if right singular vectors are
requested and rn > n then one may set V A. However, only one of the two arrays U
and V may be identified with A.

Error Return. INFO is an iteger variable. If all the singular values are found then INFO
will be set to 0 and the array E will contain zeros. However, if the jh singular value cannot
be found then INFO is set to j. In this case, if j < k where k = min{rn, n} then the singular
values dj+ 1 , .. . ,d, will have been computed and stored in D. A will have been reduced to
an uppeir bidiagonal matrix B with D as its diagonal and E its super diagonal. If U and V
have been requested then B = U*AV will be satisfied.

Programming. SSVDC, DSVDC, and CSVDC are part of the LINPACK package of matrix
subroutines released by Argonne National Laboratory. The routines were coded by G. W.
Sbewart (University of Maryland). The routines employ the vector subroutines SSWAP,

SROT, SDOT, SSCAL, SAX'V, SNRM2, DSWAP, DROT, 'I)IOT, DSCAL, DAXLPY,
DNRM2, and CSWAP, CSROT, CDOTC, C>ZCAL, CAXPY, SCNRM2. Also the subrou-
tines SROTG and 1)ROT_ arc called.

Reference. lDongarra, J. J., Bunch, J. R., Moler, C. B., and ,-tewirt, G. W., LINPACK
Users' Guide, Society for Industrial and Applied Mvathemimat, , Plhiladelphia, 1979.



EVALUATION OF THE CHARACTERISTIC POLYNOMIAL OF A MATRIX

The following functions are available for computing the determinant of A --- x1 where
A is an n x n matrix, x a number, and I the n x n identity matrix.

DET(A, ka, n, x)
DPDET(A, ka, n, x)
CDET(A, ka, n, x)

DET is a real function that is used when A is a real matrix and x a real number,
DPDET is a double precision function that is used when A is a double precision matrix
and x a double precision number, and CDET is a complex function that is used when A is
a complex matrix and x a complex number.

The value of the appropriate function is the determinant of the matrix A - x1. The
argument ka has the value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumed that ka > n > 1.

Note. A is destroyed during computation.

Algorithm. Gauss partial pivoting is performed to reduce A - xI to upper triangular
form. In CDET the pivots aky are selected so that IRe(agk)l + Im(akj)I `- Max{IRe(aji)j +
IIm(aj.): : j, ... ,n} rather than jakjj = max{fai: i-j, .

Programmer. A. IH. Morris.



SOLUTION OF TllE MATRIX EQUATION AX + XB = C

Given an m x m matrix A, n x n matrix ), and in x n matrix C. The subroutines
ABSIV and DABSLV are available for obtaining the rn x n matrix X which solves the
equation AX + XB := C. ABSLV yields single precision results and DABSLV yields double
precision results.

CALL ABSLV(MO,rn, n, A, ka, B, kb, C, kcWK,IND)
CALL. DABSLV(MO,m, n, t, ka, B, kb, (7, kc,WK,IND)

If ABSLV is called then it is assuned that A, B,C, and WK are real arrays. Otherwise,
if DABSLV is called then it is assum d that A, B, C, and WE are doubie precision arrays.

It is assumed that m > I and n 1. The input argume.As ka, kb, kc have the following
values:

ka :z7 the number of rows in the lirnension statement for A in the calling program
kb the number of rows in the dimension statement ft~r B in the calling program
kc =:the number of rows in the dimension statement for C in the calling program

It is required that ka > m, kb _ n, kc > m.

WK is an array of dimension tm'2 4 n + 2k or larger where k max{rn, n}. WK is a
general storage area for the routine.

MO is an input argurrient which specifies if the routine is being called for the first time.
)n an initial call MO :n 0. In this case, A is reduced to lower real Schur form, B is reduced
0 u )per 'eal gchur form, and then the transformed system of equations is solved.

ND is a variable that reports the status of the results. When the routine terminates,
INf, ýai( xe of the Following vadties:

41) 1) The so u1tion was tt)tk,.iied and stored in (.

I ',11.) 1 T'he eqtiariolls are in(O)i5sistCent for A aixd B.

IN) , :,i ioild n.,t be reduced to L-wer Schur formn.

INI) :o ic(Ihco ul ,i (' b rednc'ed to upp)l)r Sclitir forni.

If INI) / 0 Lhen no solutitcj is obtained.

When IN!, 0, A c(, tairns the lowt( .' •chur forin of the uxiat,rix A, H coita•;,w the

tipper 'Iclki;r form (,f the im , rix ý, are1  W K CVI( l O iv, t01 or hiogori;il 1i;Lh, iwcs ivý,lv,'cd ill

the (de( ill 1 ),:;ititms of A alud 1i "l' i: ... )rl ltilom call he rcu:seti it S t <lv it ,,,w , of,

-,,1 1mtti:, 4. 'Ilth. ftlhttwing ,tptilonis arv :vailable:

N1() N >.ew rimutr t-,'- A i(I (.' are given. ThIQ data f,,c H, H i 4 lj, t , it

,I IVIt 1, i l w ,.ef-t of jtm(l t h'115

,M\ / 1 2 A iw\', n ,trix ,u; gr i Th veil. 'ht - A .m I 1 ý ! i. f :

•' !, it !: ( i" ~ k'\ •4! ( • f €' ill; tli11) '



When the routine i•v recalled, it is assumred that m, n, and W,ý have not been modijied.

Programming. AB,';IV employs the subrout;- -i ABSLVI, ORTLtES, ORTRN1, SCHUR,
S HRSLV, SLV, and DABSIV ,Žrmp toys •he rout .; DABSV1, D)ORTtl, DRTRN1, DSCqUU °,
DSHSLV, DPS] V. /ABSLV ad DABSLV are adaptations by A. H1. Morris of the subroutinie
AXPXB writteu, by R. If.. B ýirtels and G, W. Stewart (University of Texas at Austin).

Reference. Bii:tefL. tIf. i.d Stewart, G. W., "Algorithm 432, Solhtion of the Matrix
Equ, tion AX ! X) k. C," C.omm. ACMJ 15 (1972), pp. 820-826.



SOLUTION GF THE MATRIX EQUATION AtX + XA = C
WHEN C IS SYMMETRIC

Given matr;ces A and C of order n whe:e C is symmetric. Then ýhe subroutines
TASLV and DTASL\ are available for obtaining the symmetric matrix X which solves the
equation AtX-f A' A C. TASLV yields single precision results and DTASLV yields double
precision results.

CALL TASLV(MO,n, A, ka,C, kc,WK,IND)
CALL DTASLV(MO,n, A, ka, C, kc,WK,IND)

If TASLV is called thei it is assumed that A, C and WK are real arrays. Otherwise,
if rASLV is called then it is assuined that A, C, and WK are double precision arrays.

It is a iumed .iat n > , The input arguments ka and icc have the following values:
ka = the ummbe; of rows in the dimension statement for A in the calling program
kc = the number f rows in the dimension statement far C in the calling program

It is requircl that ka > n and ke > n.

WK is an array of dimensiorn n2' - 2 r: or larger that is a general storage area for the
routine.

MMO is an input argument which specifies if the routine is being called for the first time.
On an initial call MO : 0. In this crae, A is reduced to upper real Sclwi form and then
She transfo)rmed system of equations is solved.

IIND is a variable that report>; the status of the results. When the routiae terminates,
IND has one of the following values:

INI) 0. 0 The solution was obtained and sw;red in (.
IND I The eiatioins are inc'nsistent.
I NI) 1 A couldI not 1)e redulced to iipper Schur form.

if INI) / 0 then no solu tio'1 is obt.aintd.

WV ilen 1ND 0, A contains the1 upper Sclhur irin of the linatrix A and W ••h llit ilis
the (or oi..lioito nitrix involved ini the det onltpo>-itioni Of A. I1'hiS data Caill 1)( reuscd to I vtd
a '-ew set of e 1 ati.'ns At)' A A C. In t is c;Lse, MN1 can be -et to1 ay ,ionzero v'tilu.
XV •i .rNO / 0 it i.ti a iliitk I hat t i oly C, h1l s i,.Bei Inio(IIfihd W, hi tW h. i t0, rmiiillýites,

ve .(ii utioyn for the nzew set of e•tjiiatiis s sto.': ii C

Prol ramrning. TASLV einiploys the suikr,,utlnt i 'ASIVI, MCl'l Ill, ()''I(N I, S(CIIUR,

SYý'N- ,;I,V , SI'N :ii Id ) T A SL V vntip lo ys t0 w ro wiiti •' I ')l'\ -\ I,l)l()! l l,l ,'I ' t' •. lI)S( '!ll 1.,

1)S. AS\'V,l . 'IpASIN and tI'TASl \ kre i t ii, t by A. II ,Morri• o i cf sUhoiliu

AT'\PI•\A wiitteii by P. IV lKrtcli nid(t k ' WX ,'ýrt (Ui -ror l f "t',s '4 Lt 0 t ui).

Pefe ,mi' e. 'itl., It H, oiid Stcwcirt, (; Al"otl i; K ' V ' f 0i J 1i, cx

" ItiM I i A,. i X 1? ( 'torsyn Ai Al I S ( '), tpt S,;;)

2 17



SOLUTION OF THE MATRIX E-UATION AX 2 + BX + C = 0

Given complex n x n matrices A, B, and C. The following subroutine is available for
obtaining a complex n x n matrix X which 'olves the equation AX 2 + BX + C = 0.

CALL SQUINT(m, n, A, B, C,IND,X,WK,e, r,MAX,IERR)

It is assumed that A, B, C, and X are 2-dimensional complex arrays of dimension tn x n
where -,n > n. When SQUINT is called, the n x n complex matrix solution obtained for
AX 2 + BX -+- C =: 0 is stored in X. A, B, and C are modified by the routine.

IND is an integer variable. On input, if IND $ 0 then it is assumed that an initial

approximation for the desired solution is provided in X by the user. Otherwise, if IND
= 0 then the routine provides its own initial approximation. Then Newton iteration is
performed. On output, IND = the number of iterati.:is that were performed to compute X.

WK is a complex array of dimension f that is a work space for tie routine. It is
assumed that t > 7n' + n. When SQUINT terminates, WK(1) is a complex number whose
real part is the norm lJAX 2 + BX + C11".

The argument r is a real number. If r < 0 then X is computed to machine precision.
Otherwise, if r > 0 then iteration terminates when IIAX 2 -+BX +- CI < r.

MAX is a variable. If MAX > 0 then MAX is the maximum number of iteratiolns that
may be performed. If MAX < 0 then it is reset by the routine to 30, the default rnaxuruilii
nornber of iterations.

Error Return. IEItR is a variable that is set by tih routine. If a solution X is obtained,
then IFIRR is assigned the value 0. Othlr wise, IERR has one of the following vahlies:

IEIR :I MAX iterations were performed, More iterationis are

needed.
IEPtl{ 2,3 Factorization of theit equations could not be coij'eted.

X cannot be coti)ute(d.

IERR 10 +,n Newton iteration failed on iterationi vi I 'ossiJ, 14 .
acc -triy wa,4 reqnuested. X cannot bhe cOmpitcd-

IEIRR 999 (Input Error) Either n- 1, ,. T1,r ,I- 7,1 v

When IER. I occ:Urs, A' contains the riost re(eiet value 0l)tainmie for the S.ýt Liotn ard
W K(I) is a co'irnpix ri•rbier whose real pairt is th. lats.t Value obL iti'1 , f'ir the iv 1 ri,,

'(" '()/11F8, ('(U! IT TIiI,

Prugramniinpr, SQUIN'I' t'mphop s thi' siubroutines (Q I II1NV CQ9,

,and i(l AN '. 'ihese rouLtincs were (I ,dgried by e;'orge .) l)avis ((;eargia S•tat, Cnicu~rsK.%

Atlanta, (v,)-gia)t ("QZaIE and (O/I'l' t. iiiiljatinis ,of t(- LI"I'A(hK su it,
( QZ/ 1'KS aii - Z1T, dI evelho)d lat, Argrnii,. Nationial I,;0t,r;atrY T'. i " iiotjk•| SI' \1l"A l(

,tl1) kS 'ei



References.
(i) Davis, G. J., "Algorithm 598. Aii Algorithm to CGmpute Solvents of the Matrix

Equation AX 2 + BX + C -- 0," ACM Trans. Math Software 9 (1983), pp. 246-254.
(2) Garbow, B. S., et al], Matrix Eigen.Qystems Routines - EISPACK Guide Extension,

Springer-Verlag, 1977.



EXPONENTIAL OF A REAL MATRIX

Let A be a real matrix of order n > 1. Then the subroutines MEXP and DMEXP
00

are available for ccrnputing the exponential matrix eA = F A'/i!. MEXP yields single
i-=0

precision results and DMEXP yields double precision results.

CALL MEXP(A, ka, n, Z, kz,WK,IERR)

A is a real matrix of order n > 1 and Z a real 2-dimensional array. MEXP computes
eA and stores the results in Z. The arguments ka and kz have the following values:

ka = the number of i-ows in the dimension statement for A in the calling program
kz = the number of rows in the dimension statement for Z in the calling program

It is assumed that ka > n, kz > n, and that A and Z are different storage areas. If n > 1
then A is destroyed.

WK is a real array of diniension n(n + 8) or larger that is a work space for the routine.

IERl{ is a variable that reports th2 status of the results. When MEXP terminate.s,
WIRR is assignecd one of the following vawdes:

IERR1- 0 The exponeitial was c-oimputed.
E --t I "The noAl - ,,Iax, >_ is too Lrge. c can not be coin-

pu ted.
SIER1t 2 The Pal~e denominiator matrix is singular. (This should never

oce olr.)

Algorithm. A is balanced, yielding a ;iatrix iP ) IiPt tl~i)where .)is9diagonal.matrix,
1P a peru•mutation imatrix, and /JIBIJ < IjAIII. Next rn is set to the .;tinal.lest nion ,iegativ(,
limteg"'i smuch that 11in1 13{ 1 j, 1 , BI 1, 2 "', and1- th X111 dau li' e pr im.Ltil foI(r

is used to ýouipute ext)(1i 2 "). Then c cx ( X / p Is (I'lailied by izi squarnl
and ý-' t1%' l i) ) I1 t "his at dlit'd

Programming. NK1']Xl (aills the sutbrout•,s tBALAN(, BAIINV, and SIX 'Tlhe ic fwction

I i'M PAR is also used. MI FX P w;Ls writtenl by A. 11. Morris

Reference. Ward, IHobet: C., "Nuiitcrical olofut :diof the Matrix lxpoiumitial With

Ac(ciri' iy Estimiat;e," .SIAM J. Nur•re'ratda A4rll-'sis 14 (1177), pp) t()() 0 610

CALL DMEXP(., k, yi, I" kz," .Itld()

urra',' I)M EIC)XI r-tmrpuj et e-4 r iult "tort'; tL ' r',uIllts iI 'lh ' Ai km .id -i li- w

kA li, lit illliw tr 4 r ' in , • . h, I llli,',u';luu t.'-,iti ! l I '", il it ut I .i n

k , II'. h ilu mil tl,l- &ll rovv,- ili ttl, dlillit ,,t;ltcll~ f%[ i t,'li i f, i j' I1 hlý A w ;,II !1', ( V i!:l



It is assumed that ka > n, kz > n, and that A and Z a-e different storage areas. If n > 1
then A is destroyed.

WK is a double precision array of dimension n(n + 12) or larger that is a work space
for thz' rontine.

IERR is a variable that reports the status of the results. When DMEXP terminates,
IERR is assigned one of the following values:

IERR = 0 The exponential was comnuted.
IERR = 1 The norm 11.411, is too large. eA cannot be computed.
IERR = 2 The Pade denominator matrix is singular. (This should never

occur.)

Programming. DMEXP calls the subroutines DBAL, DBALNV, and DPSLV. The function
IPMPAR is also used. DMEXP was written by A. HI. Morris.

Reference. Ward, Robert C., "Numerical Computation of the Matrix Exponential with
Accuracy Estimate," SIAMf J. Numrrical Analysis 14 (1977), pp. 600--610.

'2 ",'2



SOLVING SYSTEMS OF 200-400 LINEAR EQUATIONS

For n > 1, let A denote an n x n matrix and b a column vector of dimension n. Then
the subroutines LE, DPLE, and CLE are availabie for solving the equations AX = b where A
is not stored in-core. For large n, these routines require a work space of dimension Z:, n2/4.
This perrmits the solution of systems of equations of double the order permitted by the
standard solution procedures.

CALL LE(ROWKn,b,X,WK,IWK,IFRR)
CALL DPLE(ROWK,n, b, X,WK,IWK,IERR)
CALL CLE(ROW T(,n, b, X,WK,IWK ,IERR)

X is an array of dimension n and IERR an integer variable. When the ejuations are
solved, then IERR is set to 0 and the solution is stored in X.

ROWK ir the na ie of a user defined subroutine that has the format7
CALL ROWK(n,k, R)

R is an array of dimension n and k = 1, ... , Fn. When ROWK is called, the kth row of the
matrix A is stored in R. ROWK must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension [n2/4] + n + 3 or larger,' and iWK is an integer array of'
dimension max{l, n -- 1} or larger. WK and IWK are work spaces for the routines.

Error Return. IERR = k when the first k rows of A are found to be linearly dependent,

Remarks.

(1) When LE is called then it is assumed that b, X, WK and the array R in ROWK are real
arrays. When DPLE i'. called then it is assumed that these arrays are doubie precision
arrays, and when CLE is cailed then it is assumed that the arrays are complex.

(2) When the equations are solved, ROWK is called to attach the first row of A, then the
secend row, etc. Each row of A is attached only once.

(3) The array b is not modified by t.hc routines.

Algorithm. The partial pivot Htenderson-Wassyng procedure is used.

Programming. L.E,I DPLEt arid CLE are triodified versions by A. 11. Mcrri3 of the subrou-
tine TE, written by A. Wassyng (University of the Wi~watersrand, Johannesburg, Soutth
Africa).

Example. Coiisider a system of n . 3(X) rv.:M linear equations - b where the rows of A
are stored, oie row per logical record, in sequecne in mln mu ii attc( ftile (say 1il(' 1)) '11heln
the following code can bC usedI to solve the eq iNt ions'

'Iiere In'/4] deyiJte3i the largest integer " /4.



REAL B(300),X(300),WK (22803)
INTEGER IWK(300)
EXTERNAL GETPOW
DATA N/300/

REWIND 4

CALL LE(GETROW,N,B,X,WK,IWK,IERR)

Here GETROW may be defixied by:

SUBROUTINE GETROW(N,I,R)
REAL R(N)
READ(4) (R(J),Jz&:1 ,N)
RETURN
END

Reference. Wassyng, A., "Solving Ax = b: A Method with Reduced Storage Require-
ments," SIAM J. Numerical Analysis 19 (1982), pp. 197-204.



BAND MATRIX STORAGE

For an m x n matrix A (a-- ), let tr. be the number of diagonals below the main
diagonal ccntaining nonzero elements, and rn,, the number of diagonals above the main
diagonal containing ,,onzero elements. Thcn ml. and ,n• are called the lower and upper
band widths of A, an, r".4- + ri,,.- I the total band width of A. It is clear that 0 < rnt < m
and () < m,• < n, and that aij 0/: 0 only when i- rn,, j < i + m,r. If the band width
rrit- m, + 1 is sufficiently small, then it is also clear that a considerable savings in storage
can occur by storing only the nonzero diagonals of A. In the adopted band storage scheme,
the nonzero diagonals are the columns of an rn x (mrt + rnm + 1) matrix B = (bik). For each
nonzero ail,, bik -- aij where k i + rn, +- 1. The remaining bj,'s are zeros.

Example. Consider the matrix

all a12  a 13  0 0 0 0

a 2 1 a 2 2 a 2 3 a 2 4  0 0 0

0 a 3 2 a 3 3 a 3 4 a 3 5  0 0

S0 0 a 4 3 a 4 4 a45 a 4 8 0

0 0 0 a5 4 a5s a 56 a57
0 0 0 0 a65  a6 6 a6 7
0 0 0 0 0 a 7 6 a 7 7

.0 0 0 0 0 0 a, 7

where ml, 1 and m,, 2. Then A will be stored in band form as follows:

0 a11  a12 a 13
a 2 1  a 2 2 a 2 3 a 2 4

a 3 2 a 3 3  a 3 4 a 3 5

B a 4 3 a 4 4 a 4 5 a 4 6

a54 a 5 5 a5 6 a5 7

a6 5 a 6 6 a 6 7 0

a7 6  (77 0 0
a87 0 0 0,

Remark. The first mr. columns of B contain the nonzero diagonals of A below the main
diagonal, the (int + 1)"t column of B contains the main diagonal, and the last m,, columns
ol'B contain the nonzero diagonals of A above the main diagonai.

255



CONVERSION OF BANDED MATRICES TO AND FROM
THE STANDARD FORMAT

The following subroutines permit one to convert matrices to and from the standard
fcrmat.

CALL CVBR(A, ka, m, n, nit, m,n, B, kb)
CALL CVBD(A, ka, m, n, ml, t,r , B, kb)
CALL CVBC(A, ka, m, n, ml, rnm,, B, kb)

A is an m x n matrix stored in band form, rnt the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for .A in the calling program. It is assumed that 0 _< mt < , 0 <
rr4,, < n, and ka > m.

B is a 2-dimensional array of dimension kb x n where kb > m. CVBR is used if A and
B are real arrays, CVBD is used if A and B are double precision arrays, and CVBC is used
if A and B are complex arrays. When the routine is called, the matrix A is stored in the
array B in the standard format.

Remark. B may begin in the same location as A. If B begins in the same location then it is
assumed that kb =/ka. In this case, the result B will overwrite the input data A. Otherwise,
if B does not begin in the same location as A, then it is assumed that the storage areas A
and B do not overlap.

Programmer. A. II. Morris.

CALL CVRB(A, ka, m,n,mim, ,,B,kb)
CALL CVDB(A, ka, in, n, rnt, m,,, B, kb)
CALL CVCB(A, ka, rn, nt, mt, m,,, B, kb)

A is ail rn x in matrix stored in the standard format, and trit and m, are integers
such that 0 < int < ir and 0 < mn" < YL. The argument ka is the numlber of rows in the

(dlliension statement for A in the calling program. It is assumed that ka > rn.

B is a 2-dimension array of dimension kb x f where kb > rn and F > ir, m- , j I.
CVlI0 is used if A and 13 are real arrays, CVI)DI3 is used if A and tB are double precision
arrays, and C V(. I is used if A and 13 are complex arrays. When the routine is called, the

m t diagonal; of A imnediately below the rriin dia-gcnal, the mnain diagonal, and the ir,,

(fjagorials inInIediately dbove the main diagonal are stored in band form ini U.

Remarks.

(I) ( v.u a rai;Urx A (a,j), then thiese routinies may be ulsed to convert. A to() .aol frr•I

whjeni thie lower arid iupper baridwid his Tm, ari(i tn,, of A are( kAnown. If m, arnd tn t, rt'

-257



not known, then the subroutines CVR]I , (NVDBI, and CVCBI described below can
be used to convert A to band form.

(2) B may begin in the same location as .4. If .1 begins in the same location then it is
assumed that kb - ka. In this case, the result B will overwrite the input data A.
Otherwise, if H3 does not begin in the same location as A, then it :s assumed that the
storage areas A and B do not overlap.

Programmer. A. H. Morris.

CALL CVRB1(A, ka, m, n, m•., in,, B, kb, f,IERR)
CALL CVDBI(A, ka, r, n, rn,, mn,,, B, kb, f,IERR)
CALL CVCBI(A, ka, rin,n,, rr, m,, B, kb, e,IERR)

A is an mi x n matrix stored in the standard format. The argument ka is the
number of rows in the dimension statement for A in the calling program. It is assumed
that A is to be stored in band form in B. B is a 2-dimensional array of dimension kb x f
where kb >_ m. The argument e is an estimate of the maximum number of diagonals
of A that will have to be stored.

CVRB1 is used if A and B are real arrays, CVDB1 is used if A and B are double
precision arrays, and CVCB1 is used if A and B are complex arrays. IERR, int, and
m,, are integer variables. When the routine is called, if £ specifies sufficient storage for
B then A is stored in band form in B. Also IERR is assigned the value 0, n1t t [he
number of diagonals of A below the main diagonal containing nonzero elements, and

, ---= the number of diagonals above the main diagonal containing nonzero elements.

Error Return. If £ does not specify sufficient storage for B, then IERR is assigned the
value rnm + m,i, + 1. Reset £ > IERR.

Remark. B may begin in the same location as A. If B begins in the sarie location
then it is assumed thati kb =-: ka. In this case, the result B will overwrite the input
data A. Otherwise, if B does not begin in the same location as A, then it is assumned
that the storage areas A and B do not overlap.

Programming. CVRBI calls the subroutine CVRB, CVI)B1 calls the subroutine
CV1)B, and CV(IB I calls the subroutine CVCB. These routines were written by A.
1I. Morris.

2 58



CONVERSION OF BANDED MATRICES

TO AND FROM SPARSE FORM

The following subroutines permit one to convert matrices to and from sparse form.

CALL MCVBS(A, ka, m, n, rnt, mm, B,IB,JB,NUM,IERR)
CALL. DMCVBS(A, ka, rn, n, vrn, rn,B,I B,JB,NUM,IERR)
CALL CMCVBS(A,ka, ra, n, rnt,m.,B,IB,JB,NUM,IERR)

A is an m x n matrix stored in band form, rnt the number of diagonals below the
main diagonal containing nonzero elements, and n,,, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statment for A in the calling program. It is assumed that 0 < rnt < m,O <

mn, < n, and ka > rn.

It is assumed that A is to be stored in sparse form in the arrays B,IB,JB. NUM is
the estimated maximum number of elements that will appear in B and JB. It is assumed
that B and JB are of dimension max{1, NUM} and that iB is of dimension M + 1.

MCVPS is used if A and B are real arrays, DMCVBS is used if A and B are double
precision arrays, and CMCVBS is used if A and B are complex arrays. IERR is an integer
variable. When the routine is called, if NUM specifies sufficient storage for B and JB, then
IERR is assigned the value 0 and A is stored in sparse form in B, IB, JB.

Error Return. If there is not sufficient storage in B and JB for the ith row of A, then IERR
is set to i and the routine terminates. In this case, if i > 1 then the first i - 1 rows of A
will have been stored in B and JB. Also IB(1), ... , IB(i) will contain the appropriate row
locations.

Programmer. A. H. Morris.

CALL MCVSB(A,IA,JA,rn, B, kb, e, rnr, r.,,iERR)
CALL DMCVSB(A,IA,JA,m, n, B, kb, , nit, rn,,IERR)
CALL CMCVSB(A,IA,JA,ra, n, B, kb, f, mr, m,,,fERR)

A is an m x n sparse matrix stored in the arrays A, IA, JA. It is assumed that A is to
be stored in band form in B. B is a 2-dimensional array of dimension kb x f where kb > m.
The argument f is an estimate of the maximum number of diagonals of A that will have to
be stored.

MCVSB is used if A and 13 are real arrays, 1)MCVSII is used if A and B are double
precision arrays, and CMC VSB is used if A and B? are complex arrays. lERRl, me, atd In,,
are integer variables. When the routine is called, if f specifies sufficient storage foi 1I then
A is stored in band form in B?. Also IIlEi.l{ is assigned the value 0, mt the mimber of
diagonals of A below th ro main diagonal containing in on zero elements, arid In,, the 1nil oiler
of diagornals above the main diagonnal containing niorizero elements.

259



Error Return. If t does not specify sufficient storage for B, then IERR is assigned the value

mtd- m, + 1. Reset f > IERR.

Programmer. A. H. Morris.

260



CONVERSION OF BANDED REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The following subroutines are available for converting banued real matrices to and from
double precision form.

CALL BCVRD(A, ka,m,n, m, mt , B, kb)

A is an m x n real matrix stored in band form, mt the number of diagonals below
the main diagonal containing nonzero elements, and rnu the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in
the dimension statement for A in the calling program. It is assumed that 0 < me < rn,
0 < rnm < n, and ka > m.

.B is a 2-dimensional double precision array of dimension kb x t where kb > m and
£ > m, + rn,, + 1. When BCVRD is called, A is stored in band form in B.

Programmer. A. H. Morris.

CALL BCVDR(A, ka, m, n, tr, rn,,, B, kb)

A is an m x n double precision matrix stored in band form, tnt the number of diagonals
below the main diagonal containing nonzero elements, and rn, the number of diagonals
above the main diagonal containing nonzero elements. The argument ka is tile number of
rows in the dimension statement for A in the calling program. It is assumed that 0 < me <
m, 0 < m_ < n, and ka_> m.

B is a 2-dimensional real array of dimension kb x t where kb > m and f rrnm + rn, - 1.
When BCVDR is called, .4 is stored in band form in B.

Programmer. A. ff. Morris.

26 1



THE REAL AND IMAGINARY PARTS OF A BANDED COMPLEX MATRIX

If A = (a,3 ) is a complex matrix then let Re(A) = (Re(aj)) and Im(A) = (Irm(a,.))
denote the real and imaginary parts of A. If the matrix A is stored in band form, then the
following subroutines are available for obtaining Re(A) and Im(A) in band form.

CALL BREAL(A, ka, m, n, rnt, rnu, B, kb, t, n1 , n,,IERR)

A is an rn x n complex matrix stored in band form, mt the number of diagonals below
the main diagonal containing nonzero elements, and m•, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in
the dimension statement for A it; the calling program. It is assumed that 0 < mt< < ,
0 < m,, < n, and ka> m.

B is a 2-dimensional real array of dimension kb x t where kb > m. The input argument
t is an estimate of the maximum number of diagonals of Re(A) which will have to be stored
(i < rn.,t + m, + 1). IERR, nt, and n•, are integer variables. When BREAL is called, if
- specifies sufficient storage for B then Re(A) is stored in band form in B. Also, IERR.
is assigned the value 0, nt = the number of diagonals of Re(A) below the main diagonal
containing nonzero elements, and n, -= the number of diagonals of Re(A) above the main
diagonal containing nonzero elements.

Error Return. If f does riot specify sufficient storage for B, then IERR is assigned the value
v where v is the number of columns needed for B. Reset i > v.

Programmer. A. H. Morris.

CALL BIMAG(A, ka, rn, , rnt, vn0 , B, kb, f, tit, n,,,IERR)

A is an m x n complex matrix stored in band form, mnt the number of diagonals below
the main diagonal containing nonzero elements, and m,, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in
the dimension statement for A in the calling program. It is assumed that 0 < m 1t < m,
0 < rn,, < n, and ka > m.

B is a 2-dimensional real array of dimension kb x f where kb >r m. The input argument
f is an estimate of the maximum number of (liagonais of lin(A) which will have to be stored
(< < mt + rn,, + 1). IERR, nl, and n,, are integer variables. When BIMAG is called, if

specifies sufficient storage for 1. then in(A) is stored in band form in 1. Also IER
is assigned the value 0, ntt =- the number of diagonals of Im(A) below the main diagonal

:nt/minIng nonzero elements, and n0, -- the number o0 diagonals of lmI(A) above the mairn
diagonal containing nonzero elements.

Error Return. If f does not specify sufficient storage for B, then IEiI{ is assigned the value
v where V' is the number of columns needed for B. Rcsý,t f -.

Programmer. A. [I. Morris.

26:3



COMPUTING A + Bi FOR BANDED REAL MATRICES A AND B

Given the real rn X n matrices A and B stored in band form. Then the subroutine
BCVRC is available for obtaining the complex matrix A + Bi where i =

CALL BCVRC(m, n, A, Ka, mt, mU, B, kb, nt, n., C, kc, t, v, vu,IERR)

A and B are real m x n matrices stored in band form, mt the number of diagonals
of A below the main diagonal containing nonzero elements, mu the number of diagonals of
A above the main diagonal containing nonzero elements, nt the number of diagonals of B
below the main diagonal containing nonzero elements, and n", the number of diagonals of B
above the main diagonal containing nonzero elements. The argument ka is the number of
rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling program.

It is assumed that A + Bi is to be stored in band form in C. C is a 2-dimensional
complex array of dimension kc x f where kc > r7 The input argument f is an estimate of the
maximum number of diagonals of A + Bi which will have to be stored (f > max{rnt, nt} +
max{m,,nj} + 1). IERR, vt, and v, are integer variables. When BCVRC is called, if e
specifies sufficient storage for C then A + Bi is stored in band form in C. Also IERR is
assigned the value 0, v 1 = the number of diagonals of A + Bi below the main diagonal
containing nonzero elements, and v, = the number of diagonals of A + Bi above the main
diagonal containing nonzero elements.

Error Return. If f does not specify sufficient storage for C, then IERR is assigne'J the value
v; where v is the number of columns needed for C. Reset f > v.

Programmer. A. 11. Morris,

[] 2W)



TRANSPOSING BANDED MATRICES

The following subroutines are available for transposing banded matrices.

CALL BPOSE(A, ca, m, n, rt, mn, B, kb)
CALL DBPOSE(A,ka, m, n,mt,rm, B,kb)
CALL CBPOSE(A, ka, n, n, mt, m,, B, kb)

A is an rn x n matrix stored in band form, rnt the number of diagonals below the
main diagonal containing nonzero elements, and m,, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < rnt < m,0 <
rmu < n, and ka > m.

B is a 2-dimensional array of dimension kb x e where kb > n and f > mt + mr + 1.
BPOSE is used if A and B are real arrays, D,3POSE is used if A and B are double precision
arrays, and CBPOSE is used if A and B are complex arrays. When the routine is called,
the transpose At of A is stored in band form in B.

Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A. H. Morris.

(;7



ADDITION OF BANDED MATRICES

Let A and B be tn x n matrices stored in band form. The following sub outines aW
available for computing the sum C = A i- B.

CALL BADD(rn, n, A, ka, rin, 1,7, ,B, kb, n., n•, C, kc, f, vt, vt,,IERR)
CALL DBADD(m, n, A, ka, in, i., B, kb, n1 , n•,C, kc, e, v1 , v,,IERR)
CALL CBADD(in, n, A, ka, rnM, MU,) B, kb, nr, nt, C, kc, f, vt, v,,,IERR)

A and B are to x n matrices stored iII band form, rnt the number of diagonals of A
below the main diagonal containing nonzero elements, mu the number of diagonals of A
above the main diagonal containing nonzero elements, n, the number of diagonals of A3
below the main diagonal containing nonzero elements, and no, the number of diagonals of 13
above the main diagonal containing nonzero elements. The irgument ka is the number of
rows in the dimension statement for A in the calling prog,'am, and kb the number of rows
in the dimension statement for 1 in the calling program.

It is assumed that, A f-- 13 is to be stored in band form in C. C is a 2 dimensional
array of dimension kc ;< e. where kc > ni. The input argument e is an estimate of the
maximuni number of diagonals of A f t1 whiich will have to be stored (f < max {mr,ril , t
mIax{tf,,nj} f 1). BA1)1) is used if A and 11 are real arrays, I)BAI)1) is used if A and H
are double precision arrays, and ClIA1)1) is used if A and 13 are complex arrays. IICRt{,
-t, and z-'u are integer variables. When the routine is called, if F specifies suificient storage
for C then A B i Is conpited and stored in band formi in C. Also I Fl{l. is assigned the
value 0, V1  the ounmber (of diagonals of A f B below tie main diagonial ( ontairling iionizro
']ellienltts, and VI, the wiiiiiiier of d agorals of A 1 t! above tile main diagonal colitaiin;1Il
Iloilzero) eleviierits.

Error Return. If f does njot spt-cii'y sufliciet sto)rage fo)r (, then fllRl I? is ;is.siglitd thie vahi
!, wheire v is the nuir her (of (,,int nciiics i e dhl for ('+ l(e.swl, f ' 1'.

Remarks Ifrot ' tYt u - may nt,, l Il lit snot hI, ttioni aýs .4 If hepnlisI Hiii te , .
I,'ationi aL A, tItuc it is l t.. 1iwd thatt, k ,c K iiif tald C t thei lrraiys A nd 1 (ih) 1I()t ,Vi 1,
II this ca.•s, the rcsult ( will (iv rwrit thc inpuit dt;a A. Similakrly), if ro1  " u t Iwol, IIIico
fb ,gii iII tihc saint. I ) l.ol (m 5 1? ? . h',A I .'I A' k .rid A Aind I II (h IItI rvt rIm )i. ( ) th Irwis% , it

-ltts [lot, i gll iIIt 1th saiiit ll hci tion as A or /., then it Is i iuiitd tht. , ilt orage ar't ,

, tits + (, l t. ",rlk withI1 1 tl.i( ' ir ;•t o foir A oidi IV 1uI this (týLs- t wr' is,ý i rt, ,ttlt Iii . ,

I ii kc (,,otIi r thaI n th IV,' I (•l i 1; Lrv Oct r ioll th Lt A' 114)

E x a m p le If ' 1 . oh t L; At i .liiiI 0 0 'il tti' H l ( hj jr i I ,

Prt)rgramnwtur \ I ,b a



SUBTRACTION OF BANDED MATRICES

Let A and B be m x n matrices stored in band form. The following subroutines are
available for computing the diff-aence C --- A - B.

CALL BSUBT(mn, n, A, ka, rnt, mr, B, kb, ni, nu,,C, kc, 1, vt, tvu,IERR)
CALL DBSUBT(m, n, A, ka, me, nu, B, kb, ne, nn,C, kc, f, vt, vuIERR)
CALL CBSUBT(m, n, A, ka, me, rnu, B, kb, nt, nu, C, kc, e, vt, v•,IERR)

A and B are m x n matrices stored i, b)and form, mt the number of diagonals of A
below the main diagonal containing nonzero elements, mr the number of diagonals of A
above the main diagonal containing nonzero elements, nf the number of diagonals of B
below the main diagonal containing nonzero elements, and n,, the ndmber of diagonals of B
above the main diagonal containing nonzero elements. The argum nt ka is the number of
rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling prograrn.

It is assumed that A - B is to be stored in band form in C. C is a 2-dimensional
array of dimension kc x I where kc > m. The input argument t is an estimate of the

maximum number of diagonals of A - B which will have to be stored (t < max{mt, nh} +
max{tn,,n,,} -f 1). BSUBT is used if A and B are real arrays, DBSUBT is used if A and
B are double precision arrays, and CBSUBT is used if A and B are complex arrays. IERR,
vt, and v,, are integer variables. When the routine is called, if I specifies sufficient storage
for C then A -- B is computed and stored in band form in C. Also IERR is assigned the
value 0, vt ::: the number of diagonals of A - B below the rnail diagonal containing nonzero
elements, and v,, = the number of diagonals of A - B above the main diagonal containing
nonzero elements.

Error Return. If f does not specify sufficient storage for C, then IERR is assigned the value
v where v is the number of columns needed for C. Reset t > v.

Remarks. If mr > nt then C may begin in the same location as A. If C begins in the same
location a&i A, then it is assumed that kc -: ka and that the arrays A and1 B do not overlap.
In this case, the result C will overwrite the input data A. S:i.nilarly, if rn1 < nj then C may
begin in the samne location as 8i when kc - kb and A arid B do not overlap. Otherwise, if C
does not begin in the samie location as A or B, then it is assayned that the storage area for
C' does not overlap with the storage areas for A arid 11. In this case there is no restriction
on izc (other than the customary restriction that kc till).

Example. If 11 A then e may he assigned ally value L> 1 In this case, C will contain only
the mi•in (diagonal of the zero matrix A 11, arid L, L,•, 1 0.

Programmer. A. II. NMorriS

271



MULTIPLICATION OF BANDED MATRICES

Let A and B be matrices stored in band form. The following subroutines are avwI. 0:.,
for computing the product C AB.

CALL BPROD(m, n, £, A, ka, mrt, m,, ., kb, nt, nuC, kc,vno, • 1, v,,,I 1)
CALL DBPROD(m, n, t, A, ka, rnt., mu, B, kb, nt, n,, C, kc, tic, v1 , v ,IERR)
CALL CBPRO'D(m, n, t, A, ka, rnt, mu, B, kb, rq, na,, C, kc, nc, vt, vu,IERR)

A is an rn x n matrix stored in band form, Ynt the number of diagonals of A below the
main diagonal containing nonzero elements, and mnu, the number of diagonals of A above the
main diagonal containing nonzero elements. B is an n x t matrix stored in band form, nj
the number of diagonals of B below the main diagonal containing nonzero eleme'its, and n,,
the number of diagonals of B above the main diagonal containing nonzero ele,-ents. The
argument ka is the number of rows in the dimension statement for A in the calling program,
and kb t1he number of rows in the dimension statenment for B in the cai!ing program. I, is
assumed that ka > m and kb > n.

It is assumed that AB is to be stored in band form in C. C is a 2-dimensional array of
dimension kc x nc where kc > m. The input argument nc is an estimate of the maximum
number of diagonals of AB which will have to be stored (tic < min{n -- i,nnt -- nt} i-
min{f -- +,mu - n,} + 1). BPROD is used if A,B, and C are real arrays, DBPROD is
used if A,B, and C are double precision arrays, and CBPROD is used if A,B, and C are
complex arrays. IERR, vt, and v,, are integer variables. When the routine is called, if nc
specifies sufficient storage for C then AB is computed and stored in band form in C. Also,
IERR is assigned the value 0, Vt =2- the number of diagonals of AB below the main diagonal
containing nonzero elements, and v,, -:- the number of diagonals of AB above the nain
diagonal containing nonzero elements.

Error Return. If nc does not specify sufficient storage for C, then IERR iL assigned the
value v where P is the nurratber of columns nieeded for C. Reset rtc > V.

Note. It is assumed that the storage area for C does not overlap with the storage area•s for
A and B.

Programmer. A. If. Morris.

[]7



PRODUCT OF A REAL BANDED MATRIX AND VECTOR

Let A be a real 7n x n matri- stored in band form. Then the following subroutines are
available for multiplying A with a real vector.

CALL BVPRD(m, ra, A, ka, rn, m.n, x, y)

A is an m x Y& matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero element3, and in14 the numbei of diagonals above tile
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mn < m,0 <
in1, < n, and ka> rn.

The argument x is a column vector of dimension n and y an array of dimension rn.
When BVPRD is called, the product Ax is computed and stored in y.

R'emark. It is Essurned that the arrays A, x, y do not overlap.

Programmer. A. TI. Morris.

CALL BVPRDI(rn, ,A,ka, mn, rn 4,z, y)

A is an rn x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and rn,4 the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumned that 0 < m/ < rn,O <
m,, < n, and ka > m.

The arguments x and y are column vectora of dimension n and in respectively. When

BVPRD1 is ca!led, Ax +- y is computed and stored in y.

Remark. It is assumed that the arrays A., x, y do not omerlap.

Programmer. A. 11. Morris.

CALL BTPRD(m, m, A, ka, in., t,,, x,y)

A is an in x ni matrix stored in ban(d form, m, th(, minber of diagonals below the
main diagonal containing nonzero elements, and rn, , the number of diagonals above the
main diagonal contaimiing nonzero elements. The argument ka is tie number of rows ill the
dimension statement for A in tile calling program It is assunied thai, 0 < rný -- ,0()
no,< n, and ka > n.

The argunment x is a row vector of dimensionm tit and z an array of diriensiom n. Wh(I
IW1T1Pit) is called, thme prodlnet sA i.s computed and stored in y.

Remark. It is assummed that the arrays A,x, ,.j do not overlip.

27h



Programmer. A. H. Morris.

CALL BTPRDI(m, n, A, ka, rn,, m r, y)

A is an m x n Y tored in band form, mns the number of diagonak& below the
main diagonal contai aizero elements, and rna, then number of diagonals above th'ý
main diagonal ccntaiL 1z.V-o elements. The argument ka is the number of rows in the
dimension statement a,: n the calling program. It is assumed that 0 < rnt < m,0 <
rn,, < n, and ka > mn.

The arguments z :,: : are row vectors of dimension rn and n respectively. When
BTPRD1 is called, xA ,4 , computed and stored in y.

Remark. It is assumed the arrays A, x, y do not overlap.

Programmer. A. H. l•

27



PRODUCT OF A DOUBLE PRECISION BANDED MATRIX AND VECTOR

Let A iý a double precision m x v rnatrix stored in band form, Then the following
s;,broutineL-, are available for multiplying A with a double piecision vector.

CALL DBVPD(rn,n,A,A-a,mrt,irn.,x,y)

A is an m x n matrix stored in band form, min. the number of diagonals below the
main diagonal containing nonzero elements, and min, the number of diagonals above the
imain diagonal ccntaining nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 . mt < m,0 <
imu < n, and ka > m.

The argument x is a colurmn vector of dimension n Pnd y an array of dimension m.
A,z, y are double piecision arrays. When DBVPD is called, Ax is computed and stored
in y.

Remark. it is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

CALL DBVPDI (m, n, A, ka, rnt, mt, x, y)

A is an mn X n matrix stored in. band form, mt the number of diagonals be!ow the
main diagonal containing nonzero elements, and mA the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < rnt < m,0 <
m,, < n, and ka > in.

The arguments x and yj are column vectors of dimension n and in respectively. A, x, y
are double precisl;;i arrays. Whi ýi DBVPDI is called, Ax + y is computed and stored in y.

Remark. It is assumed thatt the arrays A, x, y do not overlap.

Progranmmer. A. II. Morris.

CALL DBTPD(in, ,A, ka, mr, TUxy)

A is all tn x rt, matrix stored in band form, itt ,he niu tnber of diagonals below the
hilairn diagonal conit:-tining nonzero elements, arn tri.., the number of diagonals abovr the
main diagonal contaaming nonzero elements. The argiu nent ka is tie inuinher of rows ini the
dillension statement for A In the calling programt. It is assumed that 0 - ri : ,n,()
Fit,, -, n, ad ka Fr- .

The argument x i!3 a row vector of dimension Fni and y an array of dinf.insiot n. A, r,
are donbl e pr'cr 'isio arrays. When 0)11,l' I) is called, TA is campute nd a st.red in y

277



Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

CALL DBTPD1(m,n,A,ka, mt,mn,x,y)

A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and mA the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
'dimension statement for A in the calling program. It is assumed that 0 < mt < m, 0 <
m, < n, and ka > m.

The arguments x and y are row vectors of dimension m and n respectively. A, x, y are
double precision arrays. When DBTPD1 is called, xA + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

278



PRODUCT OF A COMPLEX BANDED MATRIX AND VECTOR

Let A be a complex m x n matrix stored in band form. Then the following subroutines
are available for multiplying A with a complex vector.

CALL CBVPD(m, n, A, ka, ml, mt , x, y)

A is an rn X n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and rn,, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m, 0 <
m,, < n, and ka > m.

The argument x is a column vector of dimension n and y an array of dimension rn.
A, x, y are complex arrays. When CBVPD is called, Ax is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. 11. Morris.

CALL CBVPD1(n, n, A, ka, in1 , mt, x, y)

A is an m x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and rn,, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m, < m,0 <
Smi,, < n, and ka > m.

The arguments x and y are column vectors of dimension n and m respectively. A, x, y
are complex arrays. When CBVPD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. It. Morris.

CALL CBiP[ftrn, n, A, ka, in, rng,, x, y)

A is an " × n x matrix stored in band form, rnt the number of diagonals below the
main diagonal containing nonzero elements, ard rn,, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < rnnt < rr,(0 <'
Srr'1 < n, and ka > tn.

The argunient x is a row vctor of danernsion Yn and y an array of (tireri:ion st. A, x, Y
are complex arrays. Whlien CIH'lI) i called, xA is computed ; id stored ill y.

Remark. It is i.•surned that thO arrays A, x, j d(o not, overlap.

279



Programmer. A. 11. Morris.

CALL CBTPD1(mn,n,A,ka,mt,rn,,x,y)

A is an rn x n matrix stored in band form, mt the number of diagonals below the
main diagonal containing nonzero elements, and rnm the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mtr < rn,O <
rn, < n, and ka > 97.

The arguments x and y are row vectors of dimension m and n respectively. A, x, y are
complex arrays. When CBTPD1 is called, xA + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. It. Morris.

280



Li NORM OF A REAL B1ANDED MATRIX

If A -- (aij) is a real banded matrix then the following functions are available for
computing the f4 norm IIAII, == maxj ,IajI of A.

B1NRM(A, ka, m, n, rnt, mu)

DB1NRM(A, ka, m, n, mrn, rnm)

B1NRM is used if A is a real array and DB1NRM is used if A is a double precision
array. B1NRM is a real function and DB1NRM a double precision function.

The function has the value IhAII for any m X n matrix A stored in band form. The
argument mr is the number of diagonals below the main diagonal containing nonzero ele-
ments, in,, the number of diagonals abuove the main diagonal containing nonzero elements,
and ka the number of rows in the dimension statement for A in the calling program. It is
assumed that 0 < mt < m, 0 < m,. < n, and ka > mn.

Remark. DB1NRM must be declared to be of type DOUBLE PRECISION in the calling
program.

Programming. B1NRM calls the function SASUM and DB1NRM calls the function DASUM.
B1NRM and DBINRM were written by A. H. Morris.

281



L,, NORM OF A REAL BANDED MATRIX

If A = (aj) is a real banded matrix then the following functions are available for
computing the t,, norm IIA,1K n maxi F~jaj[j of A.

DBNRM(A, ka, m, n, mt, m,)

BNRM is used if A is a real array and DBNRM is used if A is a double precision array.
BNRM is a real function and DBNRM a double precision function.

The function has the value IlAIIo for any m x n matrix A stored in band form. The
argument mt is the number of diagonals below the main diagonal containing nonzero ele-
ments, mt, the number of diagonals above the main diagonal containing nonzero elements,
and ka the number of rows in the dimension statement for A in the calling program. It ;s
assumoei that 0 < rnt < rn, 0 < mn, < n, and ka > m.

Remark. DBNRM must be declared to be of type DOUBLE PRECISION in the calling
program.

Programmer. A. 11. Morris.

283



SOLUTION OF BANDED SYSTEMS OF REAL LINEAR EQUATIONS

Let A be a nonsingular n x n real matrix stored in band form and b a real column vector
of dimension n. The subroutine BSLV is available for solving the system of equations Ax = b,
and the subroutine BSLV1 is available for solving the transposed system of equations A t x =-
b. On an initial call to either routine, partial pivot Gauss elimination is first employed to
obtain an LU decomposition of A, and then the equations are solved. BSLV and BSLV1
always generate the same LU decomposition of A. After the decomposition is obtained on
an initial call to BSLV or BSLV1, either routine may be called to solve a new system of
equations Ax = r or Atx = r without having to redecompose the matrix A.

CALL BSLV(MO,A, ka, n, rnm, msX,IWK,IND)
CALL BSLV1(MO,A, ka, n, rnms,,,X,IWK,IND)

BSLV is called for solving Ax = b and BSLVI is called for solving Atx = b. The
argument rnt is the number of diagonals below the main diagonal of A containing nonzero
elements, and rnm the number of diagonals above the main diagonal containing nonzero
elements. It is assumed that n > 1, 0 < rnt < n, and 0 < rnm, < n. MO is an input
argument which specifies if BSLV or BSLV1 is being called for the first time. On an initial
call, MO = 0 and we have the following setup:

A is a 2-dimensional array of dimension ka x rn where ka > n and rn > 2 mtr F rn, -+.
On input, the first mt +t m•, + J columns of the array contain the matrix A in band fornri.
When the routine terminates, the array A will contain the upper triangular matrix U of
the LU decomposition and the multipliers which were used to obtain it.

X is an array of dimension n or larger. On input, X contains the vector b. On output,
X will contain the solution of the system of equations.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in IWK.

On an initial call to 13SIV or HSINI, INI) is ai integer variable that report,: the st~atius
of the results. When the routiiw terminates, INI) hiLm one of the following values:

IND) c. 0 The systeri of equations was solved.
INI) 1 Elther n < 0 or ka .:-i n.
INI) --2 Either rrt-- 0 or vtri > n.
INI) 3 Either r,, < 0 or rn. I'a.
INI) k Column k of A hasa been reduiced to a colunin ,nitairnig only

zeroks.

After an Initia call to WSIN V r BSL N I, if .Nt) () or, ' , tt ie, , ither r,)eltli n. r
be called with M) / 0 WhIe M() / ( It is zvssumed th'a tonly b Iliay hi:ive loo1n iiidliji(ol

SBSIV is rahled for solving. thi new seit of llatiolis ,Ir t,, itild •S IV I us (, 1 ,r ;,,lvim!',
the new !.•:e, (of equatiou s A r I. . 'liehe rnoujine eniiploys thu' 1 Ii (h! ( , (oulp(1iiut (J (ýii
the initial c( li t(o lSlI,\/ or lS-dI\VI to solvc t01v ne w set oJ lujui ,tu:. ()II i11,ti , A c''Il 't~ :

s),



the new vector b. On output, X will contain the solution to the new set of equations. In
this case, IND is not referenced by the routine,

Programming. BSLV and BSLV1 employ the subroutines SNBFA,SNBSL,SAXPY,SSCAL,
SSWAP and the functions ISAMAX and SDOT. SNBFA and SNBSL were written by E. A.
Voorhees (Los Alamos Scientific Laboratory) and modified by A. It. Morris. The original

versions of SNBFA and SNBSL are distributed by the SLATEC library.



COMPUTATION OF THE CONDITION NUMBER
OF A REAL BANDED MATRIX

If A is a real rn x n banded matrix then the following subroutine is available for esti-
mating the f, condition number condi(A) of A.

CALL B1CND(A, ka, n, rnt, rnm,COND,IWK,WK,IND)

A is a real n x n matrix stored in band form. A, ka, rt, m,, and IWK are the same
arguments used for the subroutines BSLV and BSLV1, the only exception being that IWK
now is an array of dimension 2n or larger.

COND is a real variable. When B1CND is called, then the subroutine BSLV is first
invoked to obtain an LU decomposition of A which is stored in A and IWK. Then COND is
assigned the value 0 if A is singular and an approximation of the condition number cond1 (A)
if A is nonsingular.

WK is an array of dimension 2n or larger that is a work space for the routine.

INI) is an integer variabie that reports the status of the results. When 131CND ternii-
riates, IND has one of the following values:

IND . 1 A is singular and COND : 0.
IND) - 0 A is nonsingular and CONI is an approxinatioii of the condition

number of A.
IND 1 Either n < 0 or ka < ni.

IND 2 Either m, 0 or rtit 7L.
IND) 3 E.ither tn,, (0 or n,, > ?L.

When an error is detectt'd, the routine iimedliately terIlrinatts.

Usage. After BI(NI) terniijates, if INI) 0 then lI~lN or BS!V I may be called wit.i
N1() / 0 to solve a system of efqulatlon:- In this ca.'Le Aa, riat, y,, and \VWK are iise(d by

HISLV and lqlBIV.I, am1 midmist not, e moidified b)y the user.

Algorithm A mnodifica)tio. ,f theI lHager pir-ocdure by Nicholas .. I Igh an / I, ivirsity,
M;tm,(hl'st er, 'l•,gL111il) is 11sed.

Programming. II('NI) e.ploys tle .mmbromtimms S()N!CS'lbSl,, lSl.V , SNItlA, SN1tSI,.
SS('()P'Y, "AX!I\, S";.'A('AY,, amid 'VWAI' awl t.hlh fum'tomw- IBINlM, S'l)(Y'1 SA I, attml

[S.\ .\MAX BI(NI) wv:. writti.i by A I. M trris. S()NE'LST w.ci written lY' N, .i hi'• hlian
S;m,] l•,,nd~ificdt bly A ý 11. :l)l:

References.

(1) Iliglrtil, , ,. I I" )l 'I <\N '' s t ,)r ]'-it m mi , tlh (\;it Nirm (d' I ,t 1 ji r ('( 'lý ii *\

NIatt rix, wilt t\'li)t ilS ti ( "CA1 T:Ii , A( AhI Iron. 7lth ,stofltvvartr 141

(It9S"),

.57



(2) _ .,"A~gorithm 674: "FO1LTRAN codes for Estimating the One--Norm of a Real
or Complex Matrix, with Applications to Condition Estimation," ACM Trans. Math
Software 15 (1989), p. 168.



DOUBLE PRECISION SOLUTION OF BANDED SYSTEMS
OF REAL LINEAR EQUATIONS

Let A be a nonsingular n x n double precision matrix stored in band form and b a
double precision column vector of dimension n. The subroutine DBSLV is available for
solving the system of equations Ax = b, and the subroutine DBSLV1 is available for solving
the transposed system of equations Atx = b. On an initial call to either routine, partial
pivot Gauss elimination is first employed to obtain a&- LU decomposition of A, and then the
equations are solved. DI3SLV and DI3SLNV1 always generate the same LU decomposition
of A. After the deconposition is obtained on an initial call to DBSLV or DBSLV1, either
routine may be called to solve a new system of equations Ax = r or AtX -- r without having
to redecompose the matrix A.

CALL DBSLV(MO,A, ka, n, rnt,m,, X,IWK,iNI))
CALL D3SLV1 (MO,A, ka, n, mt, rn,, XIWK,IND)

DBSLV is called for solving Ax = b and DBSLV1 is called for solving Atx = b. The
argument rnt is the number of diagonals below the main diagonal of A containing nonzero
elements, and m,, the number of diagonals above the main diagonal containing nonzero
elements. It is assumed that n > 1, 0 < rnt < n, and 0 < mr, < n. MO is an input
argument which specifies if DBSLV or DBSLV1 is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A is a double precision 2-dimensional array of dimension ka x m where ka > n and
rn > 2mt - mn,, + 1. On input, the first mt + irn., + 1 columns of the array contain the matrix
A in band form. When the routine terminates, the array A will contain the upper triangular
matrix U of the ILU decomposition and the multipliers which were used to obtain it.

X is a double precision array of dimension n or larger. On input, X contains the
vector b. On oumput, X will contain the solution of the system of equations.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices irivolved in the LU decomposition are stored in IWK.

On an initial call to l)BSLV or l)I3SLV1, INI) is an integer variable that reports the
statis of the rk.snitS. Whet the routine teriiinates, INI) has one of the following val•ues:

IND - 0 The system of equations wws solved.

INI) ...... 1 iEther n < 0 or ka - n.
IND 21 Either rin < 0 or mt -- n.
IN I) 3 Either MU < 0 or rn,, > n.
INI) k Coluimn k of A haLs been reduced to a colu( n coilt~aning onily

After an iMitiad call to I)BSIV or l)•SI,Vi, if INI) 0, ol output then teither rouitin
may be cal•d• with MN0 / 0. When M) / 0 it is amsniwd eiltht only b miay have been. 1llod-
ilied. I)lBSL.V is called for solvifig the new set ('f tequation:i Arx 6, and IW)lA.VI is caild

2•{



for solving the new set of equations Atx = b. The routine employs the LU decomposition
obtained orn the initial call to DBSLV or DBSINI to solve the new set of equations. On
input, X contains the new vector b. On output, X will contain the solution to the new set
of equations. In this case, IND is not refercnced by the routine.

Programming DBSLV and DBSLV1 employ the subroutines DBFA, DBSL, DAXPY,
DSCAL, DSWAP and the functions IDAMAX and DDOT. DBFA and DBSL are adap-
tations by A. H. Morris of the subroutines SNBFA and SNBSL, written by E. A. Voorhees
(Los Alamos Scientific Laboratory). SNBFA and SNBSL are distributed by the SLATEC
library.



COMPUTATION OF THE CONDITION NUMBER OF A
DOUBLE PRECISION BANDED MATRIX

If A is a double precision n x n banded matrix then the following subroutine is available
for estimating the f4 condition number condi(A) of A.

CALL DB1CND(A, ka, n, mt, nm,COND,IWK,WK,IND)

A is a double precision n x n matrix stored in band form. A, ka, mt, tn,, and IWK
are the same arguments used for the subroutines DBSLV and DBSLV1, the only exception
being that IWK now is an array of dimension 2n or larger.

COND is a double precision variable. When DB1CND is called, then the subroutine
DBSLV is first invoked to obtain an LU decomposition of A which is stored in A and IWK.
Then COND is assigned the value 0 if A is singular and an approximation of the condition
number condi(A) if A is nonsingular.

WK is a double precision array of dimension 2n or larger that is a work space for the
routine.

IND is an integer variable that reports the status of the results. When DB1CND
terminates, IND has one of the following values:

IND = 1 A is singular and COND :- 0.
IND = 0 A is nonsingular and COND is an approximation of the condition

number of A.
IND = -1 Either n <0 or ka < n.
IND= -2 Either mt < 0 or m t >n.
IND = -3 Either rn, <0 or mr __ > n.

When an error is detected, the routine immediately terminates.

Usage. After DBICND terminates, if IND - 0 then DHSLV or D[BSLVI iay be called
with MO x: 0 to solve a system of equations. In this case A,kan, rn1 , rnn, and IWK are
used by D)BSLV and I)BSLV1, and must not be modified by the u:ser.

Algorithm. A modificati( of the Hager procedure by Nicholas ,J. 1l ighazi (University of
Manchester, England) is L d.

Programming. I)I31(CNI) employs the su broutines DONEST, I)[SIA, I)RIS,VI l)HlFA,
I)ISL, I)COlPY , I)AXPY, I)SCAL, and I)SWAP, an(i the functions I)131INItM, 1)1 )l'
I)ASUM, and II)AMAX. 1. BIifCNI) was written by A. II. Morris. DONIEST is the double
precision forni of the subrI)urtiie SONIEST, written by rN. J . llighan• arid onodifieci 1)), A. II.
Morris.

References.

(1) fligliaz N.J., I,(H''IýAN rodeh,- f()r IF'ýtinoal.inig the ()ne N,.rin of :i [Cea or•rc-
Matrix. with A pphCcations to( (Colnditit• Iiiiaion," ACAI Transi. AMath Softivar (14 I
(1981), p)t). 'j.i-l 39G.(



(2) __._._ -,"Algorithm 674: "FORTRAN codes for Estimating the One-Norm of a Real
or Complex Matrix, with Applications to Conditi.on Estimation," ACMf Trans. Math

Software 15 (1989), p. 168.



SOLUTION OF BANDED SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n x n complex matrix stored in band form and b, a complex
column vector of dimension n. The subroutine CBSLV is available for Solving the system
"of equations Ax - b, and the subroutine CBSLV1 is available for solving the transposed
system of equations A t x = b. On an initial call to either routine, partial pivot Gauss
elimination is first empioyed to obtain an LU decomposition of A, and then the equations
are. solved. CBSLV and CBSLV1 always generate the same LU decomposition of A. After
the decomposition is obtained on an initial call to CBSLV or CBSLV1, either routine may be
called to solve a new system of equations Ax = r or Atx = r without having to redecompose
the matrix A.

CALL CBSLV(MOAkan, m6 n=,XIWKlND)
CALL CBSLV1(MO,A, ka, n, ri, m,, X,IWK,IND)

CBSLV is called for solving Ax = b and CBSLVI is cailed for solving Atx . b. The
argument rnt is the number of diagonals below the main diagonal of A containing nonzero
elements, and rnm, the number of diagonals above the main diagonal containing nonzero
elements. It is assumed that n > 1, 0 < rnt < n, and 0 < m• < n. MO is an input
argument which specifies if CBSLV or CBSLV1 is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A is a complex array of dimension ka x m where ka > nt and m > 2rnt + mi, + 1. On
input, the first m-t+ rn,, + 1 columns of the array contain the matrix A in band form. When
the routine terminates, the array A will contain the upper i.riangular matrix U of the LU
decomposition and the multipliers which were used to obtain i?.

A is a cý-nmplex array of dimension n or larger. On input, X contains the vector b. On
output, X will contain the solution of the system of equations.

]WK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in IWK.

On an initia! call to C13SLV or CBSLVI, IND is an integer variable that reports the
status of the results. Wheni the routire terminates, INI) has one of the following values:

INDI. 0 The systern of equations was solved.
IND I. 1 Either n < 0 or ka < n.
IND --2 Either rnt < 0 or rma > n.
INI) .... 3 Either rnm < 0 or mrn, > n.
IND -- k Column k of A ha,,; been reduced to a column containing only

zeros.

After an irnitia! call to CilSIV or CBSLV 1, if' !N D -:- 0 on output then either routineo
Iriay be called wit, ) MO / 0. When MO -/ 0 it. asiýtu, med that on y b Inay nave foen iiiool-
ilied. C IS LV is called for solving the new set. of equatiolls A'7 ..: b, 1nd CBS IV! is c alled
for solving the new set of equatioons Atx.....b. 'The rooutine employs the LU decompositi,0n

293



obtained on the initial call to CBSLV or CBSLV1 to solve the new set of equations. On
input, X contains the new vector b. On output, X will contain the soluticn to the new set
of equations. In this case, IND is not referenced by the routine.

Programming. CBSLV and CBSLV1 smploy the subroutines CBFA, CBSL, CAXPY,
CSCAL, CSWAP and the functions ICAMAX and CDOTU. CBFA and CBSL are adapta-
tions by A. H. Morris of the subroutines SNBFA and SNBSL, written by E. A. Voorhees
(Los Alamos Scientific Laboratory). SNBFA and SNBSL are distributed by the SLATEC
library.

291



STORAGE OF SPARSE MATRICES

A matrix is said to be sparse if it contains sufficiently many zero elements for it to be
worthwhile to use special techniques that avoid storing and operating with the zeros. The
scheme adopted for storing a sparse m x n matrix (a1i) requires three 1-dimensional arrays
A, 1A, JA. The array A contains the nonzero elements of the matrix, stored row by row.
The array JA contains the column numbers of the corresponding elements of the A. array;
i.e., if A(k) contains (ai,) then JA(k) j. The elements of a row of the matrix may be
given in any order in A.

IA is an array containing m + I integers which specify where the rows of the matrix are
stored in A. For i < m, IA(i) is the index of the location in A where the i&1 row information
begins. It is assumed that the rows are stored sequentially; i.e., that IA.(1) _< ... - IAr(m).
IA(m+ 1) is set so that IA(m +-1) - IA(1) = the number of elements stored in A. For i < m,
if IA(i) < IA(i + 1) then A(t) is the first entry of the ith row of the matrix in A where
f = IA(i). Otherwise, if IA(i) -- IA(i + 1) then no entries for the ith row of the matrix are
stored in A. This can occur only if the ith row of the matrix consists entirely of zeros. If
this occurs then the i'h row is called a null row of A. For any i < m, IA(i + 1) - IA(i) is
the number of entries for the i"t row of the matrix that are stored in A. For convenience,
IA(i + 1) - IA(i) is called the length of the ith row.

Example. The matrix

- all a12  0 0 0 0 0 a18

10 0 0 0 0 0 0 01
0 0 0 0 0 0 a37 a08
- 0 a43 0 0 0 0 0

can be stored as follows:

A8 _.a18  _a.37  ... 3. f a4 3 1

JA: F1J78 T 2f177EB17
1 A 14- I -4 1 6 1 7I7

The storage of the elements all a12 als in the order all a 18 aJ 2 is permissable. The
elements of a row of the matrix may be given in any order desired.

Remark. it is not required that each a, in A be nonzero.

295



CONVERSION OF SPARSE MATRICES TO AND FROM
THE STANDARD FORMAT

The following subrout, ties permit one to convert sparse matrices to and from the stan-
dard format.

CALL CVRS(A, ka, rn, n, B, IB, JB,NUM,IERR)
CALL CVDS(A, ka, in, n, B, IB, JB,NUJM,IERR)
CALL CVCS(A, ka, rn, n, B, 1B, JB,NUM,IERR)

A is an m x n matrix stored in the standard format. The argument ka is the number
of rows in the dimension statement for A in the calling program. It is assumed that A is to
be stored in sparse form in the arrays B, IB, JB. CVRS is used if A is a real matrix and
B a real array, CVDS is used if .4 is a double precision matrix and B a double precision
array, and CVCS is used if A is a complex matrix and B a complex array.

The input argument NUM is the estimated maximum number of elements that will
appear in B and JB. It is assumed that B and JB are of dimension max{l, NUM} and
that lB is of dimension M + 1. IERR is an integer variable. When the routine is called, if
NUM specifies sufficient storage for B and JB, then A is stored in B, IB, JB and IERR
is assigned the value 0.

Error Return. If it is found that there is not sufficient storage in B and JB for the ith row
of A, then IERR is set to i and the routine terminates. In this case, if i > 1 then the first
i - 1 rows of A will have been stored in B and JB, and IB(1), ... , IB(i) will contain the
appropriate row locations.

Remark. No zero elements of A are stored in B, and the elements of each row of B ,re
ordered so that the column indices of the elements of the row are in ascending order.

Example. If A is the m X n zero matrix then NUM can be set to 0. In this case, the result
will be IB(I) ...... !B(m+ 1) - 1.

Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A. II. Moriis.

CALL CVSR(A, IA, JA, B, kb, i,., n)
CALL CVSD(A, IA, ,..A, B, kb, i, n)
CALL CVSC(A, IA, JA, B, kb, n,n)

A is an mi x n sparse niatrix stored in the arrays A, 1 A, .1A, and 11 is a 2-dilrensiotal
array of dimcn~sion kb x' n where kb Y n. CVSR is used if A and 1) are real arrays, CVSI)
is used11 i A ALnd I are do(l a)hb precision arrays, an d C(VSC is v.scd if A and 1B are con phux
arl ys. When the routine is called, the mnarix A is stored in the array 1B in the stiadard
formatt.

297



Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A. 11. Morris.

298



CONVERSION OF SPARSE REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The following subroutines are available for converting sparse real matrices to and frorm
double precision form.

CALL SCVRD(A, IA,, JA, B, IB, JB, m)

A is a sparse real matrix stored in the arrays A, IA, JA. A is a real array and B a
double precision array. If A and JA contain k elements then it is assumed that B and ,IB
are arrays of dimension k. It is also assumed that the matrix A has m > I rows and that
1B is an array of dimension m + 1. SCVRD stores the matrix A in double precision form
in B, IB, JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays IA, 3A and IB, JB reference different storage areas.

Programmer. A. H. Morris.

CALL. SCVDR(A, IA, JA, B, 1B, JB, rn)

A is a sparse double precision matix stored in the arrays .4, IA, JA. A is a double
precision array and B a real array. If A and JA contain k elements then it is assumed that
B and JR are arrays of dimension k. It is also assumed that the matrix A hos rn > I rows
and that 1B is an array of dimension rn + 1. SCVDR stores the matrix A in single precision
form in B, [B, JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is a•,urned that the arrays IA, JA and I11, J B reference differcwit storage areas.

Programmer. A. 11. Morri,..



THE REAL AND IMAGINARY PARTS OF A SPARSE COMPLEX MATRIX

If A = (aij) is a complex matrix then let Re(A) = (Re(ano)) and Im(A) = (Im(aj))
denote the real and imaginary parts of A. If the matrix A is stored in sparse form, then
the following subroutines are available for obtaining Re(A) and Im(A) in sparse form.

CALL CSREAL(A, IA, JA, B, IB, JB, m)

A is a sparse complex matrix stored in the arrays A, IA, JA. A is a complex array
and B a real array. If A and JA contain k elements then it is assumed that B and JB are
arrays of dimension k. It is also assnmed that the matrix A has m > I rows and that 1B
is an array of dimension m + 1. CSREAL stores Re(A) in iparse form in B, IB, JB.

Remarks.

(1) No zero elements of Re(A) are stored in B.
(2) It is assumed that the arrays IA, JA and IB, JB reference different storage areas.

Programmer. A. I1. Morris.

CALL CSIMAG(A, IA, JA, B, IB, J B, rn)

A is a sparse complex matrix stored in the arrays A, IA, JA. A is a complex array
and B a real array. If A and JA contain k elements then it is assumed that B and JB arc
arrays of dimension k. It is also assumed that the matrix A has m > I rows and that IB
is an array of dimension m + 1. CSIMAG stores Ira(A) in sparse form in 1), 1B, JB.

Remarks.

(I) No zero elements of fin(A) are stored in B.
(2) It is assurne] that the arrays i A, JA and 113, J 13 reference different storage area's.

Programmer. A. 11. Morris.

30



COMPUTING A + Bi FOR SPARSE REAL MATRICES A AND B

Given the real m x n matrices A and B stored in sparse form. Then the subroutine
SCVRC is available for obtaining the complex matrix A + Bi where i = V--T.

CALL SCVRC(A,IA,JA,B,IB,JB,C,IC,JC,rn,n,NUM,WK,IERR)

A and B are real m x n matrices stored in the arrays A,IA,JA and B,IB,JB. It is
assumed that A 4- Bi is to be stored in sparse form in the arrays C,IC,JC. A and B are
real arrays and C a complex array. NUM is the estimated maximum number of elements
that will appear in C and JC. It is assumed that C and JC are arrays of dimension
max{1, NUM} and that IC is an array of dimension m + 1.

WK is a real array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When SCVRC is called, if NUM specifies sufficient storage
for C and JC then A + Bi is stored in C, IC, JC. Also IERR is assigned the value 0.

Error Return. If there is not sufficient storage in C and JC for the kth ,ow of A + Bi,
then IERR is set to k and the routine terminates. In this case, if k > 1 then the first k - 1
rows of A + Bi will have been stored in C and JC. Also IC(1),... ,IC(k) will contain the
appropriate row locations.

Remark. No zeros are stored in C.

Programmer. A. H. Morris.



COPYING SPARSE MATRICES

The following su3routine• are available for copying sparse matrices.

CALL RSCOPY(A-AJABIB,JB,m)
CALL DSCOPY(A,IA,JA,B,IB,JB,m)
CALL CSCOPY(A,IA,JA,B,IB,JB,m)

RSCOPY is used if A and B are real arrays, DSCOPY is used if A and B are double
precision arrays, and CSCOPY is used if A and B are complex arrays.

A is a sparse matrix stored in the arrays A, IA,JA. If A and JA contain k elements
then it is assumed that B and JB are arrays of dimension k. It is also assumed that the
matrix A has m > 1 rows and that 1B is an array of dimension m + 1. The routine copies
the matrix A and stores the copy in B,IB,JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays A, •' A, JA and B, IB,JB reference different storage

areas.

Programmer. A. 11. Morris.



COMPUTING CONJUGATES OF SPARSE COMPLEX MATRICES

If A = (aij) is a complex matrix stored in sparse form, then the following subroutine
is available for computing the conjugate matrix A

CALL SCONJ(A, IA, JA, B, IB, JB, m)

It is aqsumed that the sparse complex matrix A is stored in the arrays A, IA, JA. If A
and JA contain k eloments, then it is also assumed that B and JB are arrays of dimension
k. A and B are complex arrays. It is assumed that the matrix A has m > 1 rows and that
IB is an array of dimension m + 1. When the routine is called, the conjugate matrix A is
stored in B, 1B, JB.

Remark. The user may let B = A, 1B = IA, and JB = JA when 1A(1) = 1.

Programmer. A. 11. Morris.

7



TRANSPOSING SPARSE REAL MATRICES

The subroutines RPO(SF and RPOSEI are available for transposing a sparse M x Y1 real
matrix A. RPOSEI is more general than RPOSE. For any pernmtation 7r = {i,.. ,im}
of {I, . .°, 7} let P denote the corresponding mr x m permutation matrix. Then RPOSE1
computes the matrix (PA)t.

CALL RPOSE(A, IA, JA, B, 1B, JB, m,n)

It is assumed that the sparse matrix A is stored in the arrays A, IA, JA. If A and JA
contai" k elements, then it is also assumed that B and JD3 are arraya of dimension k and
that 1B is an ariay of dimension n + 1. When RPOSE is called, the transpose At is stored
in B, 1B3, JB.

Remarks. RPOSE orders the elements of each row of A' so tCat i0e column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements
in A. if zero elements appear in the array A, then the zero elements wili also appear in B.

Restriction. !' is assuined that the storage areas B, 1B, JiI3 do not overlap with the storage
areas A, rA, JA.

Programmer. A. H. Morris.

Reference. Gustavson, F. G., "Two Fast Algorithms for Sparse Ma.rices: Mi. tiplicatin!.
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.

CALL RPOSEI(2r,A, IA, JA, B, IB, JB, m,n)

It is assumed that 7r is an integor array of dimension m containing the data {il, .• ., i,.},
and that the sparse matrix A is stored in the arrays A, 1.A, JA. If .4 and JA contain k
elements, then it is also assumed that B and JB are wrrays of dimension k and thaL III is
an array of d'mension n f 1. When RPOSE1 ii called, (1),4 )t is computed art thc resi:lts
are stored in 13, 113, Ji.

Remarks. l1POSEI orders the elemients of eac•h row of (I A)t so that tre coh inind;ces
of the elements of the row are in ascending order. However, it does no cliecking for zero
clqIneiiLi in A4. If zero echlen ts appear in the array A, then the iero elements will also
appear ini L3

Restriction. It is assumcd that the storage areas Bf, II: JBi do not, ovcrlajp w• Lite storaaoe
area-s A, IA, .JA.

Programmer. A ii. M,,rri-i.

Reference. (;ustavsnn, F. (;, "Two Fast Algo)rithris for Sjrar:-, Nilri•ns: oiliht~i it

Anid Peru •itt 'Iaresp,:ition," ACAI Trans. Alath Sofiware 4 (19748), p. 2, IJ



TRANSPOSING SPARSE DOUBLE PRE.CIS!ON MATRICES

The subroutines DPOSE and DPOSE1 are available for transposing a sparse m )-" n
double precision matrix A. DPOSEI is more general than DPOSE. For any permutation
r - {il, ... , i,} of (1, .. . ,m} let P denote the corresponding mx rn permutation matrix.
Then DPOSE1 computes the matrix (PA)t.

CALL DPOSE(A, IA,,IA, B, IB, JB, m, n)

It is assumed that the sparse matrix A is Atored in the arrays A, IA, JA. A and B
are double precision arrays. If A and .JA contain k elements, then it is also assumed that
B and JB are arrays of dimension k: and that iB is an array of dimension n + 1. When
DPIOSE is called, the transpose At is stored i i B, IB, JB.

PRemarks DPOSfl orders tle elements of each row of At so that the column indices of the
element,,s of the row are in ascending order. However, it does no checking for zero elements
in A. If zero elemenits appear in the array A, then the zero elements will also appear in B.

Restriction. !t is assumed that the storage areas B, IB, JB do not overlap with the storage
areas A, IA, JA.

Programmur. A. ff. Morris.

Reference. Gu-tavson, F. G., "Two Fart Algorithms for Sparse Matrices: Multiplication

and Permuted 'Tansposition," ACM Trans. Math Software 4 (1978), pp. 250-269.

CALL DPOSEI(r. ,A, [A, JA, B, IB, J3, Yn,n)

It is asquned that 7r ;s an integer array of dimension rn contaij..ing the data {i,, .. ,i

and that the sparse matrix A is stored in the arrays A, IA, JA. A and B are double precision
arrays. If A and JA contain k elements, then it is also assrined that B and J.3 are arrays
of dimension k and that 1B is an array of dimension n +- 1. When DPOSFI1 is called, (PA)t
is computed and the results are stored in B, ItB, .113.

Remarks. 1)PO"-EI orders the elements of each row of (1)A)t so that the colunin indices
of the elements of the row are in ascending order. However, it, does no checking for zero
elements in A. if zero eliieeiits appear in the array A, then the zero eleenwnts will also
appear in B.

Restriction. It is assumed that the storage arca- 1B, 11, J 13 (1(r not overlap wii h the storage
areas A, IA, J A.

Programmer. A. If. Morr~s.

Reference. G iistavson, P'. (;., "Tw,, wV• t AIgorithmis for Sparsse Matrices: N ultpiicatioL
and lPermziited T'ransp eit onu A(,CM Trans. Math Software 4 (1 -78), pp 25K} 2'9;9

311



TRANSPOSING SPARSE COMPLEX MATRICES

The subroutines CPOSE and CPOSE1 are available for transposing a sparse m x n
conmplex matrix A. CPOSEI is more general than CPOSE. For any permutation .r =
il,. } of {1, ... ,m} let P denote the corresponding m x mi permutation matrix.

Then CPOSE1 computes the matrix (PA)t.

CALL CPOSE(A,IA,JA,B,IB,JB,rn,n)

it is assumed that the sparse matrix A is stored in the arrays A, IA, JA. A and B
are complex arrays. If A and JA contain k elements, then it is also assumed thatl B and
JB are arrays of dimension k and that !B is an ariay of dimension n + 1. When CPOSE
is cc.lled, the transpose A- is stored in B, 1B, JB.

Remarks. CPOSE orders the elements of each row of At so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements
in A. If zero elements appear in ihe array A, then the zeiz elements will also appear in B.

Restricion. It is assumed tnat the storage areas B, IB, JB do riot overlap with the storage
areas A, IA, JA.

Programnmer. A. H. Morris.

Reference. Custavson, F. G., "Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition," ACM Trans. Math Software 4 (1978), pp. 250-269.

CALL CPOSEI(n-,A,1A, JA, B, 1B, JB,m,n)

It is assumed that ir is an integer array of dimension rn containing the data {fi, ... , )ir },

and that the sparse matrix A is stored in the arrays A, IA, JA. A and B are complex
arrays. If A and JA contain k elements, then it is also essumed that B and JB are arrays
of dimension k and that IB is an array of dimension n + 1. When C1OSi., is called, (PA)t
is computed and the results are stored in 11, IB, J1.

Remarks. CPOSE1 orders the elements of each row of (PA)t Yo that the column indiiCes
of the elenicnts of Ch•• r.w are in ascendi*ng order. IHowever, it i,)cs no checking for terro
elements in A. If zero enient .t appear in the array A, Ohwn the zero elements will also
appeax in Ui.

Rest,'ition. It is ;i,iý4iilned that, the storage area.,, 13, I, J.113 do not -verlal. wtli the storag(e
areas A, ]A, JA.

Programmer. A. Ii. Morris.

Refcence. (,i:itavson, 1> (, "Two lFa:c A _
anid ierinuted Tran.:-ipostioni A4C(M 7TanK. VaXth ,i;- t)(wre 4 (!978), pp.'. 250d) 2t9.

3 1



ADDITION OF SPARSE MATRICES

The following subroutines are available for adding sparse matrices.

CALL SAD D(A, IA, JA, B, IB, JB, C, IC, JC, rn, n,NUM,WK,IERR)
CALL DSADD(A, IA, JA, B, iB, JB, C, IC, JC, m, n,NUM,WK,IERR)
CALL CSADD(A, IA, JA, B, IB, JB,C, IC, JC, n, n,NUM,WK,IERR)

A and B are sparse m x n matrices stored3 in the arrays A,IA,JA and B,IB,JB. IL
is assumed that A + B is to be stored in sparse form in the arrays C,IC,JC. NUM 's tl~e
estimated maximurn number of elements that will appear in C and JC. It irs assumed that
C and JC are arrays of dimension rnax{1, NUM} and that IC is an array of dimei's:.in
-m 1- 1.

SADD is used if A,B,C, and WK are real arrays, DSADD is used if A,B,C, aid WK
ate double precision arrays, and CSADD is used if A,B,C, and WK are complex arrays.

WK i3 an array of dimension n or larger that is a work space for the routine.

IERR is an integer variabl2. When the routine is called, if NUM specifies sufficient
storage for C and JC then A + B is computed and stored in C,IC,JC. Also IERR is
assigned the value 0.

Error Returo. If there is not sufficient storage in C and JC for the ith row of A + B, then
IFRR is set to i and the routine terminates. In this case, if i :- 1 then the first i -- 1 rows
of A + B will have been computed and stored in C and JC. Also IC(1), ... , IC(i) will
contain the appropriate row locations.

Renmarks.

(1) No zeros are stored in C.
(2) It i.3 assumed that C, IC, JC reference different storage areas than A, IA, JA and

B, IB, J B.

Programmer. A. II. Morris

131



SUBTRACTION OF SPARSE MATRICES

The following subroutines are availabie for subtracting sparse matrices.

CALL SSUBT(A, PA, JA, B, I1B, JB, GC, IC, JC, Yn, n,NUM,WK,IERR)
CALL DSSUBT(A, .A, JA, B,IB, JB,C, IC, JC, rn, n,NUM,WK,IERR)
CALL CSSUBT(A, JA, JA, B, 11, J1B,C, IC, JC, m, r,NUM,WK,IERR)

A and B are sparse Yn x n matrices stored in the arrays A,IA,JA and B,IB,JB. It
is assumed that A -..- B is to be stored in sparse form in the arrays C,IC,JC. NUM is the
estimated maximum number of elements that will appear in C and JC. It is assumed that
C and JC are arrays of dimension max{1,NUM} and that IC is an array of dimension

-m + 1.

SSUBT is used if A,B,C, and WK are real arrays, DSSUBT is used if A,B,C, and WK
are double precision arrays, and CSSUBT is used if A,B,C, and WK are complex arrays.

WK is an array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When the routine is called, if NUM specifies sufficient
storage for C and JC then A.-- B is computed and stored in C,IC,JC. Also IERR is
assigned the value 0.

Error Return. If there is not sufficient storage, in C ard JC for the ith row of A. -- B, then
IERR is set to i and the routine terminaies. Iri this case, if i > 1 then the first i 1 rows of
A - B will have been computed and stored in C and JC. Also IC(1), ... ,C(i) will contain
the appropriate row locations.

Remarks.

(1) No zeros are stored in C.
(2) It is assumed that C, IC, JC reference different storage areas than A, IA, JA and

B, IB, JB

Programmer. A. H. Morris.

317

mm rn m mm mm m



MULTIPLICATION OF SPARSE MATRICES

The following subroutines are available for multiplying sparse matrices.

CALL SPROD(A, IA, JA, B, [B, JB, C, IC, JC, t, m, n,NUM,WK,IERR)
CALL DSPROD(A, IA, JA, B, 1B, JB, C, IC, Jc, e, s, n,NUM,WK,IERR)
CALL CSPROD(A, IA, JA, B, IB, JB, C, IC, JC, t,m,rn,NUM,WK,IERR)

A is a sparse f x rn matrix stored in the arrays A,IA,JA, and B a sparse m × n matrix
stored in the arrays B, IB, JB. It is assumed that AB is to be stored in sparse form in the

arrays C,J.C,JC. NUM is the estimated maximum number of elements that will appear in
C and JC. It is assumed that C and JC are arrays of dimension max{1, NUM} and that
"IC is an array of dimension f + 1.

SPROD is used if A,B,C, and WK are real arrays, DSPROD is used if A,B,C, and WK
are double precision arrays, and CSPROD is used if A,B,C, and WK are complex arrays.

WK is an array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When the routine is called, if NUM specifies sufficient
storage for C and JC then AB is computed and stored in C,ICJC. Also IERR is assigned
the value 0.

Error Return. If there is not sufficient storage in C and JC for the ith row of AB, then
IERR is set to i and the routine terminates. In this case, if i > 1 then the first i - I rows of
AB will have been computed and stored in C and JC. Also IC(1), ... , IC(i) will contain
the appropriate row locations.

Remarks.

(1) No zeros are stored in C.
(2) It is assumed that C, IC, JC reference different storage areas than A, IA, JA and

B, IB, JB.

Programmer. A. 11. Morris.

3 19



PRODUCT OF A REAL SPARSE MATRIX AND VECTOR

Let A be a real rn x n sparse matrix stored in the arrays A, IA, JA. Then the following
subroutines are available for multiplying A with a real vector.

CALL MVPRD(m,n,A,IA,JA,x,y)

The argument x is a column vector of dimension n and y an array of dimension m.
When MVPRD is called, Ax is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. 11. Morris.

CALL MVPRDI(rn, nA, IA, JA, x, y)

The arguments x and y are column vectors of dimension n and m respectively. When
MVPRD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

CALL MTPRD(m,n,AIA,JA,x,y)

The argument x is a row vector of dimension m and y an array of dimension n. When
MTPRD is called, zA is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. 11. Morris.

CALL MTPRDi(rn,,A, IA, JA, x,y)

The arguments x and y are row vectors of dimension m and n respectively. When
MTPRD1 is called, xA + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. 11. Morris.

321



PRODUCT OF A DOUBLE PRECISION SPARSE MATRIX AND VECTOR

Let A be a double precision m x n sparse matrix stored in the arrays A, IA, JA. Then
the following subroutines are available for multiplying A with a double precision vector.

"CALL DVPRD(m,n,A,IA,JA,x,y)

The argument x is a column vector of dimension n and y an array of dimension m. A,
x, y are double precision arrays. When DVPRD is called, Ax is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

CALL DVPRD1(m, n,A,IA,JA,x,y)

The arguments x and y are column vectors of dimension n and tn respectively. A, x, y
are double precision arrays. When DVPRD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. 11. Morris.

CALL DTPRD(m, n, A, IA, JA, x, y)

The argumt.,t x is a row vector of dimension m and y an array of dimension n. A, x,
y are double precision arrays. When DTPRD is called, zA is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

CALL DI"PRD1(mn,n,A, IA, JA, x,y)

The arguments x and y are row vectors of dimension m and n respectively. A, x, y are
double precision arrays. When DFPRDI is called, xA -1 y is computed Und stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. If. Morris.

323



PRODUCT OF A COMPLEX SPARSE MATRIX AND VECTOR

Let A be a complex rn x n sparse matrix stored in the arrays A, IA, JA. Then the
following subroutines are available for multiplying A with a complex vector.

CALL CVPRD(m, n, A, IA, JA, x, y)

The argument . is a column vector of dimension n and y an array of dimension rn.

A, x, y are complex arrays. When CVPRD is called, Ax is computed and stored in y.

Remark. It is assumed that the arays A, x, y do not overlap.

Programmer. A. 1t. Morris.

CALL CVPRDI(m, n, A, IA, JA, x, y)

The arguments x and y are column vectors of dimension n and rn respectively. A, x, y
are complex arrays. When CVPRD1 is called, Ax + y is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

CALL CTPRD(m,n,AIA,JA,x,y)

The argument x is a row vector of dimension m and y an array of dimension n. A, x, y
are complex arrays. When CTPRD is called, xA is computed and stored in y.

Remark. It is assumed that the arrays A, x, y do not overlap.

Programmer. A. H. Morris.

CALL CTPRDI(n,n,A, IA, J 1,x,y)

Trie arguments x and y are row vectors of dimension Yn and n respectively. A, x, y are

complex arrays. When CTPRDI is called, xA + 9 is computed and stored in y.

Remark. It is assumed that the arrays Ax,y do not overlap.

Programmer. A. H. Morris.

325



L1 NORM OF A SPARSE REAL MATRIX

If A = (ai,) is a sparse real matrix then the following subroutines are available for
computing the 4j norm IBAII =- maxi ,jI of A.

CALL S1NRM(A,IA,JA,m,n,ANORM,WK)
CALL DS1NRM(A,IA,JA,m, n,ANORM,WK)

SINRM is used if A and WK are real arrays and ANORM a real variable, and DSIN'RM
is used if A and WK are double precision arrays and ANORM a double precision variable.

A is a sparse m x n matrix stored in the arrays A, IA, JA. When the routine is called,

the variable ANORM is assigned the value IIA111.

WK is an array of dimensiou n or larger that is a work space for the routine.

Programmrr. A. H. Morris.

327



L.o NORM OF A SPARSE REAL MATRIX

If A = (aij) is a sparse real m x n matrix then the following functions are available for
computing the t4, norm IIA(Ioo = maxi EjjaIj of A.

SNRM(A,IA,JA,m, n)
SDSNRM( AI A,J A,n, n)

SNRM is used if A is a real array and DSNRM is used if A is a double precision array.
SNRM is a real function and DSNRM a double precision function.

A is a sparse m x n matrix stored in the arrays A, IA, JA. When either of these
functions is called then the function is assigned the value IIAII.

Remark. DSNRM must be declared to he of type DOUBLE PRECISION in the calling
program.

Programmer. A. H. Morris.

329



ORDERING THE ROWS OF A SPARSE MATRIX
BY INCREASIi LENGTH

Let A be a sparse m x n matrix stored in the arrays A, IA, JA. The following subroutine
is available for ordering the rows of the matrix by increasing length.

CA!..L SPORD(m, r,, IA, R,IWK)

R is an integer array of dimension m. When SPORD is called, the rows of the matrix
are ordered by increasing length. The row ordering is given in R.

IWK is an integer array of dimension m + n + I or larger that is used for a work space.

Remark. If rows il, • • -, ik are the rows of length t, then the indices il, .i.. ,A; are listed in
R in increasing sequence.

Programmer. A. 11. Morris.

3: :1



REORDERING SPARSE MATRICES INTO BLOCK TRIANGULAR FORM

Let A be a sparse n x n matrix stored in the arrays A, 1A, JA. Then the subroutine

,3LKORD is available for reordering the rows and columns of A so that one has a lower
block triangular matrix t 'A ll 0
()A 21  A 2 2

Akl Ak2 ... Akk

where the blocks Ajj are square and cannot themselves be reordered into lower block trian-
gular form.

CALL BLKORD(n,IA, JA,R,C,IB,k,IWK,IERR)

R and C are integer ar,'ays of dimension n, and IERR is an integer variable. When
BLKORD is called, the rows of the matrix are first ordered so that the main diagonal
contains a maximum number of nonzeros. After this is done then IERR = the number of
zeros that appear on the diagonal. If IERR = 0 then the rows and columns of the matrix
are ordered into block triangular form (*). The row ordering is given in R and the colun-
ordering is given in C.

1B is an integer array of dimension n and k is an integer variable. When the matrix has
been ordered into block triangular form (*) then k = the number of blocks A,,. Also IB(i) --
the row number in the block trianguiar matrix of the beginning of block Ajj (i = 1, . . . ,k).

IWK is an integer array of dimension 5n or larger that is used for a work space by the
routine.

Error Return. If IFRR / 0 then the routine terminates. In this case, I? contains the row
ordering that, gives the miain diagonal with the maximum number of nouzeros.

Remark. IA, JA, and it are ni ot modified by the routine.

Programming. IILKORI) employs the subroutinies MC21A, MC211, MCI 31), MCI 31 dh-
signed by I. S. Duff and J. K. Ieid (At,;RlE' llarwell,lngland),

References.
(1) Duff, 1. S., "OM Algorithmns for Obtaining a Maxiiniin 'lTransver,•a," ACMAI Thins

Math Software 7 (198 I), p)p.31 5 330.
(2) l)uff, I. S. and l6-id, J. K., "An Ihm lI.icntatiomn of 'l'arjai's ,\lgorithm for thn hllck

Triangularitzation(if a NMatrix," A('AM 7Trans. AI~ths Softuware .1 (1978), pp, 137 1-17.



SOLUTION OF SPARSE SYSTEMS OF REAL LINEAR EQUATIONS

Let A be a nonsingular t. x n sparse real matrix stored in the arrays A, IA, JA and let b
be a real column vector c ~irnension ni. The subroutines SPSLV and RSLV are available for

solving the system of eq ations Ax =- b, and the subroutine TSLV is available for solv'.ig
the transposed system of equations .4tx -b. These routines employ partial pivot gauiss
elimination with column interchanges to first obtain an LU decomposition of A. If SPSLV
is called then only the off-diagonal nonzero elements of U are stored, and then the equations
are solved. However, if RSLV or TSLV is called then the off-diagonal nonzero elements of
both L and U are stored. Thus RSLV and TSLV will frequently require at least double the
amount of storage needee by SPSLV, but they can be recalled to solve other systems of
equations Ax =r and A t x =r without having to redecompo3e thie matrix A. Moreover,
since RSLV and TSLV will always generate the same LU decomposition of A, RSLV can
be called to decompose A anid solve a system of equations Ax =b, and then TSLV can be
called ~o solve a transposed system of equations At x =r using the decomposition obtained
by RSLV.

CALL SPSLV(n, A, IA, JA, b, R,C,MAX,X,IWK,WK,IERRl)

It is assumed thaL ni > 1 and that X is an array of dimension ti. The solution of thre
systemn of equations Ax =b is comnputed anid stored in X. AIA, JA anid b are niot modified
by the routine.

I? iii a.o integer array of n entries specifying the order in which the ni rows of A are
to be t xamnineJ anid processed. For example, if I? contains '.he entries il ., thenl the

algoritlim first pcirfornis operations on row ii , next on row ii.2, (tc. IL. is well known that the
order In hticii the rows of a sparse matrix are processed canl have a Sign ific ant illipac t oil

the over all performir~amc e of a stibroiti ne suich as SPI ) L. Thlis I? must be chosel njudiciouisly.

H is riot modified by the routinel(.

is anl integer arraiy of n entries w ft nh plays a role sinlijlar to H?. On' in puit C( ISpec ifics

a suggested order 'in whi(ch tin ?I coluituim.is of A1 shouild be ordered fo(r sc(ci, of the pivo(t

efeIteniwts. i'or example, if C' (ioniains the entries J) ., j,, ithen it i1stgý ese thfilt, t1n

first, pivot ielvitia.t rri~iy be froin co mit it J , 1a , 0 com l p I)Ivot. (ltinefi. fron i colIoknk jrý_ c I (

However, sinec partial pivotling withi citltiniut linerchiazige is perforined, onl ouitput C 11a);

have beeni miodified. Oil oiltitnit, C w*' it rolt aiii the actkal ordcr of the n1 colitnwit fronm

which-! time, pivot elements were !electe,1 Tlfii o)rder Aill depend o)ii A alit1 le, atol tiot, ont )

1W K anid WNK br rasfrni rilu y the routne ita 11 Ni AX 1. kl iniHotagit i

Whenl PSIXI is cala tit Lifeooi on)f A1 P, irst obhtiniwd "wire U isý a uiti 1Tpt'r

trilangulalr itiatrix. The oth-dia;gomil 4)1 liott of' U Is stored ink ipiarse tori-,i tii h'AK aiiof Wk

NI A X is alt est iniatte of thne 11ii 1111 1111.!w ofi itf in tin Ue il i i lei I S ( t ii tl f ho

mitt/er and haýve to ftc stkorti (NAX \ iy 1(1I), 2_). IWK Pi _ite1 atL11V .v,of dtii

:liNA X 2 or larger, anid WNK 1 a 1 Al a itra f itntt, NiA rLrtr



IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IEI, I1 > 0 Ax = b was solved. IERR = max{i,m} where m is
the number of off-diagonal nonzero elements of U.

IERR 0 The argument n is nonpositive.
IERR -k Row R(k) of A is null.
IERR - n - k Row R(k) of A has a duplicate entry.
IERR -2n - k Row )?(k) of A has been reduced to a row containing

only zeros.
IERR -- 3n - k Row k of the upper triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
Uf it is suspected that the rows and columns of .4 can be reordered so that one has a lower
block triangular matrix

(All 0
A21 A22

14k, Ak2 ... Akk

then the subroutine BLKORD should first be tried. This subroutine will specify -in ordering
for lower block triangular form if one exists. However, if such an ordering does not exist
and one is uncertain how to order the rows then the row ordering given by the subroutine
SPORD frequently yield3 good resulti In any case, the selection of an initial column or-
dering C is never bothersome since partial pivoting with cclumn inLerchanges is performed.
The initial ordering C(i) - i (i =- 1, ... , n) always suffices.

Programming. SPSLV is a modification by A. 11. Morris of the subroutine NSPIV. SPSIN
employs the subroutine NSPIV1. NSPIV and NSPIVI were written by Andrew H. Sherman
(University of Texas at Austin).

Reference. Sherman, Andrew IL,"Algorithiris for Sparse Gaussian Elimination with Partial
Pivoting," '.'Al T'ans. Math Software 4 (1978), pp.330--33 8.

CALL RSLV(MO,L, A, IA, JA, b, ?, C,MAX,X,IWK,WKIE:RR)
CALL TSLV(MO,n, A, IA, JA, b, R,C,MAX,X,IWK,WK,IERR)

KSIN is called for solving Ax b, and TSIN is calked for solving Aix ýv b. MO is ani
input argurneiit which specifies if .S IN or TS IN is being called for the firsi, time. On an
initial call, MO 0 and wo have the following setup:

It is a.sst!, ned t hait Ti - I and that A is an array of diimenmiilon yi. The solot.•t if tie
system Of equations is stored in X. A, 1A, JA a.tre nrot modified by thie rliitimes. ) atnd b
in ay share the sariti st.oirage area. If N is a separate sriw (ý'c arca Own e is riot II modifitd tby

the rou tines.



RI is an integer array of n entries specifying the order in which the n rows of A are

to be examined arid processed. For example, if R contains the entries il, ... , :,i, then .hie
algorithm first performs operations on row ii, next on row 62, etc. It is well known thaL the
or-'er in which the rows of a sprrse matrix are processed can have a significant impact on
the overall performance of subroutines such as RSLV and TSLV. Thus R must be chosen
ji-diciousl). R is not modified by the routine.

C is an integer array of ý, entries which plays a role similar to R, On input, C specifies
a suggt-,ted order in which the n columns of A should be ordered for selection of the pivot
elemeuts. For example, if C contains the entries Jil, ... j, then it is suggested that the
first pivot element may be fiery column ji, the second pivot element from column j2 , etc.
Howecr, since partial pivoting wiLh column interchange is performed, on output C may
have blien modified. On output, C will contain the actual order of the n columns from
which .I- pivot elements were selected. This order will depend on A and R, and not on b.

iWK and WK are arrays for internal use by ithe routines, and MAX is an input ar-
gument. On an init'ial call to RSLV or TSLV, an LU decomposition of A is first obtained
where L is i lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L an,] U ar, stored In sparse form in IWK and WK. MAX is an estimate of
the maximum nomber oi off-diagonal elements of L and U that might be nonzero and have
to be storeJ (MAX < n(n - 1)). IWK is an integer array of dimension 4n + MAX 1 2 or
larger, and WK is a real array of dimension 2n + MAX or larger.

On an initial call to RSN or TSLV, JERR is an integer variable that reports the status
of the results. Wiien the routine terminates, IERR has one of the following values:

IERR > 0 The system of equations was solved. IERR=max{1,m}
where rn is the total number of off-diagonal nonzero
eleraents of L and U.

IIRR 0 T",e argument n is nonpositive.
IERR -... k Row R(k) of A is null.

IERR -- n -- k Row R(k) of A has a duplicate entry.

IF.RR -- 2n . k Row R(,) of A has been reduced to a row containing
only zeros.

IERR 3n - k Row k of L or U exceeds storage. MAX must be in-
creased.

W'hen arn error is detected, the routine immediately terminates.

After an initial call to RSLV or TSLV, if IERR > 0 on output then either routine may
be called with MO / 0. Whem MO / 0 it is assusmed that only b may have been modified.
RSI,V iN called for solv¢ing the new set of e(qiations Ax . b, and TSLV is called for solving
th1e new set of equationm A" x b ' The routine employs the LU decomposition obtained
on the initial call to RS LV c)r TSIN to slve the new system of equations. The solution is
stored in .XV A• before, X and b may siare the same storage are-. If MO / 0 thezn only
n, R, (., IWK, anrd VV ( re used. A, .IA, 3,4, 1-1 AX, and IERR are not refcerenced by the

Note. The, reinarks coic&n<i :ring the ordeiring f the rows and col iuls of A when SI)SLV is

27



used hold also for IISLV and TSLV.

Programming, RSLV calls the siubroutines RSLVl and SPLU, and 'I'SLV calls the subrouu-
tines TSLVI and SPLU. These routines were written by A, Ii. Morris.

MillS



COMPUTATION OF THE CONDITION NUMBER
OF A REAL SPARSE MATRIX

If A is a real n x n sparse matrix then the following subroutine is available for estimatirg
the 4j condition number cond 1 (A) of A.

CALL SICND(n, A, IA, JA, R, C,MAX,COND,IWK,WKIERR)

A is a sparse matrix stored in the arrays A, IA,,IJA. Thc arguments R, C, MAX,
IWK, and WK are the same arguments used for the subroutines RSLV and TSILV, the only
exceptions being that IWK now is an array of dimension 5n + MAX + 2 or larger, and
WK is an array of dimension 4n + MAX or larger.

COND is a real variable. When S1CND is called, then the subroutine RSLV is first
invoked to obtain an LU decomposition of A, which is stored in the arrays IWK and WK.
Then COND is assigned the value 0 if A is singular and an approximation of the condition
number condi(A) if A is nonsingular.

IERR is an integer variable that reports the status of the results. When SiCND
terminates, IERR has one of the following values:

JERR > 0 A is nonsingular. COND = an approximation of the condition
numbex of A, and IERR = max{', rn} where rn is the number of
off-diagonal nonzero elenents of L and U.

IEPR= 0 A is singular and COND= 0.
IERR -- -k Row .(k) of A has a duplicate entry.
IEIR1 < -n Row R(k) of L or U exceeds storage where IERR = -(n -f k).

MAX rnust be increased.

When an error is detected, the routine immediately i~erminates.

-Usage. Af'er S1CND terminates, if IERR > 0 then RSLV or TSLV may be cailed with MO
/ 0 to solve a systerm of equations. In this case n, R, C,WK, and IWK axe used by RSLV
and TSLV, and oust not be modified by the user.

Aigorithm•. A mcdification of 0te Hager procedure by Nicholas J. Iligharo (University of
Manchester, England) is usedi.

Programrming. SI CNI) employs the subrootines SNIVN{M, SONIEST, SCOPYRS. 1 V, TSIV,
RSLVi, TSLVI, and SPLU, and the functions SASUM aid ISAMAX. SICNI) wis written
by A. 1I. Morris. SONES'lI was written by N. J. Ilighain and mnodificdl by A. If. Morris.

References.

(1) lIigh am, N . ,"FORTR!AN Code' i for Estimatinig the 0(11, Norx,', of a Real or Complex
Matrix, with Applicati~ons to C(ondition Lst.itmatio(n," A(.'M I'Tll r M11'.0h Software 1.1
(1988), pp. '181 196,

88,9



(2) -. ,"Algorithm 674. FORTRAN Codes for Estimating the One-Norm of a Real
or Complex Matrix, with Applications to Condition Estimation," ACM Trans. Math
Software 1.5 (1989), p. 168.

34



DOUBLE PRECISION SOLUTION OF SPARSE SYSTEMS
OF REAL LINEAR EQUATIONS

Let A be a nonsingular n x n sparse double precision matrix stored in the arrays
A, IA, JA and let b be a double precision column vector of dimension n. The subroutines
DSPSLV and DSLV are available for solving the system of equations Ax = b, and the
subroutine DTSLV is available for solving the transposed system of equations Atx = b.
These routines employ partial pivot Gauss elimination with column interchanges to first
obtain an LU decomposition of A. If DSPSLV is called then only the off-diagonal nonzero
elements of U are stored, and then the equations are solved. However, if DSLV or DTSLV is
called then the off-diagonal nonzero elements of both L and U are stored. Thus DSLV and
DTSLV will frequently require at least double the amount of storage needed by DSPSLV, but
they can be recalled to solve other systems of equations Ax = r and Atx = r without having
to redecompose the matrix A. Moreover, since DSLV and DTSLV will always generate the
same LU decomposition of A, DSLV can be called to decompose A and solve a system of
equations Ax = b, and then DTSLV can be called to solve a transposed system of equations
Atx =- r using the decomposition obtained by DSLV.

CALL DSPSLV(n, A, JA, JA, b, R, C,MAX,X,IWK,WK,IERR)

A , b, and X are double precision arrays. It is assumed that n > 1 and that X is an
array of dimension n. The solution of the system of equations Ax = b is computed and
stored in X. AIA. JA and b are not modified by the routine.

1R is an i.-teger array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries il, ... . ,:, then the
algorithm first performs operations on row il, next on row i 2 , etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on the
overall performance of a subroutine such as DSPSLV. Thus R must be chosen judiciously.
R is not niodified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifics
a suggested order in which the n columns of A should be ordered for selection of the pivot
elernents. For example, if C contains the entries .1, ... ,j' then it is suggested that the
first pivot element may be from column ji, the second pivot element from column 12, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

"WI•K and WK are arrays for internal use by the routine, and MAX is an input argument.
When DI),P, -LV is called, an LU decomposition of,;. is first obtained where U is a unit upper
triangular matrix. The off-diagonal portion of U is stoied in sparse forir in IWK and WK.
NMAX is an estinate of the maximurrin number of off-diagonal elenients of U that mnight be
neonzero and have to be stored (MAX < n(n- 1)/2). IWK is an integer array of dimension
3n '- MAX -f 2 or larger, and WK is a doubl)e precisoio array of dinension n +I MAX or
large r.

341



IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IERR > 0 Ax = b was solved. IERR = max{lm} where m is
the number of off-diagonal nonzero elements of U.

IERR = 0 The argument n is nonpositive.
IERR = -- k Row R(k) of A is null.
IERR =- n- k Row R(k) of A has a duplicate entry.
IERR = -- 2n - k Row R(k) of A has been reduced to a row containing

only zeros.
IERR = -3n - k Row k of the upper triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows ard columns of A can be reordered so that one has a lower
block triangular matrix

(Al 0

A21 A22

Ak, Ak2 ... Akk,

then the subroutine BLKORD should first be tried. This subroutine will specify an ordering
for lower block triangular form if one exists. However, if such an ordering does not exist
and one is uncertain how to order the rows, then the row ordering given by the subroutine
SPORD frequent!y yields good results. In any case, the selection of an initial column or-
dering C is never bothersome since partial pivoting with column interchanges is performed.
The initial ordering C(i) - i (i = 1, . n) always suffices.

Programming. DSPSLV an adaptation by A. H. Morris of the subroutine NSPIV written
by Andrew H. Sherman (University of Texas at Austin). DSPSLV employs the subroutine
DNSPIV.

Reference. Sherman, Andrew H.,"Algorithrns for Sparse Gaussian Elimination with Partial
Pivoting," ACM Trans. Math Software 4 (1978), pp.330-338.

CALL DSLV(MO,n, A, IA, JA, b, R, C,MAX,X,IWK,WK,IERR)
CALL DTSLV(MO,n, A, IA, JA, b, R, C,MAX,X,IWK,WK,IERII)

DSLV is called for solving Ax = b, and DTSLV is called for solving 4tx = b. MO is an
input argument which specifies if DSIN or DTSLV is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A, b, and X are double precision arrays. It is assumed that 71 > I and that X is an
array of dimension 71. The solution of the systenm of equations is stored in X. A, 1A, JA are
not modified by the routines. X and b may share the sarne storage area. If X is a separat.e
storage area then b is not modified by the routines.

342



R is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries s', ... ,I, then the
algorithm first performs operations on row il, next on row i2, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as DSLV and DTSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries ji, . . . ,j 1 then it is suggested that the
first pivot element may be from column j1 , the second pivot element from column j2, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routines, and MAN is an input argu-
ment. On an initial call to DSLV or DTSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L and U are stored in sparse form in IWK and WK. MAX is an estimate of
the maximum number of off-diagonal elements of L and U that might be nonzero and have
to be stored (MAX < n(n - 1)). JWK is an integer array of dimension 4n + MAX + 2 or
larger, and WK is a double precision array of dimension 2n + MAX or larger.

On an initial call to DSLV or DTSLV, IERR is an integer variable that reports the

status of the results. When the routine terminates, IERR has one of the following values:

IERR > 0 The system of equations was solved. IERR=niax'l, m}
where m is the total number of off-diagonal r onzero

elements of L and U,
IERR = 0 The argument n is nonpositive.
IERR = -k Row R(k) of A is null.
IERR --- - - k Row R(k) of A has a duplicate entry.
IERR = -2n k Row P(k) of A has been reduced to a row containing

only zeros.
IERR = -3n- k Row k of L or U exceeds storage. MAX must be in-

creased.

When an error is detected, the routine immediately terminates.

After an initial call to DSLV or DTSLV, if IERR > 0 on output then either routine may
be called with MO ý 0. When MO 5 0 it is assumed that only b may have been modified.
DSLV is called for solving the new set of equations Ax : b, and DTSLV is called for solving
the new set of equations A.tx = b. The routine empicys the LU decomposition obtained on
the initial call to DSLV or DTSLV to solve the new system of equations. The solution is
stored in A-. As before, X and b may share the same storage area. If MO / 0 then only
n, R, C, IWK, and WK are used. A, ]A, JA, MAX, and IERR are not referenced by the
routine.

Note. The remarks concerning the ordering of the rows anrd columns of A when I)SPSLV

343



is used hold also for DSLV and I)TSLV.

Programming. DSLV calls the subroutines DSLV1 and DSPLU, and DTSLV calls the
subroutines DTSLVI and DSPLU. These routines were written by A. H. Morris.

344



COMPUTATION OF THE CONDITION NUMBER OF A
DOUBLE PRECISION SPARSE MATRIX

If A is a double precit.,ir n x n sparse matrix dhen the following subroutine is available
for estimating the tj ,.ondition number cond I (A) of A.

CALL DSICND(n, A, [A, JA, R, C,MAX,CONDIWK,WKi,IERRZ)

A is a sparse mnatrix stored in the arrays A, IA, JA where A is a double precis~on
array. The arguments R, C, MAX, IWK, and, WK are the samne arguments used for the
subroutines DSLV and DTSLV, the only exceptions being that IWK now is ant array of
dimension 5n + MAX + 2 or larger, and WK i9 an array of dimension 4n + MAX or larger.

COND is a ciouble precision variahile. When DS1GND is called, then the subroutine
DSLV is first invoked to obtain an LU decomposition of A, which is stored in the arrays
IWK and WK. Then COND is assigned the value 0 if A is singular arid an approximation
of the condition number conidi(A) if A is nonsingular.

IERR is an integer vari.-hle that reports the statu-3 of the results. When DSICNDJ
terminatcs, IfERR has one of the following values:

IERR > 0 A is ncrnsingular. (OND =-an approximation of the conditicii
number of A, and IERR =. ax{.1, m) where m is the number of
off-diagonal nkonzero elemrents of L and U.

IERR =0 A is singular and COND zz-0.
IE'RR =--kc Row Rt( k) oi A has a duplicate entry.
IERR < --n Row R(k) of .L or U exceeds -3torage where IERR -(n + k).

MAX mnust be increased,

When an error is detected, the routine immediately termina~es.

Usage. After DS1CND terminates, if ILORI-1 0 the-n T SLV or DTSLVk may be callcd wibli
MO -/. 0 to sGlve a system of equations. In t.his case n, R, C,WK, and IWK are used 'by
DSLV and DTSLV, and must riot be modiiied by the us-er.

Algorithm. A modification of the Ihager procedure by Nicholas J. lighamn (Ujniversity of
Manchester, England) is used.

Programming. DS1CND employs the subroutines DS1NRM, DONEST, UCOPY, DSLV,
DSLVI, DTSLV, DTSLVI, and DSPLU, and the functions DASUM and IDAMAX. DSICNU'
was written by A, 11, Morris. DONEST is the double precision form of the subroutine SOiN-
EST, written by N. J. Higharn and modified by A. ff. Morris.

References.

(1) Hligharni, N.J.,"FORTRAN Codes for Estiniating the One- Norm of a Real or Complex
Matrix, with Applications to Condition Estimation," ACM Trans8. Math Software 14
(1988), pp. 381-396.

345



(2) ...... ,"Algorithnm 674: FORTRAN Codes for Estimating the One-Norro of a Real
or Complex Matrix, with Applications to Condition Estimation," ACM Trans. Math
Software 15 (1989), p. 168.

346



SOLUTION OF SPARSE SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n x n sparse complex matrix stored in the arrays A, IA, JA and
let b be a complex column vector of dimension n. The subroutines CSPSLV and CSLV are
available for solving the system of equations Ax = b, and the subroutine CTSLV is available
for solving the transposed system of equations Atx = b. These routines employ partial pivot
Gauss elimination with column interchanges to first obtain an LU decomposition of A. If
CSPSLV is called then only the off-diagonal nonzero elements of U are stored, and then the
equations are solved. However, if CSLV or CTSLV is called then the off-diagonal nonzero
elements of both L and U are stored. Thus CSLV and CTSLV will frequently require at
least double the amount of storage needed by CSPSLV, but they can be recalled to solve
other systems of equations Ax = r and Atx = r without having to redecompose the matrix
A. Moreover, since CSLV and CTSLV will always generate the same LU decomposition
of A, CSLV can be called to decompose A and solve a system cf equations Ax = b, and
then CTSLV can be called to solve a transposed system of equations A'x = r using the
decomposition obtained by CSLU,.

CALL CSPSIV(n, A, IA, JA, b, R, C,MAX,X,IWK,WK,IERR)

A , b, and X are complex array-. It is assumed that n > 1 and that X is an array of
dimension n. The solution of the svatem of equations Ax = b is computed and stored in X.
A,IA, JA and b are not modified by the rcutine.

R is an integer array of n entries specifying the ordei in which the n rows of A are
to be examined and processed. For example, if R contains the entries il, .. . ,i,, then the
algorithm first performs operatijns on row il, next on row i 2 , etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on the
overall performance of a subroutine such as CSPSLV. Thus At must be chosen judiciously.
R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C( specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C' contains the entries J1, ... ,j', then it is suggested that the
first pivot element may be from column J1, the secone pivot element from column 32, etc.
Hlowever, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an :nput argurient.
When CSPSLV is called, an LU decomposition of A is first obtained wheret U is a unit upper
triangular matrix. The off-diagonal portion of U is stor(:.t in sparse form in !WK anid WlK.
MAX is an estimate of the • iaximuni number of off-diagonal elhien.,s of U that might be
nonzero and have to be stored (MAX <- n(n I)/2). I WK is an integer ,array (,f d imnesi m
3n 4 MAX + 2 or larger, and WK is a complex array of dinwmesion n f MAX or larger.

3,17



IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IERR > 0 Ax = b was solved. IERR = max{1,rn} where m is
the number of off-diagonal nonzero elements of U.

IERR = 0 The argument n is nonpositive.

IERR = -k Row R(k) of A is null.
IERR = - n -- k Row R(k) of A has a duplicate entry.
IERR -2n - k Row R(k) of A has been reduced to a row containing

only zeros.
IERR -3n - k Row k of the upper triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the rouf,ýne immediately terminates.

Remarks. The amount of storage 'AAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

fAll 0
A',,I A22

LkA Ak2 •.. Akk

then the subroutine BLI ORD shou'd first be tried. This subroutine will specify an ordering
for lower block triangular form if .ne exists. However, if such an ordering does not exist
and one is uncertain how 'Lo ,rder 'he rows, then the row ordering given by the subroutine
SPORD frequently yields go. I re ults. In any case, the selection of an initial column or-
dering C is never bothe:'sornc sin,, partial pivoting Nith column interchanges is pc,ý,formed.
The initial ordering C(t` :-; (i -- 1, . , n) always suffices.

Programming. CSPSL\ is an adaptation by A. If. Morris of the si broutine N3PT ¢ written
by Andrew 1I. Shermai, (University of Texa-s at Austin). CSPSIN employs tiae .ubroutine
CNSPIV.

Reference. Sherruai itadrew li.,"Algoritil us for Sparse Gaussian l]liiiination with Partial
Pivoting," ACMA 7Y.ans. Muth Softtware 4 (1978), pp.330 338.

CALL CS.V(\4Ov, A, IA, .A, b, f, C, MA X, IWI{,WK,IFt{)
CALL C- SLV(MO,n, A, 1A, IA, b, I?, C,MAX,X,1WK,WK,IFI(R)

('SIN is called for solving Ax . b, and ("I'SIV i called for solving A4x b. MO is a"N
iniput argumient A+fKih sp(lfies if" CSIV r (A'SIA' is beiring called for the first time. On an
initial Call, a() n u and we have the folhcw, nlg setup:

A, Ib, and X" arv comlliex arra.s It is aýistiined• th'at vj 1 au'f that X is an array of
(11111 n•Iion ?n. The solutfoii of tOh sy;tc nif 4tjnati is is storedt in X A, 1A, J A are rlot
m(,dified Iy tOhe routlines. aX" I t n:y ihlarv Ohe ,aon -,r;) 'i,- are::. If N is a svj;Aratt

storag, area theni 1) is n(, mio, itid 1 by thei ioltinlk .



R is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R co~itains the entries 'i, . .. in, then the
algorithm first performs operations on row il, next on row i2, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as CSLV and GTSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n' columns of A should be ordered for select~ioni of the pivot
elements. For example, if C contains the entries j1, .. . J,, then it is suggested that the
first pivot element may be from column ji, the second pivot element from column j2, etc.
However, since partial pivoting with colum-n interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the ni columns front
which the pivot elements were selected. This order will depend on A and R, and not on b.

LWK and WK are arrays for internal use by the routines) and MAX is an input argu-
ment. On an initial call to CSLV or CTSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L1 and U are stored in sparse form in IWK and WK. MAX is an estimate of
the maximum number of off-diagonal elements of L and U that might be nonzoro and have
to be stored (MAX < n(n -- 1)). IWK is an integer array of dimension 4n +i MAX + 2 or
larger, and WK is a complex array of dimnension 2n +1 MAX or larger.

On an initial call to CSLV or CTSIN, IERR is an integer variable that reports thle
status of the results. When the routine termninates, IEAUR has onle of the following values:

IERR > 0 The system of equations Was solved. IERR~ - ax{1 , rn}

where Yri is the total number of off-diagou-id nonzero
elements of L, and IT.

I CR? 0 Tlhe arguiinent. n is foipol~fOitivC.

1f1lRR k Row 10() of A Is niull.

IICRR ?Ik Row 11(k) of A hLs a duplicate eni! ry.
1 IC R 2Y& k Rotw 10() of A lia beeii redtieed to ro w contialiii ig

onlv zeros
IF:II 3nT k Iow k of 1, (r U1 excetls, ,t~orageý VkAX lillst, bet III-

c reivise'

Wheii ant error 1is det~ectted, the routint jInt'iftrlle'iat ly tv'Cn]Illlfhes.

After ;ti Hintial call tot ( SIN or ("''SIA', if IllK U . , ont )iit1it ulit in: e'i~her roil tilie' Ilay
Iw' Called With) N0 I/ U. Wilcl N10 I it. Is ;LS.SIIIIIcl tiillt, oily Ivit a),~v beeni imodified1 i
CHISN is called for s0;vig dieu tinew set, of etpilatittns A.r 1), anld ( "''SIN' Lis ctaled for istlVilit

thin new set of eIlilat lulls At x 1). '1ew rýtiit jlt eli fii ''s I he'I itt IX colj ,I ' tsit l 1 ) bf ihitiL d itt

tit'. cntal il tt ( CSlV (w CT'lSl,\ to !itiVe lthe' ew iy~steiillo vI tIat I 'Ill. hit Sthitio lt Vn i

shitortd 'Ili X. As beftrt', A' utit( b iax' ii:;re %o' ~iw. sw(r:Li,' areat If 1%1) / I enl onlly

?, It', C, INWE, anid W K ;ire' ivSc 1  1,I, Vi -. 11, MA.X, nelld l 'L(it, flut rce~tre'iti( ( hye till-

rotw Inc.



Note. The rernarkd concerning the ordering of the rows and columns of A when CSPSLV
is used hold ilso for CSLV and CTSLV.

Programmning. CSLV calls the subroutines CSLV1 and CSPLU, and CTSLV calls the
subroutines CTSLVI and CSPLU. These routines were written by A. H. Morris.



COMPUTATION OF EIGENVALUES OF GENERAL REAL MATRICES

The subroutines EIG and EIGI are available for computing the eigenvalues of real
matrices. These routines frequently yield results accurate to 13-14 significant digits. Indeed,
for symmetric matrices they may give 2 or more digits better accuracy than the routines
designed specifically for symmetric matrices. However, if the eigenvalues are not distinct or
if they are exceedingly tightly clustered, then a severe drop in accuracy can occur when the
matrix is not symmetric. In this case one should riot expect more than 7-8 digit accuracy.

CALL EIG(IBAL,A, ka, n, WR, W[,IERR)
CALL EIG1(lBAL,A, ka, n, WR, W[,IERR)

A is a matrix of order n > I and Wt..WI are real arrays of U! -ension n or larger.
When EIG or EIG1 is called then the eigeiav lues A1 , ... ,A, of A are computed. The real
parts of the eigenvaluec, are stored in WR(1.), ... , WR(n) and the imaginary parts are stored
.;,in WI(1), .. , WI(n). The eigenvalues are unordered except that complex conjugate pairs
of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part
being first.

IBAL and ka are input arguments. The argument ka is the number of rows in the
dimension statement for A in the calling pr nram. IBAL may be any integer. If IBAL 4 0
then the routines balance A before they coipute the eigenvalaes. Otherwise, if IBAL -= 0
then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 30 iterations are required to compute the j]h eigenvalue Ap,
then IERR is set to j and the routine terminates. In this case, if j < n then the eigenvalues
Aj+1, .. ., A, will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional time arid in certain cases can improve the
accuracy by as much as 5-6 significant digits. Thus it is recommended that balancing
be done.

(2) A is destroyed during computation. EIG and EIG1 reduce A to upper tIesseriberg
form and dheir apply the QR algorithm to obtain the eigenvalues. They differ only
in the ch,,ice of t'anisformat.ions used to :educc A to upper liessenberg form. EIG
employs erieentary sinilarity transformations and EIG I employs orthiogonal sirei larity
transforinations. in theory the use of' orthogonal transformations assures one of a
tighter Imo, oi; Jhe errors. However, since in practi(:e matrices i nfrequently ariSe
for whil(:, the orthogona! transformationis actually generate rnore accurate results, and

since the orthogonwd trawisfoirmatlotiw normally require more time thanm 1,he elementary

I, anisformations, therefore EWl; is the recommie•'hled rutm.

3 1-1



Programming. EIG and EIG1 are- driver routines for the EISPACK subroutines BIX..NC,
ELMHSO, ORTHES, and HQR. These subroutines wer" developed at Argonne National
Laboratory. The functions SPMFAR and IPMPAR are aLso used.

Reference. Smith, B. T., Boyle, J. M., it al., Matriz Eigenaysteem Routines - EIS PACKf
Guide (Second Edition), Spriniger-Verlag, 1976.

"352



COMPL'YATION OF EiGENVALUES AND EIGENVECIORS OF
GENERAL REAL MATRICES

The subroutines EIG V and1 EIGVI are zivaih~bie for comput~ing the eigcnvalucs nnd
eigenvectors of real miatri-c-es. These routiaes are exteision's of the respt~ctive eigerivalue
routizies EIG and EIGI. Thus all ccminents made, roncerning: the a,ýcurary of the ejgenvalue,:
prodluced by EJO, and EIGi aqpply also to EIGV and EIG'Vl. In jpartli.ular, EIGV and
EIGV1 can frequently yild h!-h preýcision result~s for u;he eigenvalues if t.,ey are distinct.
However, be aware that errors in the eigenvalues,, iuo m&ater how seemnin ;ly inisignificant,
can be considerably mnagnified in the conaputation of tLe eigenvector.q. It is not at all
unusual to obtain an eigenvalue and eigenvector where the eigenvalue is correct to withinl
2-3 units of the 1 4 1h significant digit, but the components of the correspoading eigenvectcr
are only accurate to 9-10 significant digits. In the case of repeated eigenvalues the situation
regarding the eigenvectors is tot,.41y unpredictable. The components of such an eigenvector
ri .y be correct to 6-7 significant digits, or the eigenvector may not e~en be anl eigenvector!
In this case the results should be checked.

CALL EIGV(IBAL,, A, ka, n, WR.,WI,Zl?,ZI,IERR)
CALL EIGVI(IBAL,A, ka,tz, WR,WI,ZRZ,ZL,iERR)

A is a matrix of order n > 1 and WR, WI are real arrays of dimension n or larger.
When EIGV or EIGVl is called the eigenvalties A,, ... , An and corresponding eigenvecv.ors

zi ., z. are computed. The real parts of the eigenvalues are stored in WR(1). . .. ,Wit(n)
arid the imaginary parts are stored in WI(1), .. . ,WI(n). The eigenvalues are unordered
except that complex conjugate pairs of eigenvalues appear consecutively with kLhe eigen ýrnlue
having the positive imaginary part being first.

The input argument ka is the number of rows in the dmxr<'nsion stateme~nt for A in
the calling program. ZR 1tnd ZI are real arrays of &limension ka x n. For J= 1, . . . , n the
real parts Gf the components of th-e eigenivec tor z, are stored in the itii zolunin of ZK (in
loc'-tiolls R(,),. . . ,ZR(n, j)) and the ý',natginary parts are stored in the it" column ofZi.
The eigeiivectors z1, . . . , z,, are rio, norrval~zed.

MIAL is aa input argument thi.. can b.? assigned an, integer value. If IBAL /7 0 ".hein
the routines balance A before the) cornpute the eige~iv de:.and eigeavectors. Otherwise,
if MBAL --r 0 then A is not balanced

Errot Return. 1IER is an i 'teger ,ariable. If all the elgenivalines an~d eigenvectors are fo,1nd
then IFERR is set to 0. (.tr i-, f inore than 30 iterations are reqfuiredl to coinpu te the )"I'
eigerivah c A. IthIIenI I I W, is .'0, to J aJ ItueOi roul iw n terri Iint aes. I it thIils ca-se, if' J / i i2
thie eigeimval ues A,, ..... A o--ll have beenl complif ed anid the rem iits stored in ii e WH -.wud
WI arrays. I mw' ver, tione of tiwý eigcivec Lor:8 wil 1 have k(unl eoopu ted. 'F'lic eigelivecmor~i

a1re corn iplted only ý ft er all t.hc e geviralliies a,;ve heenuld JI'ta ii



(1.) E~ven though the' O&amiang operition no~ ot increa±ie thý, theový7tical bounds on thc
errors, nevertitelesii at; tirnes it mavy result .n a sliy;ht Al-,s of accnv.acy On the. other hand,
balanrcing requires little additicnria time and 1--, c-rtain cýý,eo ckm- improve the ;Accruacy

of ý1(. eigerivalues by as niuch as 50-6 significant digits. Whon i,ý'is occurs bak,&ncIV~g
will n~ormally be nee.ded to ubi~ai the e ig-Anvec toys. )v general, xt Ls r,,r4,ommenadcd that,
balancing be done.

(21' A is dpst-,oypd during comnputation. EIGV and E1GV1 both reduce it to upper FHes-
sertbcrg form, apply the QR algorithmT v) the %-essenberg mautrix 1;G obtain the eigen-
value~s, and then backsubstiltute to ge~ierate the eigeinvectors. They differ only in the
Choice of trarzstorraations vscseý to reduce' .A to uvtpei Hc-es-ýenberg form. ETIGV employs
elementary simnilarity trarnsformat.on In lV employs orJhogvonal surzilaitity trans4-
forynations. In theory tOe u-se of ortnrogonai t ansforrniationm assures one of a tighiter
bound on the errors. However, n.~ in practice niatrices infrequently arise for which
the orthogonal transforirvitione actually generate maoTe accurOte resuits, and] since the
ortthog-onp! fransformations nrlomralli require, more tirme thza- tho 4e!ement-ary tranmfor,
rnat~icna, therefore EiGV is the reon~ddroutijiu.

lProgrp'mnirng, EMGV anti EfGV1 are. driver rouiL.nes for the 1"ISPACK subroutines BAL.-
ANG, ELNUHSO, (:)1-H~ES, EI'iYNo oiaRFAN, H-QR2, and BALBAK. These subroutines
iwerc dcvfic--ed at .Argonno Ný-titicual LaýLci.at~ory. The function-s ý,WiPARA and WIMPAR
are also u.d

RFvYrevra. Srxmith, B. ý',)~yle, .i. M., et al .l M~rs Eigenojstern Routives -- ISPACK
Guide cndF ThidoOi,Spge'Vel:,13



DOUBLE PRECISION COMPUTATION OF EIGENVALUES OF
REAL MATRICES

The subroutine DIIG is available for the double precision computation of the eigen-
values of real matrices. This routine frequently yields results accurate to 26-28 significant
digits. However, if the eigenvalhes are not distinct or if they are exceedingly tightly clus-
tered, then a severe drop in accuracy can occur. In this case one should not expect more

than 13-1.4 digit accuracy.

CALL DEIG(II3AL, A, ka, n, WR,WI,IERR)

A is a double precision matrix of order n > 1 and WR, WI are double precision arrays
of dimension n or larger. When DEIG is called then the eigenvalues A1, ... ,A, of A are
computed. The real parts of the eigenvalues are stored in WR(1), ... ,WR(n) anrd the
imaginary parts are stored in WI(1), .. . ,WI(n). The eigenvalues are unordered except that
complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the
positive imaginary part being first.

IBAL and ka are input arguments. The argument ka is the number of rows in the
-dimension statement for A in the calling program. IBAL may be any integer. If IBAL $-
0 then the routine balances A before it computes the eigenvalues. Otherwise, if IBAL = 0
then A is not balanced.

Error Return. !ERR is an integer variable. If all the eigenvalues are found theni IERR is set
to 0. Otherwise, if more than 50 iterations are required to compute the jth eigenvalue A,1 ,
then IERR is set to j and the routine terminates. In this case, if j < n then the eigenvalues
A3+1, . .. ,Ar, will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) A is destroyed during computation.
(2) DEIG is a double precision version of the eigenvalue routine EIG1.

Programming. DEIG is a driver routine for the subroutines DBAL, DORT11, and DHQR.
These subroutines are double precision versions of the EISPACK subroutines BALANC,
ORTHES, andi IIQII, developed at Argonne National Laboratory. The double precision
versions were prepared by A. H1. Morris. The functions DPMPAR and IPMPAR are also
used.

Reference. Smith, B3. T., Boyle, J. M., et al., Matrix Eigensysterr Routines - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

111r



DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECTORS OF REAL MATRICES

The subroutine DEIGV ; available for the double precision computation of the eigen-
values and eigenvector, of r,,i z)tatrices. This routine frequently yields values for the eigen-
values that are accurate to 26-28 significant digits. However, be aware that errors in the
cigenvalues, no matter how seemingly insignificant, can be considerably magnified in the
computation of Lhe eigenv ,ýtors. !, ihe eigenvalues are not distinct or if they are exceed-
ingly tightly clustered, thein a severe drop in accuracy can occur. In this case one should
not expect the eigenvalue.i to have more than 13-14 digit accuracy.

CALL DEIGV(IBAL, A, ka, n, WR,WI,ZI ,ERR)

A is a double precision matrix of order n > 1 and WR, WI are double pre,'ision
arrays of dimension n or larger. When DEIGV is called then the eigenvalues A, . .. A,,
and corresponding eigenvectors z1 , ... z,, are computed. The real parts of the eigenvaluWs
are stored in WR(1), ... ,WR(n) and the imaginary parts are stored in W)(1), ... ,W(n),
The eigerivalues are unordcred except that complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having the positive imaginary part, being first.

The input argument ka is the number of rows in the dimension st1atement for A ill
the calling program. ZP. nd ZI arc louble precision arrays of dimension ka x n. For
j = 1, . . .,n the real i ;u of the components of the eigenvector z. are stored in the jth
column of ZR (in locai4ions ZR(i,j), . . ,ZR(n,j)) and the imaginary parts are stored in the
ph column of ZI. The eigenvectors z1 , . . , z,• are not normalized.

IBAL is an input argument that can be assigned any integer value. If 11 AL / 0 then
the routine balances A before it computes the eigenvalues and eigenvectors. Otherwise, if
IBAL = 0 then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalces and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 50 iterations are required to compute the 1 th
eigenvalue Aj, then ]ERi I is set to j and the routine terminates. In this case, ifj K< n then
the eigenvalues A,+,, ... , A, will have been computed and the results stored in the WR and
WI arrays. However, none of the eigenvectorn will ha;ve been computed. The eigenvectors
are computed only after all the eigenvalues have been obtained.

Remarks.

(1) A is destroyed during computation.
(2) I)EIG V is a double precision version (,I the eigetivalue,' igezvector routine EAG VI.

357



Programming. DEIGV is a (driver routine for the subroutines DBAL, DOI?.TIl, DORTRN,
DHQR2, and DBABK. These subroutintes arc double precision versions of the EISlPACK
routines BALANC, ORTIlES, ORTRAN, IQR2, and BALBAK. developed at Argonne
National Laboratory. The double precision versions were prepared by A. H1. Morris. The
functions DPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matrix Eigeasystern Routine8 - EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

3 1)



COMPUTATION OF EIGENVALUES OF SYMMETRIC REAL MATRICES

The subroutines SEIG and SEIG, are available for computing the eigenvalues of sy i-
metric real matrices. These routines frequently yield high precisioni results. SEIG is faster
than SEIC 1, but at times SEKl I will produce better results when the symmetric matrix is
tridiagonal. For arbitrary symmctric matrices it is not clear if there is any difference in the
reliability of the routines.

CALL SEIG(A,ka,n,W,TIERR)
CALL SEIG1(A,ka,n,W,7',IERIR)

A is a syrmnetric matrix of order n > I and W an array of dimension n or larger.
When SEIG or SEIGI is called the eigenvalues Aj,.. ,An are computed and stored in
W(l), ... ,W(n). The eigervalues are ordered so that Aj. < - _< A,z.

A may be packed or in standard form.' The input argument ka is a nonnegative
integer. If ka = 0 then A is assumed to be pack'd. Otherwise, if ka -A 0 then A is assumed
to be in the standard format. In this case ka has the value:

ka = the number of rows in the dimonsion qtatement for A in the calling program
It is assumed that ka >. n. However, it is not r ýiý .ed that A(i,j) bc defined for i < j.
Only the lower triangular elei ts ,'A are used.

T is an array used for temporary storage. If SEIG is called then T must be of dimension
2n. However, if SEIGI is called then T need only be of dimension n.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is
set to 0. Otherwise, if more than 30 iterations of the QL algorithm are required to compute
the jth eigenvalue A. , then JERR is set to j. In this case, if j > 1 then the eigenvalues
Al, ... ,Aj--3 will have been computed and stored i.i W. The eigenvalues are ordered so
that A I < "" <_ As-1. Hlowever, they need not be the smallest eigenvalues of A.

Remark. A is destroy(,' during computatien.

Programming. SEIG and SELGI are driver routines for the EISPACK subroutines TREDi,
TRED3, TQLRAT, aiid IMTQLI. Theie subroutines were developed ac Argonne National
Laboratory. The furncuion SPMPAR is also used.

Reference. Smith, K T., Boyle, J. M., et L., Matrix Eigq"ansstern Routines -- EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

I!':r .{;i]:( b• ':: cd f rrlit .• 'e t e wt~ m ,• p~(.x • l •: t,' , : • m , *r,:l : t , ,:



COMPUTATION OF EIGENVALUFS AND EIGENVECTORS OF
SYMME'RIC REAL MATRItCES

The subroutines SEIGV and SE I VI are available for computing the eigenvalues and
eigenvectors of symmetric real matrices. These routires frequently yield high precision re-
suits for the eigenvalues. However, be aware that errors in the eigenvalues, no matter how
seemingly insignificant, can be considerably magnified in the computation of the eigenvec-
tots. it is not at all unusual to obtain an eigenvalue and eigenvector where the eigenvalue
is correct to within 2-3 units of the 1 4 th significant digit, but the components of the cor-
responding eigenvector are only accurate to 9-10 significant digits. SEIGV is faster than
SEICV1, but at times SEIGV1 will produce better results when the symmetric matrix is
tridiagonal. For arbitrary syrmmetric matrices it is not clear if there is any difference in the
reliability of the routines.

k ALL SEIGV(i, ka, n,W,Z,T,IERR)
CALL SE1GV1(A, ka, n, W, Z, T, lERR)

A is a symmetric matrix of order n > 1 and W an array of dimension n or larger. When
SEIGV or SEIGV1 is called the eigenvalues A1, .. .,A, and corresponding orthonormal
eigenvectors z1 , ... , z,z are computed. 'rhe Cigenvalues are stored in W(1', ... ',W(n) and
are ordered so that A 1 < < . ,.

A must be in the standard F~ormat, having the dimension ka x n. It is assumed that
ka > n. Hlowever, it -s not required that A(i,I) be defined for i < j. Only the lower
triangular elements of A a'e used.

Z is an array of dimension ka x n or larger. For j 1, ... ,n the components of the
eigenvector zj are stored in the jth column of Z (in locations Z(1,j), ... ,Z(n,))). To
conserve memory one may let A and Z denote the same array.

T is an array of dii, ension vn used for temporary storage.

Error Return. IERR is an integer variable. If all the eigenvalues and eigenvectors are
found then IEIR is set to 0. Otherwise, if more than 30 iterations of the QL algorithm
are required Lo romý;ute the j' eigenvalue A,, •hiei IERR is set to j. In this case, if j >1
then the eigenvalues A , ... ,. -_ and eigenvectors zI,...,z, I will I Wve been computed
and stored in the W and , array',!_ 11,wever, the eigenvalu,. , will be unordered.

Remark. A is not, modifie.l ex:cept wh ,.n A and Z denote Jhc samne array.

Programming. SEI(;V and SI( Vi are drivor routines for h1w EISPACIK subroutines
T1RED2, 'rQL2, and IMIQI,2. These si-( ..is were developed at Argonie National
Laboratory. The function ;4I'MP , A" iV, uls' ed.

Reference. Smith, V 1'., lBo., ,, .1 NI., ce. a!, Matrixr Eiien•,iy.ten. Routines E'AfSIACK
Guide Secnd liit.i,,:), >;tiirlgner-Verlag, l"J)7t

i 3:ý I



DOUBLE PRECISION COMPUTATION OF EIGENVALUES
OF SYMMETRIC REAL MATRICES

The subicrutine DSEIG is available for the •iouble precision computation of the eigen-
values of symmetric teal matrices. The subroutine frequently yields results accurate to
27-28 significant digits.

CALL DSEIG(A,ka, nV,T,IERR)

A is a double precision symmetric matrix of order n '> 1 and W a double precision array
of dimension n or larger. When DSEIG is called the eigenvalues A,, .. . ,An are computed
and stored in W(1), ... ,W(n). The eigenmalues are ordered so that A. < ... < A,,.

A m•y be packed or in standard form.1  The input argument ka is a nonnegative
integer. If ka = 0 then A is assumed to be packed. Otherwise, if ka :?# 0 then A is assumed
to be in the standard format. In this case ka has the value:

ka = the number of rows in the dimeniion statement for A in the calling program
It is assumed that ko '> n. However, it is not required that A(ij) be defined for i < j.
Only the lower triangular elements of A are used.

T is a double precision array of dimension 2n or larger that is a work space for the
routine.

Er-or Return. IERR is an integer variable. If a!l the eige'values are found then IERR is
set to 0. Otherwise, if more than 50 iterations of the QL algo'ithm are required to compute
the jth eigenvahme A,, then IERR is set to j. In this case, if j > I then the eigervalues
A,, ... ,AA_1 will have been computed and stored in W, The eigenvalues are ordered so
that A, ! 5. < Aj- 1. Itow.-ver, they need not be the smallest eigenvalues of A.

'Remarks.

(1) A is destroyed during coniputation.

(2) DSFIC is a double precision version -)f the eigenvalue routine SEIG.

Programming. l)SEIC is a driver routine fir the subroutines I)TIEII)1, )TItEI)3, and
DTQC. These subroutlvies are double precision versions of the EISPACK routines TIRLI) I,
TRE1)3, and TQP R.AT, developed at Argonne National Laboratory. The double precisn0iI
versions Nere )repared by A. 11. Morris. The functioni DPM PA h is also uised.

Reter ii:e, S'indi, 'i. 'j"., Boyle, ,J. M., et al., Matrix Eiqensy,,:tei Routinies VS . PA(,IV
Guide (Seco . Ed itinn0, S jrinler- Verlag, 1976.

V, .i d u lic p.atkcd rm iat Fee w w ti-,nýn ;c,'Ittg, midi iuoj:týk tig, myv ltjitn . i,,.,tri( 1ý1

36i3



DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECrORS OF SYMMETRIC REAL MATRICES

The subroutine DSEIGV is available for the double precision computation of the eigen-
values and eigenvectors of symmetric real matrices. This subroutine frequently yields values
for the eigenvalues that are accurate to 26-28 significant digits. However, be aware that
errors in the eigenvalues, no matter how seemingly insignificant, can be considerably magni-
fied in the computation of the eigenvectors. It is not at all unusual to obtain an eigerivalue
and eigenvector where the eigenvalue is correct to within 2-3 units of the 2 8 th significant
digit, but the components of the eigenvector are only accurate to 22-24 significant digits.

CALL DSEIGV(A,ka,n,W,Z,T,IERR)

A is a double precision symmetric matrix of order n > 1, and W a double preci-
sion array of dimension n or larger. When DSEIGV is called the eigenvalues A1, ... ,A,
and corresponding eigenvectors z 1 , ... ,z,. are computed. The eigenvalues are stored in
W(1), ... ,W(n) and are ordered so that A, 1  ... _ A,.

A must be in the standard format, having the dimension ka x n. It is assumed that
ka > n. However, it is not tequired that A(i,j) be defined for i < j. Only the lower

triangular elements of A are used.

Z is a double precision array of dimension ko x n or larger. For j = 1, ... , n the compo-
nents of the eigenvector z, are stored in the jth column of Z (in locations Z(1,j), ... ,Z(n,y)).
To conserve memory one may let A and Z denote the same array.

T is a double precision array of dimension n or larger that is a work space for the
routine.

Error Rcajrn. IERR is an integer variable. If all the eigenvalues and eigenvectors are
found then lEIEI is set to 0. Otherwise, if more than 50 iterations of the QL algorithm
are required to compute the jt th eigenvalue A,, then IERR is set to j. In this case, if j "-> I
then the eigenvalues A,, ... ,A 1- and eigenvectors zi, .. , z, I will have been computed
and stored in the W and Z arrays. lHowever, the eigenvahties will he unordered.

Remarks.

(ý) A is not, modified except when A and X (hdenote the same aray.
(2) I)SPEI( V is a double precision version of the eigel Vil wie/eigenvector snubroutine S IE( V.

Programaming. I)SEI(GV is a driver routine for the .iibr,,otiWcs i)TIRl!)2 aid l),'Ql.2.
'T. ese subrotitine:: are double precision verslon• of the E"ISIA(?i ýi ubroutines TIEI)D? arld
T'l()1,2 diheh((dt at Argomnnw( Natitiiau L~ahr)rat 1ry. The doijb,,Ic!S•i.n vers'i,0W w(M7

rep~ ar.d by V 1. II Niorris. 'lThc f10nctio"1 l)tI I'PAl , is ajl()lS , l

Refer,-rnce Sinith, '. T,7 H,, yhcJ M. ,I ,k , Matrix Eigunsytem Ioutin s FI.'!hA(i'
(.Ii( * ( e ,nw ( ld'liinr) jring'r-Vrii' 1.7f



COMPUTATION OF EIGENVALUES OF COMPLEX MATRICES

The subroutine CEIG is avakilat le for computing the eigenvalues of complex matrices.
This routine frequently yields result~i accurate to 13-14 significant digits. However, if the
eigenvalues are not distinct or if they' are exceedingly tightly clustered, then a severe drop.
in accuracy can occur. Jn this casge one should not expect more thaa 7-8 digit accuracy.

CA LL C E IG(IBAL,A R,A'i, ka, n, WR,W ,IERR)

AR and AI are real matrices of order n > 1, and WR and WVI are real arrays of
dimension ni or larger, AR and Al are the real and imaginary portions of thc complex matrix
whose eigenvalues are to be computed. When GEIG is called the eigeavalues A,, . .. ,A

are computed. The real parts of the eigenvalues are stored in WR(l), . .. ,WR(n) and the
imaginary parts ac~e stored in WI(1),..,Wl(n). The eigenvalues are unordered.

IBAL and ka are input arguments. It is assumed that lea is the number of rows in the
dimension statements for AR and Al in the calling program. JBAL ri~ay be any integer.
If IBAL 54 0 then the complex matrix (represented by AR and Al) is baianced before the
eigenvalues are computed. Otherwise, f1 IBAL =0 then the complex matrix is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IEI1R is set
to 0. Otherwise, if more than 30 Aterations are required to compute the jt"i eigenvalue A.,
then IERR is set to j and] the routine t =rinates. In this case, if j < n then the eigenivaluies
A, 4 1 , . . .,A,, will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) Even though thre balancing oj)e~ratiton does riot, Increase the theoretical 1.) rinds onl the
errors, r'evertheless at. r4nes it rru~y result in a slight loss of accuracy. On the ofther
hand, balanciiig requires little additional tnime arid] in certain cases can improve the
iacciiracy by as much a:ý 5 6 signifi :ant digits. Thus It is recoimmended that balancing
be done.

(2) AR anid Al are (lestroyed d:1ur ing compirptatiom CEIG red1uces the comiplex n matrix

(represented by Alt and Al) to upper I lesseitherg formn with moiltary' siimilarity tranms-
forrni~tions. Then Lb e Q it a'gorith in is use I to obt,.,Iit t liv ei gctivJi tes.

Usage. If one hasv at coiiiplex mmiit nix A4, then Alt :-,d I ( ani be olbtaincd( using tire riniarix
slihro-ltines ( M It iýA I and ( NI IM ACý

Programming- CPAIC is a driver roit~ici for thme FISI'ACK .sthnoutiniie ( ItAl, ( M( )llT
arid C"ONIQR. These siiIbr(utinres vt- dev(.loptrd at. Argmiiir N :itlonil- I almror~tory. 'lii,
firricti s- 'SINII'AR c-id WNWIAlR an'ý ;flso used

R~eference. Smitl i, IB. T,, Iý t' yie, .1 NI.. ct ýii Atafrix Bie~5/~ ~i out itit, E 1,1l'A( 1



COMPUTATiON OF EIGENVALUES AND EIGENVECTORS OF
COMPLEX MATRICES

The subroutine GEIGV is available for computing the eigenvalues and eigenvectors
of complex matrices. This routine frequently yields values for the eigenvalues that are
accurate to 13-14 significant digits. However, be aware that errors in thle eigenvalues, no
matter how seemingly insignificant, can be considerably magnified in the computation of
the eigenvectors. It is not at all unusual to obtain wn eigeavalue and eigenvector where the
eigenvalue is correct to within 2-3 units of the 14 th significant digit, but the components of
the corresponding eigenvector are only a,ý,urate to 9-10 significant digits. If the eigenvalues
of a matrix are not distinct or if they are exceedingly tightly clustered, then a severe drop
in accur~icy can occur. Ill this case one should not. expect- the eigenvalues to have mnore thian
7--8 digit accuracy, arid. the situation regarding the eigenvectors is totally unpredictable.
The components of such an eigenvector may be correct to 6-7 significarit digits, or the
eigenvector may not even be an -igenvector! In this case the results should be checked.

CALL CEIGV(IBAL,ARZ,AI, ka, n, WRi,WI,ZRZ,ZI,1ERZR,TEMP)

AIZ and Al are real matrices of order n > I and XVR arid WI are real arrays of
dimension nt or larger. AR and Al are the real and imaginary portions of the complex
mratrix whose eigenvalucs and eigenvectors are to be computed. When CEIGV is Called
the eigenvalues A,, . . ., A, anal correspondling eigI;(!vvct(,r~s z1 , . .... z,,z are compu ted. The

real parts of the cigenvalnes are storod ini WII(I), . . . XV R(n) anid (he imaginary parts are
stored in WI( 1), .. . ,WI(n) . The eligenivalutes are' uiiorderK:ýd.

It i.s assumied that '.he iniptit argumiwnt ka is thle ii no ier of rows in tlh, d nierision

stat~erirent~s for ARH and( Al inI tle callinig prog rain. ZRH ani (I are real arrays ,)f d irniensionl

ka xma. For J i n thlt, rea parts of the components of' the eigenvector z, are stored

InItIt OW ' colii hltl of ZR (*Ii locatiols I R( I, j) , . . . 'MJ (n1, J)) arid thiQ Imiaginaary ItaLrts r
stored inl the jtI% (-01111111 of XI. The eigeiivecto.oni 21, 71 rentnrra~e

IBAL is anl iripui argiltilciet. that canli be a~ssilgned anly liaie 1gr valira. If lilA L / (1

thien the complex nvitrtix( (repres'ented by At anll Al) Is badLancvl before, the e'geiivahilts

:111d tieivtt rs a ( ooIpitc(L. ( )tierwise, If MJAL thaeii tOe -omjipltX ii),trix ri Iout

haklaiteed

TLNIP I' s aI re.J;d rray iused for tempo)(rary storalge 1)' tne routine. If no cla(in IiS to;

!we d(ine (It.if MAL 0) thton TIKMI, itnist he (if duiinewBsioi 2ri o)r larger. Otheurwiseý, I f

Iba I;ll(ncItng is- to lie I erfo r li(,e t it -I IT A Pll l mist 11e4 1 of ,lJo(I ei it cjommiW t to o r l arger.

Err-nr Retuirn. ]L~d? isý ;il iritclgr 'ariahule If ail tlie t eigeuvlis(11tigvector-i atrc f(ounid

(ltl1n lh"ltH lis seAt t'l ()0. ()i hiirw ,e if tilt it tliaiii 'M t brat ~in aIrt. r'IsIjire-d to) utuIlpuite tlie

eenlieA'' t-lieii j1.1l V is set to J andl tilt rwutim ticiiou lit ilias (s -e, if j 71 1lt-Iu

(Ito- egtI'I val I as. A, ý. A,, 'AIll hi.LVt IW11 t " ;i~1t 0 a i [lie, rc,'siits, ,t) lo tl ill ( I,(' W d

W I rrakyý Ilowever min of tii tuiuiv ties wk ill by,1 1, i)(l Ilt~it cd I ho tie lvecu

I I I I II IItv k oI Il I t e I ~ I l i t I('IV 11 tI5 lLy % oi I I I I I



Remarks.

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result i.. a slight loss of accuracy. On the other hand,
balancing requires Hiitle additional time and in certain cases can improve the accuracy
of the eigenvalues by as much as 5-83 significant digits. When this occurs balancing
will noamally be needed to obtain the eigeavectors. In general, it is recommended that
balancing be done.

(2) AR and AI are destroyed during computation. CEIGV reduces the complex matrix
(represented by AR and Al) to upper Hetsenberg form with unitary similarity trans-
form.ations. Then the QR algorithm is employed to obtain the eigenvalues, and back-
substitution is performed to generate the eigenvectors.

Usage. If one has a complex matrix A, then AR and AI can be obtained using the matrix
subroutines CMREAL and CMIMAG.

Programming. CEIGV is a driver routine for the EISPACK subroutines CBAL, CORTH,
COMQR2, and CBABK2. These subroutines were developed at Argonne National Labora-
tory. The functions SPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Mlatrix Eigenrsytem Routines - EISPACKf
Guide (Second Edition), Springer-Veelag, 1976.



DOUBLE PRECISION COMPUTATION OF EIGENVALUES OF
COMPLEX MATRICES

The subroutine DCEIG is available for the double precision computation of the eigen-
values of complex matrices. This routine frequently yields resulta accurate to 26-28 signif-
icant digits. However, if the eigenvalues are not distinct ur if they are exceedingly tightly
clustered, then a severe drop in accuracy can occur. In this case one should not expect
more than 13-14 digit accuracy.

CALL DCEIG(IBAL,AR,AI,ka,rn, WR,WI,IERR)

AR and Al are double precision matrices of order n > 1, and WR and WT are double
precision arrays of dimension n or larger. AR and AT are the real and imaginary parts of
the matrix whose eigenvalues are to be computed. When DCEIG is called the eigenvalues
A,, . .. ,A,, are computed. The real parts of the eigenvalues are stored in WR(I), ... ,WR(n)
and the imaginary parts are stored in WI(1), . . . , WI(n). The eigenvalues are unordered.

IBAL and ka are input arguments. It is assumed that ka is the number of rows in the
dimension statements for AR and Al in the calling program. IBAL may be any integer.
If IBAL / 0 then the complex natrix (represented by AR and Al) is baianced before the
eigenvalues are computed. Otherwise, if IBAL -- 0 then the comrnlex matrix is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set.
to 0. Othc wise, if more than 50 iterations are required to compute the jth eigenvalue Ap,
then IERR is set to j and the routine terminates. In this case, if j < ni then the eigenvalues
A.j-+ 1, . .. A,A will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) AR and AT are destroyed during computation.
(2) D)CEIG is a double precision verý-ion of the eigenvalue routine C ,IG.

Programming. l(JCII(; is a driver routine for the subroutines I)CIAAL, DC(JRTII, ard
I)COMQIH. These su brou t.ikeh are dwble p1recision vei-sliins of the EIStPACK siibrouti lns
CBAI, COld'I'!, and CO(MQI, dcvc(l(pcd at Argonie National Laboratory. The' d(tolle

precision versioni- were pr(,ep•e(d by A if Morris. The fu-i'.tiSri IDC PAtS, I)fIPMIAI,
IlPMPIA I and miitromtine I)( 7'5Q9IT are also Us,,.

Reference, S11ith, 1ý T., Iuyh', J %I , 't al , Mfalrix Eikensysterna Routines FISPA(C'A
(;uide (Second tdi oi), Spnrvtir 'verlak, 19746

:ý; I



DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECTORS OF COMPLEX MATRICES

The subroutine DCEIGV is available for the dlouble precision computation of the eigea-
values and eigenvectors of comp!ex matrices. The routine frequently yields values for the
eigenvalues that are accurate to 26-28 significant digit5 A-owever, be aware that the errors
in the eigenvalueb, no matter bow seemingiy insignificant, can be considerably magnified
in the computatio;n of the eigenvectorF. If the eigenvalues are not distinct or if they are
exceedingly tightly clustered, then a severe drop in accuracy cart occur. In this case one
should not expect the eigenvalues to have more than 13-14 digit accuracy.

CALL DCEIGV(IBAL,AR,AI, ka, n, Wr,WI,ZR,ZI,IEFR,TEMP)

ARZ and Al are double precision matrices of order n > I and WR and WI are double
precision arrays of dim~fension ni or larger. AR and AT are the real and Imaginary portions
of the comrplex matrix whose eigenvalues and eienvectors are to be computed. When
DCEJGN' is called the eigenvalues A,,.. . ;A, and corresponding eigenvectors z1 , ... , z,. are
computed. The real parts of the eigenvaluies are stored in WR(1), . .. , WR1(n) and the
imaginary parts are storedl in WI(!), . .. ,Wl(n). The eigenvaluies are unordered.

It, is assumed that the input argurno~nt ka is the number of rows in the dimension
staitemenits for AR and A! in the calling program. ZR and ZI are double precision arrays of
dimension ka x n. For j --1, - . , vi the real parts of the components of the eigenvector z,
are stored in the I"h column of ZR (in locatier.s R(1,J), . . ,ZiZ(n,j*)) and the imaginary
p-ý:ts a~re st~ored in the Jill column of ZI. The eigenvectors zj, . . . , z,, are niot normalized.

IB3AL is an input argument that can be assigned arty integer value. If IBAL / 0
then the complex mnatrix (represented by ARZ arid Al) is balanced before the eigenvalues
arid eigenvectors are comnputed. Othierwis~e, if 113AL -- 0 then the complex mnatrix is not
b)alanced.

TEMP is a dou ble precision array uised for temiporary storage by the routine. If no
balancing Li: to be (lone (.,if I HAL 0) then TEM P niust b~e of dlimeniiiion 2ta or larger.
)t herwisw, if hal ane i ng is to he perforined then TEM P nii ist, be of dIiriieiisicnn or larger

Error Return. IEPR HIs ant integer variable. If all the eigerivalues and eigenvectors are. folndi
then IluItR HIs s-t to 0) () .erw ist: if miore th an 50 iterations are reo~tiired to conopwte the j'h

eigerivalne. A., then I ERR is set to jand the rotitince tcr iiiný tes In t Iiis c ase, if ) <. n~ t ien

the eigenivahl 1( A, , , IA,, will Ihave been comiputed an(I the reýul ts stored inI thbe Wit and]

WNI arrays. However, nionc of the elgt-nvectors! will ha~ve beni :onipujte& Tlhie vigemieetors

are conii.Itovd on!) Afttcr all tho'eiil all, havu !4 ('n o0 lw (I

Reinaiu ke;
1I) A~ R and A I areý d i(.roycd)Ve (1-i-11 I fjO

(2 1A 'Fl W .V is a ;I)rct 'i-)o~n cr,.m~nl(J .he 11' ( 1' ;;m V i



gramming. DCEIGV is a driver for the subroutines DCBAL, DCOOIiTI?, DCMQR'2,
DCBABK. These subroutines are dIouble precision versions of thil EISPACK routirnes

(CLUAL, CORTH, COMQR2, and CBABK2, developed at Argonne NAtioaal Laboratory.
'The double precision versions were prepared by A. H. Morris. The functions DCPA13S,
DPMPAR, IPMPAR and subroutine DCSQRT are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matriz Eigenayatem Koutines - EISPACK
Guide (Second Edition), Springer-Verlag, 197e.



'. SOLUTPON OF SYSTEMS OF LUNEAR EQUATIONS WITh
EQUALITY AND INEQUALITY CONSTRAINTS

Let A be a. A . • matrix, C an x n n rtrix., aid S1 an rn x Y4 matrix, Also let b, d, and f be
olurnn vectors (if himensions k, e, and m respect)'ely. The following subroutine is available

k
'G:r obtaining a column vector x of dimension n which minimizes 1lA41.- bijl = EA,z -- bil

i=1

subject to the constraints
C~x -~d

Hl-ere .A denotes the ih row of A, and Wx < f means that every component of Ex is less
than or equal to the corresponding component of f.

CALL CLI(k, e, m, n,Q, kq, KODE,'rOL,ITER,X, RES,RNORM,WK,IWK)

It is as,,umed that k > , e > 0, ra C) 0, and n > 1. Q is a 2-dimensional array with
kq rows and at least n + 2 columns wLere kq > k + I-- m + 2. The matrices A, C, E and
vectors b, d, f are stored in the first k 4- e +r- i rows and n + I columns of Q as follows:

Ef

Q is modified by the routine.

KODE is a variable used for input/output purposes, X an array of dimension n A- 2 or
larger, and RES an array of dimension k + e + m or larger. On input KODE is normally
set by the user to 0. This indicates that ljAx --- b&II is to be minimized subject only to the
constraints Cx =: d and Ex - f. However, if it is also desired that one oT more variables
xj satisfy xj < 0 or :rx, > 0, or that one or m,;re residuals b, - Aix satisfy b, --- Aix < 0 or
b, - A,z > G, then the user may set KODE to a nonzero value, if KODE $ 0 on input,
then the user must also set X(j) and RES(i) to the values

-1.0 X) < 0
X(j) { 0.0 x is unrestricted

1.0 xT > 0

f .l b, Ax <, 0

RES(I 0,0 b, Ax is unrestrict(d
; 0 fi, A, j,:- 0

.~r j I, . n l I , .. k ýk iondicate the aziditfi(ora tlrairts which at.'. (Icsired

lHN(tiNM 1ic i \arile :Wh.,erI (CI[ is ,.htc . if a v•,ct r j v; tlull. t l ,lt Jriiiuil'yih 1-
{I.A. b I,, ,il ý. : ,, h .u d(' . (wh •tr iunus, thu I'M .)1 4, ) tu. o • (piut. arld the n hi tl()b T

27,



is stored in X. Also RNORM is assigned the value JlAx- b6l1 ,b - Ax is sAored in the first k
locations of RES, d - Cx is stored in the next t locations, and f - Ex is stored in the last
rn locations.

When CLI is called, a modified form of the simplex algorithm is used to minimize
lmAx - bill. The arguments TOL and ITER control the use of this algorithm. The input

argument TOL is a positive tolerance. CLI will not pivot on any quantity whose magnitude
is less than TOL. Normally the setting TOL = 10-2,l/ suffices where v is the number of
decimal digits of accuracy available.

Frequently the routine requires less than 5(k+i+rn) iterations of the simplex alogrithm
to solve the problem. ITER is a variable used for input/output purposes. On input the user
must set ITER to the maximum number of iterations that will be permitted. When the
routine terminates, ITER has for its value the number of iterations that were performed.

On output KODE reports the status of the results. The routine assigns KODE one of
the following values:

KODE = 0 The problem was solved.
KODE = I The problem has no solution.
KODE = 2 Sufficient accuracy cannot be maintained to solve the problem

using the current value of TOL.
KODE = 3 The maximum number of iterations were performed. More itera-

tions are needed.

When KODE > 1 on output, X contains the last vector 2 which was obtained, RNORM
lIAm - bill, and RES contains the vectors b - A•.,d - Cx, and f -- Et.

WK is an array of dimension 2(k + f +- m + n) or larger, and IWK is an array of
dimension 3(k + f + m) -4- 2n or larger. WK and IWK are work spaces for the routine.

Programming. CLI calls the subroutine KL1. CLI was written by 1. Barrodale arid
F. D. K. Roberts (University of Victoria, Br;tish Columbia, Canada).

References,

(1) Barrodale, 1. and Roberts, F1. I). K{., "An Inmproved Algorithm for Discrete fI Linear
Approximation," SIAM J. Numer. Analysis 10 (1973), pp. 839 848.

(2) .. "An Efficient Algorithm for Discrete f Lineat \pproxination wit, h •inar
Constraints," SIAM J. Numer. Analysis 15 (1978), pp. G03 )I Ii.

(3) . "Algorithii 552, Solution of the Constrained f, irear Appioximiatioi
Problem," ACM Trans. Mfath Software 6 (1980), pp. 231 235.

'17 G



LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Given an in x n matrix A and an m x t matrix B. The column vectors bI, ... ,bt of .3
specify t distinct linear least squares problems

=- ~Axj=bj (U=1,...,A.

This set of problems can be written in the form AX = B where X is the n x t matrix having
the column vectors xj, ... , xt. There always exists a unique minimum length least squares
solution xj for each Axj = bj. If B is the rn x m identity matrix, then the matrix whose
columns are the minimum length solution vectors xj is called the pseudoinverse of A.

For any B, the subroutines LLSQ, LSQR, HFTI, and JIFTI2 are available for obtaining
the matrix X whose columns are the minimum length solution vectors. LSQR, HPFT, and
HFTI2 are more general than LLSQ, begin able to solve arbitrary systems AX = B. LLSQ
assumes that m >_ n > 1 and that the rank of A is rt. LSQR employs a more involved
procedure than HFTI and HFTI2. LSQR computes the rank of A, wherea-i HFTI and
IIFTI2 leave the determination of the rank to the user.

CALL LLSQ(m, n, A, ka, B, kb, t, WK,IWK,IERR)

It is assumed that m > n > 1 and that the rank of A is n. The input arguments ka
and kb have the following values:

ka the number oi rows in the dimension statement for A in the calling program
kb the number of rows in the dimension statement for B in the calling program

It is required that ka > m and kb> 'm.

IERR is an integer variable. When LLSQ is called, if no input errors are detected then
IERR is set to 0 and the solution matrix X stored in B. Also, if rn -/ n then the residual
norm IlAx4 -- b,1j is computed and stored in 3(n -f l,j) for j -- 1 ... ,I.1

WK and IWK are arrays of dimension in or larger that are work sp;v'-cs for the routine.

Error Return. IER.lt / 0 when m > n - 1 is not satisfied (lElIM - 1) or the rank )f A jS
Jess than n (IERR 2).

Note. A is destroyed (luring coi!),utation.

Programming. LLSQ is a driver for the subroutines OiJTii() and ORS()IL, wri t(-,, by Nai-
Kuian lsao and Pani J. Nikolai (Aerospace I esearch lat)oratories, Wright--'ait ters, i Ai
Force 1 a-se).

Reference. 'lsao, N K. ajd Niko(lai, 1'. J., Pvocedures ustiz ()rthoyogrial ,.,rrtiati,
for Linear Least Squares Probldrns. Report A IPI, 'H? 74-012-1, A trns)LSce 1-,11)rli l.th
()ratnri,,s, Wright-I'. ttrson Air Force lkiýe, 197-1

"77



CALL LSQR(MO,A, ka, m, n, B, kb, 1,RERR,AEIRR,k,ko,RNORM,

WK,ew,IWK,6iw,IEt1RR)

MO is an argument which specifies if LSQR is being used for the first time. On an
initial call, MO 0 and we have the following setup:

A is an m x n matrix where m, n > 1, and ka is the number of rows in the dimension
statement for A in the calling program. It is required that ka > m. A is destroyed by the
routine.

The argument f is an integer. If £ > 1 then B is an in x t matrix and kb is the number
of rows in the dimension statement f,)r B in the calling program. Also, RNORM is an array
of dimension t or larger (for outpu,). It is required that kb > max{re, n}. If i < 0 then
there are no equations to be solved, an.I B, kb, and RNORN are not used.

RERR is an argument which s: e-cifies the relative acc iracy of the data in A. If it is
estimated that the elements in A arý accurate to it significant decimal digits then one may
set RERR l= 10-0. It is required that RERR > 0. If RERR = 0 then it is assumed that
the elements in A are accurate to m ,chine precision.

AERR is an argument which specifies the maximum absolute uncertainty of the data
in A. For example, if it is estimated that the elements aj of A have the relative accuracy
RERIZ except when Iajj <: I0to-, then one may set AERR 10-a°. It is required that
AELIR > 0.

The argurnents k, ko, and IERR are variables. When LSQR is called, if no input errors
are detected then IERR is set to 0 and the rank of A is bounded from above and below
using the tol,,rances RERR and AERR. The variable k is set to the upper bound and ko to
the towe, bot nd. If f > I then the n x e0 matrix X whose columns are the minimum length
soh ion vectors is computed (using k as the rank) and stored in 13. Also, the residual norm

A, b 11 is computed and stored in RNORM(j) for j 1, . .. , f.

WK -i i it array if dlimension .iv where fw >. 5 - riii {in, n}) Iid IWK is an array of
(1iiiiciisioll 6i11 \",here tiw > -i f n WK and 1W!l are work spacls for th, ,ou'1tin.

Error Return. IM Il is w•L igned one of the following values whern at errmr i-i (hetec(t:

IEtR .I rn <- 1 or ,:

II'ERI k- ka < rn.

.1- 1 kb1.. :axi i,,
hi'!ItM 41 f ): < Tri .f
lt,1RK 5 tu) is too iuialL
I I-,!" (; tHEI M 1{I1 or AKI )I•{ i:k-jgativc.

l! Il 7 M(f) / () aid " U.

N4, comi :l0( is j1triirold wht-ol an error :K, dc-tu.'cu'

. tter- t iuiri l aI ii , 1, (_t . it Il'PlH U fli I the 1 '(,, 0- 1( ,, ,1



equations AX =1.3 arc to he solved. The routine employs the Housý,holder factorization of
A stored ]in .A, WK, and IWK )n the iniatial cal! to JLSQR.

When MO /20, it is ,.:stinmed tat ,A, ka,-m, n,, . VK, and 6u, have not been modified
by the user. If k' 0 or k:- min `rn, n} then only il~l first inin~ra }eeet fW r

needed and one rnay N) 77>mi~r,)r. Otherwise, it is required that 6w > 2. min fr, n}

RERPR, AERR, e xd ko are wot used when MO) /2 0. Thle only assumptions concerning
the new P, kb, anid ý' are. th-at kb > maxc~m, n}, t > 1, and the dimension cL' RNOEM is
now the n,,. v value o' f.. When LSQ.R is ca lied, if no input errors are detected then IERR
is set to 0 aad the rw. w solution miatrix X obtained. As before, X is stored in B and the
residual norm,.s are comnputed and itored in RNOI1M.

Rernarks.N( naly k,, --- .1n wVh,.I case k is the rank of A. However, if ko /2ý k then it is
recommende fthat 1Vt CE~ ib use I for obtaitning the most, appropiiate value for the rank
and solli'ing aX -- . if, aF-r. Is used, the sizes of the elements of thle solution matrix
.X should be- coreidered (in ,.Adit) rn to the values of the residuial nortrs). Frequently, the
lower bound k,) will be ftind. to be the most appropriate value for the rank.

Prograkirming. LS'QR emnploys the subroutines d<ILS,, U12LS UIIUS, Ui2US, ISWAP,
55 WAIr, SAXIlY, SALand furnctionst SDOT, SNRM2, ISAN".AX, SPIP.AR, Il'N4"PAR.
LS()R w,,., written by A. 11. Morris and Ui I LS, LII2LS, U IUPS, U 1.2US were wri'tten by

Tr. Miariteiffel (I Žs XUamos).

Referecices. N mnteuff(l, T.., An Intervoid Analysis Approach to' Rank Determiunation
in Linea~r %'tSqtiusres B-coblerns, fite~porf. SAND 8C0-655, Sandia Laboratorics, Albu-

querqu*. ýctx.',) 1980.

C7 A HF-TI(A, ka, ;ia ut, H, kb, P', 7', k,RNOR.N' ýIi,Gj')

I V? ), I l tnatrix wlwl-, : ý i ý , and kit Is tip tttiu1thwr of ruWs In tile '11111.1'zt01ot
wiieitt i if th [1( ajl~ling pr ugr;itt. It is rcqii-mid that,. 7, -~ nit

C1 e LtV1 IiAei f Is ani ittiger. If F -- I t hen 1; Is ani Yni x f wiatrix afid ý!, in tie(

ill jji(ý ,V _\I I iii the (l i rlt t~t statenr te t [(r 11 'it; die (N i ltrograni. It, 1is reqip ft I that

i iý ý I I r If ' tie tt ti -re are Ito eqlj~lfioflt to he s(&ied, antd II a')d A"' ate 1lt4

L Ioni HNON( i ara li i)F I: Irt ()terts-, if et) tlici

Isit r id tpie M



dimension~ kiin{Yn, nj or Jargcr. It is assumed that, r > 0. Normally 7- Z= 0 is the setting
that is used. D and k are get by the routines.

In or-der to understand the use of r, k, and D one must be briefly acquai',ted with the
processuig, of A. The routines first reduce A to a triangular mratrix C whe.ýe A =QCP.
Q is an orthogona! matrix and P a permutation matrix. P is defined so that the diagonal
elements cjj of C satiý 'y Icij Ž! jc~,, for each i. The variable k is set to the largest
integer such that 1c, kj > i-, and if HFTI2 is used then the diagonal elements cjj are stored1
in D. C is now regarded as the partitioned matrix

C =(C1 C2)

vvh( C1 is a k x k matrix. Minimum length least squares soilutions xj are then computed
for dhe problems A.-, bj usi )g only the first k rows of C. This is equivalent to ]replacing

A 0. (C 1  C2  P

and solving Ax. = b for *j 1, f.. ,

Since Ki Il > Ž. Ckk > 7clearly k is the rank of A. It, is also true that the

ratio !C1Ii / ICkkl is a lower hound on the condition number of C, (relative to the sp(,ctral
norm). Thus, if the ratrio i4 extremiely large (say ":-108) then it severe loss of acculracy
can be expected. A large ratio may be due all or in part to rank deficiency (or iear rank
deficiency) of the matrix A. Fortunately, rank deficienicy is frequently not i~oo diflicult to
(It :ect and cure. When A is rank leficient then machine roundoff ma'y assign Ckk a smlall
value, say 10)- 14, when it should b e (ý The cure Is to examine the diagonial oler writs c,,
which are stored in D), to reset r s;o as to eliminate thec unwantod c,',and thlen to reruin
t Ie( problem. Thswill redurce the (rder of Cl, ihereb~y lowerintg the rank of the replIacerrieit,
rxratr-ix A. C, will now be better conditioned, but t lie value (1 the esidi ial to )UU A ~ b
miay be larger. If the nor ins do inc rease, then tie ,olu tlwi obtainte I will he s.l 1sfi. t~ory on B
if the size of the incr-cased noi uris fall w'tliit acceptablc borrrmls

Remarks.

(1) Thie variabbc k is; set to () if all 1(,, 1' i. It' k then(1 thre z'ero trial rix K'.! tu:;lii

fo r AA X 11

(2If f <. 0 their Ohe 'lecotinpositioti A Q(rjI is perfotired, tin +ia-mcIijt.ent of

ar toredl ill 1), andl k is cotrtpnted.

T8'hhe corteiits of .1 are drcst royed by the, ronire;
(4) 'Il"'l'i ;.d 1hF-11l2 yieid div samne restiltN.

[irvoi Re4tIurti ll.HRiýf a v1rilthlc tir tI: tcl ly ii1 )1o mi -r If Im 1ý plt *rt J(r r'

thll H- I!0Iý 1:i : h 0. ()thurrw 'ist, hJKIRP 1 S5" wf !I tlire F, iVY1'" ij i r

hi IýAl l I if ti k

hen Anr err ur r is ii (1 t c d, th e rwirtm r Sr I rim 1n. 11e1r 1,0ii



Programming. HFTI and HFTI2 call the subroutine H12. These routines were written by
Charles L. Lawson and Richard J. Hapson (Jet Propulsion Laboratory), and modified by
A. H. Morris.

Reference. Lawson, C. L., and Hanson, R. J., Solving Least Squares Problems, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1974.

I381



LEAST SQUARES SOLUTION OF OVERDETERMINED SYSTEMS OF
LINEAR EQUATIONS WITH TERATIVE IMPROVEMENT

Given an rn x n matrix A and an m x f• matrix B. The column vectors bl, ... ,bt of B
specify t distinct linear least squares problems

Axj = bj (j--1..,)

This set of problems can be written in the form AX = B where X is the n x f matrix having
the column vectors xi, .. .,xt. Assume that m > n > 1 and that the rank of A i; n. Then
there exists a unique least squares solution x,. for each Ax, =- b,.. The subroui;nfc LLSQMP
is available for obtaining the solution matrix X. Iterative improvement is performed to
compute X to machine accuracy.

CALL LLSQMP(rn,n, A,ka, B,kb,e, WK,IWK,IER.T)

It is assumed that m > n > I and that the rank of A is n. The input arguments ka
and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is required that ka > rm and kb > in.

When LLSQMP is called, the solution X is computed and stored in B. Also, if m 7i i

theni dhe residual nor,,i IIAxi.- b-jI is computed and stored in B(n + 1,j) for j 7 1 f.

A is not modified by the routine.

WK is an array of liniewsildi f. lt f 2rn L or larger, and !WK an array of dimension
n or larger. WK and IWK are work spaces for the routine.

IER lis a variable that is set by the routine. When LLIQMIP terminates, IERiI haws
oDC of the following values:

I IE 1 0 The sol titol X wias couuputed tu ri)a( hine ;).t iiriury.

IEllRR I X waLs o)btainlld, bilt not to ll•a'liluŽ 4C:(tUrai:y.
I iIAR • 2 The re(,trit( i) Fit 1 I I rot satislh'.l
IEIMR 3 The ranýý of A is less tChao ,,

Programming. I.,,";Ml' a driver for the .'uibro•utines ()W-'1''l(), )l-SOI,, arid (MlIlNP.
These subrourit iies were writtenii by N- ]ii•u •"l'sýt,) and Paul J. N ikoI;P (Avrospa(c l,-sear( I
Ltbo()ratories, Wrigpit-lPattrs(o: Air lFore B;Ls'e). (O)lIMP wa•s• rilified biy AII. M1orri.
The fmi(t;om Si'Ml'A i i, ,lll rr0iti, NI(, ()l'Y aýtv i o ui.sed

Relerenrce. 'l'its), N K' an, Nikol Li, 1' J. , Procedures using Orthyoen(d Tra nsfortnatio)u.q

for Linear Least S'qum reji Problern1s, Itl,()rt A.UlI. R " 71- ( ) i2i, .'\A'r, e ) U I,;1b)
n)rat rm i's, W right ,,,'tt ur•n Air l(,r ne lL>,,, I)7i1

.~V v, i,



DOUBLE PRECISION LEAST SQUARES SOLUTION OF
SYSTEMS OF LINEAR EQUATiONS

Given an m x n matrix A and an rn x t matrix B. The column vectors bl, .. ,b, of B
specify e distinct linear least ,3quares problems

Ax = b3- (j ==I,....,£).

This set of problems can be written in the form AX B B where A is the n x t matrix having
the column vectors xi, . • •, .. There always exists a unique minimum length least squares
solution x, for each Ax. =- bl. If B is the m x m identity matrix, then the matrix whose
columns are the minimum length solution vectors xj is called the pseudoinverse of A.

For any H, the subroutirnes DLLSQ, DLSQR, DttFTI, and DIIFTI2 are available for
obtaining the matrix X whose columns are the minimum length solution vectors. DLSQR,
DUFTI, and DIIFTI2 are more general than DLLSQ, begin able to solve arbitrary systems
AX 13, DL[ISQ assumes that m > n > 1 and that the rank of A is n. DSQR
employs a more involved procedure than DIIFTI and DIIFTI2. DLSQR computes the rank
of A, wheream DI FTI and I)IIFFIr2 leave the determimation of the ra7k to the user. The
subroutines perform all calculatious in double precision.

CALL DLLSQ(ra, n, A, k,, H, kb, E, WK,IWK,ILRIt)

A and 1) are douhle precision arrays, It is assunmed that n > n > I and that the ranku
(If A is ?I, '!'he input arguments k, and kb have the following values:

ka the ununber of rows in the Owtiiension stateniiet for A in the calling programi
kb thie iumbcr of rows iI tOw dimension stateme(nt for 13B ii thit( calling prograii

It is requiredI that ka - tt land kb - t.

lhi~ iR is an it nteger va;riable. When )lI.,Q is callhd, if 11, input errors a;it (d( ,t((tcl

flien I NKIU{ i 1 s4t to () Waid tht solutiion ilatrix \ stored in B. Also, if Yu / Ow th, tli,
-" rcsil al ( It ,rit r r lAi I 5,,i i A r ,-, itLt ite a, l .4 t.rt(c I in 11(7, i t ,j) for I

W\.h :tiIt! I W\K' are atrrays of cdil,•i ioil ,I or latrger that ;.re work spao vs for the, roltillt,'

\"'K Is a d(oublle pre(.ision array.

Error Return 1E.Il ., (1 - ý,i) tit 7 n7 - I Is not stltislikd (Il.IMh I) or tht rank (if .1 t:,

11> t ih , Ft (llh"h 2)

Note A1 iý 'cstr.,v')c Jur ing l l

P~rogrammini g l)l ;l;(' a •t \,i• r for te siuhjuwtius,, I)(W)]'iVII) ond 1 )( 1US()1) 'I,
rmuturosi are dIluhi jut ilull v rsirs oi (()I(lIlT I ) andl (A)r(c)I, wrt I r t . I Na lnt '
,I, l l'iui .JI Ž ik.LJ (. r" , I t'c.rhi l,,.,,r ,h uu , ', thu I',tt ,rV , , u ".t- 1,,:, f -1 ,,



Reference. Tsao, N. K. and Nikolai, P. J., Procedures using Orthogonal Transformations
for Linear Least Squares Problems. Report ARL TR 74-0124, Aerospace Research Lab-
oratories, Wright-Patterson Air Force Base, 1974.

CALL DLSQR(MO,A, ka, m, n, B, kb, t,RERR,AERR,k,ko,RNORM,
WK,fw,IWK,eiw,IERR)

MO is an argument which specifies if DLSQR is being used for the first time. On an
initial call, MO = 0 and we have the following setup:

A is a double precision m x n matrix where m,n > 1, and ka is the number of rows
in the dimension statement for A in the calling program. It is required that ka > rn. A is
destroyed by the routine.

The argument e is an integer. If t > 1 then B is a double precision m x fJ matrix and
kb is the number of rows in the dimension statement for B in the calling program. Also,

RNORM is a double precision array of dimension f or larger (for output). It is required

that kb > max{mr, n}. If f < 0 then there are no equations to be solved, and J3, kb, arid
RNORM are riot used.

RERR is a double precision value which specifies the relative accuracy of the data in

A. If it is estimated that the elements in A are accurate to p significant decimal digits then

one may set RERR - 10- A. It is required that RERI > 0. If RERR -- 0 then it is assumed
that the elements in A are accurate to machine precision.

AERIR is a doible precision valwtie whilch specifies the nia~x irimum absoint,e nicertaiiity

Of the data in A. For examiple, if it, is estimated that the ;'lemnents (,, of A have the relative

acc iriacy RElB It except when a I, 10 M" then one mayi set A1 IR I{ 10 "'•. it is requi red
thtt A ERR . 0.

The :trginnnnts k, k,, anwid IEI! are variables. WVlivin l),lSQI is called, if mi inlp!t

trror:i ar', (etectedt them ll;I{t is set, to, 9 and the raitk of A is bmhidetd from above, arid

htH1iow \ insinig the tolhraimces i/lilI id Al1KIffl. Thie vtritldt, A i.•s t to tlthe tipper ,loitid ;1m

k t)the 1lower Inniniil.ff If t lon hic it -f mmutt ri% \" -,ý ins arc ilie m im ennui l

lngth sAlnuton r vectors is (conim ipteid (ilsira' k vi lthin rank) anl stored iun H Alo, thut rtsiýldut

-o(irm [14 , t 1ji ls coIlount ft tt st.trt, ill tNO HIM (j) foir j , ,f.

W Klx is t ikJnlule prcuisn ,n a •trv ,of L ' i einin,imi(, nn' ,iok,,re f.i, 5 5- i ii•r,,i, yin } tind 1\\ k

il' l on lunger arri iy of dm,tnnunenn ftn (iu!w lire ftm t-ill ti itWk an.1 I WK ;t re krk sneI
tIll ru. Ut lilt,

Error Return I'1-.IN L, , i iýdt . I ' ,f th+n fid., ing II d -J ,Iw- \ " i0 , , I I I; I t,• I .,

S1I'.it 1 1 rot - r , - I

!t;1 '2 k, . Y•

I l'H 1~ 3 ki t ), i



IERR- 6 RERR or AERR is negative.

IERR 7 MO ./ 0 and f < 0,

No computation is performed when an error is detected.

After an initial call to DLSQh , f IERR = 0 then the routine may be called with MO
€ 0. In this case, it is assumed that only B has been modified and that the new set of
equations AX = B are to be solved. The routine employs the Householder factorization of
A stored in A, WK, and IWK on the initial call to DLSQR.

When MO $ 0, it is assumed that A, ka, rn, n, k,IWK, and 6iw have not been ndjfied
by the user. If k = 0 or k = main{m, n} then only the first min{rn, n} elements of WK are
needed and one may set Lw > rnin{m, n}. Otherwise, it is required that fw > 2.min{m,n}.

RFRIL, AERR, arid k0 are not used when MO / 0. The only assumptions concerning
the new B, kb, arid f are that kb >_ max{rm,n}, t > 1, and the dimension of RNORM is
now the new value of f. When DLSQR is called, if no input errors are detected then IERR
is set to 0 Lrid the new solution matrix X obtained. As before, X is stored in B and the
residual norms are computed and stored in RNORM.

Remarks.Normally k0 = k, in which case k is the rank of A. However, if k0 $ k then it is
recommended that DIIFTI2 be used for obtaining the most appropriate value for the rank
and solving AX =- B. If DHFTI2 is used, the sizes of the elements of the solution matrix
X should be considered (in addition to the values of the residual norms). Frequently, the
lower bound k0 will be found to be the most appropriate vah ý for the rank.

Programming. DLSQR employs the subroutines DUllLS, DU12LS, DUliUS, DUI2US,
ISWAP, DSWAP, DAXPY, DSCAL and functions DDOT, DNRM2, IDAMAX, DPMPAR,
IPMPAR. DLSQR was written by A. H. Morris and DUllLS, DU12LS, DUllUS, DU12US
were written by T. Manteuffel (Los Alamos).

References. Mantcuffel, T., An Interval Analysis Approach to Rank Determination
in Linear Least Squares Problems, Report SAND 8G.0655, Sandia Laboratories, Aibu-
querque, New Mexico, 1980.

CALL DHFTI(A, ka, mn, n, B, kb, f, r, k,RNORM,If,G,IP)
CALL DHFTI2(A, ka, rn, n, B, kb, f, D, r, k,RNORM,H,G,II",IERR)

A is a double precision rn x n matrix where rn, n > 1, and ka is the number of rows in
the dinension statement for A in the calling program. It is required that ka > rn.

The argument f is an integer. If e > 1 then 1B is a double precision irn x e matrix and
kb is the number of rows in the (dinension staternririt for B in the calling prigram. It is
recirid that kb -, 1mnaxn, i}t. If f 0 th e On tlher re ro equations to be solved, and i)

aw!J kb are not used.

If f '> I then RN10 1M is a double precision array of dimiensioii or larger. OtLerwise,
if f < 0 then INORM is ignored. When I)II1"T! or DI1TE12 is callhde if e - I then the
n F- f matrix X wltwse cohimnis are the iin length solution vectors is compuited and

:387



stored in B. Also, the residual norm IIAxj - bjll is computed and sfored in RNORM(j) for

j -- 1, . ,. , .

11,G, and IP are arrays of dimension n or larger that are work spaces for the routines.
H and G are double precision arrays.

The parametero r,k, and D.
r is a double precision tolerance that is set by the user, k an integer variable, and

D a double precision array of dimension min{m, n} o, larger. It is assurned that r > 0.
Normally r = 0 is the setting that is used, D and k are set by the routines.

In order to understand the use of r, k, and D one must be briefly acquainted with the
processing of A. The routines first reduce A to a triangular matrix C where A = QCP.
Q is an orthogonal matrix and P a permutation matri::. P is defined so that the diagonal
elements cii of C satisfy Icij .> jc 1+j~ 1+jj for each i. The vaiable k is set to the largest
integer such that Ickkl > r, and if DHFTI2 is used then the diagonal elements cij are stored
in D. C is now regarded as the partitioned matrix

where C1 is a k x k matrix. Minimum length least squares solutions xj are then computed
for the problems Axj = b. using only the first k rows of C. This is equivalent to replacing
A with

and solving Axj = b3 for j = 1, ...

Since ic,, 1 .. Ž !ckkI > r clearly k is the rank of A. It. is also true that the
ratio IcIII / kkk is a lower bound on the condition number of C, (relative to the spectral
norm). Thus. if the ratio is extremely large (say > 108) then a severe loss of accuracy
can be expected. A large ratio may be due all or in part to rank deficiency (or near raJ.

deficiency) of the matrix A. Fortunately, rank deficiency is frequently iuot too difficult, to
dletect and cure. When A is rank deficient then machine roundoff may assign ckk, a small
value, say 10-28, when it should be 0. The cure is to examine the diagonal elements c,,
which are stored in D, to reset r so as to eliminate the unwanted cj 's, and then to rerun
the problem. This will reduce the order of C ý,, thereby lowering the rank of the replacement
matrix A. C, will now be better conditioned, but the value of the residual norms IjAx, b,11
may be larger. If the norms do increase, then the soiution obtained will be satisfactory or:ly
if the size of the increased norms fall within acceptable bounds.

Remarks.

(1) The variable k is set to 0 if all eI f- i - If ,; 0 then the zero rmatrix is thew sol It io

for AX 11.
(2) If f <K 0 then the deconmposition A QCI' is performed, the diagonmal elcnments of C

are stored in: D), and k is coilmput,ed.

(3) The conteints of A aýre destroyed by the routinlies.



(4) DHFTI and DHFTI2 yield the same results. These routines are double precision ver
sions of the subroutines HFT1 and HFTI2.

Error Return. IERR is a variable that is set by the routine. If no input errors are detected
then IERR is set to 0. Otherwise, IERR is assigned one of the following values:

IERR 1 if rm> ka
IERR 2 if f> land kb < max {r, n}

When an error is detected, the routine immediately terminates.

Programming. DHFTI and DHFTI2 call the subroutine DH12. These routines are modi-
fications by A. H. Morris of the subroutines 1IFTI and H12, written by Charles L. Lawson
and Richard J. Hanson (Jet Propulsion Laboratory).

Reference. Lawson, C. L., and Hanson, R. J., Solving Least Squares Problems, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1974.

389



LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND INEQUALITY CONSTRAINTS

Let A be an rnm x n matrix, E an me x n matrix, G an m9 x n matrix, b a column vector
of dimension ma, f a column vector of dimension rrm,, and h a column vector of dimension
mg. The subroutine LSEi is available fLr finding a column vector x of dimension n that
minimizes ljAx ---b[ subject to the constraints'

Ex f

Gx > h.

Ex !- f states that x is a least squares solution of the equation Ex =, and Ox > h means
that every component of the vector Gx must be equal to or greater than the corresponding
component of h. It is assumed that mi, > 0, rnm > 0, and m. > 0.

CALL LSEI(W. kw, rn, m, in9 , n, OPT, x, RNORME,RNORMA,
IERR,WK,IWK)

If rn = rn• + rrn, - mg then W is the in x (n + 1) matrix:

W/Af

(G h

The input argument kw is assumed to have the value:
ku = the number of rows in the dimension statement for W in the calling program

Thus it is required that kw > m.

RNORME and RNORMA are real variables. When LSET is called, if the constraints
Ex f and Gx > h are consistent then z is computed, RNORM!, is assigned the value
II E 'll,2 and RNO)IMA is assigned the value lIAx - bjl.

OPT is an array, called the option vedor, which permits the user to take ;advantage of
certain options that are supplied by the routine. If no options are desired then OPT may
be declared to have dimension I and OPT(I) must be assigned the value 1. The details
concerning the available options and how to specify thenm in OPT :;re given below.

IWK is an array of dimensrision fu9  2n 1 2 or larger, and WK is an array of dimnension
2(rn ie n T) f max {m,. f tnqinj I (tr(, 2) (n f 7) or larger. IWK and WK are w,)rk
spaces. When .LSlI is cal-ld, using a sollulion for Ex f, a re(ldi(fd lca:s-t s, ares probuleij
with ineauality constraints is obtairned and solved. When the routine terilm ites IWK(I),
IWK(2), IWK (3) contain the follo,,ing iiformition:

'I'lh r u ,ti , (Ilt titi:; se,'tiol, , .jj the 11-1 111 f,,r .... y vt ,,r , (" ' ,

" MIf r 0 ht J !{NO)HIME, H.

:'w



IWK(i) the estimated rank of the matrix E
IWK(2) the estimated rank of the reduced problem
IWK(3) the amount of storage in the array WK that was actually needed

IERR is a variable that is set by the routine. When LSEI terminates, IERR has one
of the following values:

"IERR 0 The solution x was obtained. The equality Ex f is satisfied
when rn, 7= 0.

IERR 1 The solution x was obtained. In this case [[Ex - f 1 > 0.
IERR 2 The problem cannot be solved. The constraints are inconsistent.
IERR 4 (Input error) Either kw < m, the covariance matrix is requested

and kw < n, or the option vector OPT is not defined properly.

If IERR > 2 then x, RNORME, and RNORMA are not defined.

Remarks.

(1) W is modified by the routine.
(2) If m_ - m_, < 0 or n < 0 then IERR is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1. and OPT(1) must have the value 1. Otherwise, OPT is a linked list consisting
of groups of data link,, key,, data, (i = 1,...,s). Each link, and key, is an integer. The
amount of storage required by data, depends on the value of keyi. The general layout of
OPT is as follows:

OPT(1) = link, (index of the first entry of the next group)
OPT(2) = key 1 (key to the option)
OPT(3) = the first word of the data (data,) for this option

OPT(linki) = link? (index of the first entry of the next group)
OPT(link f- 1) = key 2 (key to the option)
OPT(linki 1 2) ý the first word of the data (data2 ) for this option

OPT(link.) u= 1.0 (There are no more options to be considered.)

The following options are available:

key I It is a&suined that kw '> n. Ccinpute the n X U( covariance matrix
and store it in the first n rows and coluinins of W. The data for
Sthis option is a single value. It, rinist be nonl zero f'(or the covariarlee
-- matrix to bWe coi)put)e.(.

key 2 Scale he ronzero cohlimniris of the mat rix (A) tha:t they hevy

392



length 1. The data for this option is a single value. It must be
nonzero for the scaling to be performed.

key = 3 Scale the columns of the matrix (A). The data for this option

consists of n scaling factors, one for each matrix column.

key = 4 Change the internal tolerance r which is used for determining the
rank of E. The data for this option is the new tolerance. r may be
set to any value > c where c is the smallest floating point number
for which 1 + c > I(c = 2-47 for the CDC 6700). If the new value
is less thai c then it is ignored and r is set to c. The default value
employed for r is VC.

key 5 Change the internal tolerance r which is used for rank determi-
nation in the reduced least squares problem. The data for this
option is the new tolerance. r may be set to any value > - where
c is the smallest floating point number for which 1 + c > 1. If the
new value is less than c then it is ignored and r is set to c. The
default value employed for r is ,V/.

Also the key 8 and 9 options for the least squares subroutine WNNLS are permitted.
(WNNLS is employed by LSEI.) The order of the options in the array OPT is arbitrary.
If an option has an unrecognized key then the option is ignored. It is assumed that the
dimension of OPT is no greater than 100000 and that the number of options is < 1000. If
either of these assumptions is violated then IERR is set to 4 and the routine terminates.
It is also required that linki A linkj for i $ j. If this restriction is not satisfied then the
linked list OPT is circular and we again have an IERR = 4 error.

Example. Assume that we have an array D containing n scaling factors for the columns of'

the matrix (A), and that the tolerance TOL is always to be used for rank determination.
G /

Then OPT will have to be of dimension > n + 9 and OPT can be defined as follows:

OPT(1) = N + 3 (Scaling option)
OPT(2) = 3.0
D1 10 I = 1, N

10 OPT(I f- 2) =- D(I)
OPT(N 4- 3) z- N + 6 (Matrix E tolerance option)
OPT(N + 4) 4.0
OPT(N - 5) TOL
OPT(N +-6) -w N 4 9 (Reduced problem tolerance option)
OPT(N ±-7) ... 5.0

OPT(N + 8) TOL
OPT(N + 9) = 1.0 (There are no more options.)

Remarks.

(1) SIEl may perform poorly if the normns of the rows of A and tF' differ by wany orders
of magnitude, or if the normis of the rows of /.,' are exceedingly small.

(2) Tlnh covarialce .iatrix oh tained by the key . 1 option Oiay not be mieamii•tuI when

393



there are inequality constraints Gx > h. This matrix assumes that any inequalities
which are selected by the algorithm to be equalities remain equalities when the solution
is perturbed. This, of course, may not be the case.

Programming. LSEI employs the subroutine LSI, LPDP, WNNL.S, WNLSM, and WNLIT.
These routines were written by Karen H. Hlaskell and Richard J. Hanson (Sandia Labora-
tories) and modified by A. H. Morris. The subroutines HFTI, H12, SROTM, SROTMG,
SCOPY, SSWAP, SSCAL, SAXPY and functions SPMPAR, SDOT, SASUM, SNRM2,
ISAMAX are also used.

References.

(1) Hanson, R. J. and Haskell, K. H., "Algorithm 587: Two Algorithms for the Linearly
Constrained Least Squares Problem," ACM Trans. Math Software 8 (1982), pp.
323-333.

(2) Haskell, K. fL. and Hanson, R. J., 'An Algorithm for Linear Least Squares Prob-
lems with Equality and Nonnegativity Constraints," Math. Programming 21 (1981),
pp. 98-118.

-19



LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND NONNEGATIVITY CONSTRAINTS

Let A be an m, x n matrix, E art rnm x n mntrix, b a column vector of dimension ran
and f a column vector of dimension m, The subroutine WNNLS is available for finding a
column vector z = (xi, ... , x,)•) that minimizes JlAx-- b[l subject to the constraints1

Ex f

xi > 0 fori> f.

- x • f states that x is a least squares solution of the equdtion Ex = f. It is assumed that
tm > 0,mrn > 0, and 0_< f <_ n. Ifr• = 0 then WNNLS solves Ex - f subject to the
constraints xi > 0 (i > P,).

CALL WNNLS(WV,kw, rnea, n, f, OPT, x, RNORM,MODE,IWK,WK)

If m = m, + m,+ then W is the m x (n + 1) matrix:

The input argument ku, is assumed to have the value:
kuw = the number of rows in the dimension statement for W in the calling progamn

Thus it is required that kw > rn.

RNORM is a variable. When WNNLS is called, x is computed and RNORM is assigned
the value V/ --Ax -- blI2 ---, E-x - f--fI2.2

OPT is an array, called the option vector, which permits the user to take advantage ot
certain options that are supplied by the routine. If no options are desired then OPT may
be declared to have dimension I and OPT(I) must be assigne(a the value 1. The details
concerning the available options and how to specify then itn OPT are given below.

IWK is an array of dimension tn J TL or larger, an(l WK is an array of (iniension a ý 5n
or larger. IWK and WK are work spaces for the routine.

Error Return. MOI)01 is an integer variable that is set by the routine. If the problein
is solved then MOI)E is assigned the value 0. Otherwise, MODI)I is as'signed one of the
following values:

MOD) - I The inaxinum nurrumber of iterations (3(n,-- f.) iterations) was ex-
ceeded. A.-) approxianate solution ar(t its residual norm are stored
in x anid IRNO)M.

M( I) 1E 2 (iniput error) lither kw - t or 0 < f < ri is vi[Mate,1 , or the
op)timu vect,(r OPT' is; not, properly defined.

'Thr ough out thizi s ctin 11c.11 (l lo te s the n(,/lirr . /•C f,,r iny vect or e (ci,c•..,

2If 0.',. ii then tINOI{M lI.', fI!, aLnd if ,n , t} ,, RN(1IM JAx bil.

395



When an input error is detected, the routine immediately terminates. In this case x and
RNORM are not defined.

Remarks.

(1) W is modified by the routine.
(2) If m < 0 or n 5 0 then MODE is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1 and OPT(1) must have the value 1. Otherwise, OPT is a linked list consisting
of groups of data linki, key1 , dataN (i = i, ... , s). Each linki and key, is an integer. The

amount of storage required by data1 depends on the value of key1 . The general layout of
OPT is as follows:

OPT(l) link 1  (index of the first entry of the next group)
OPT(2) key, (key to the option)
OPT(3) the first word of the data (data,) for this ol.picin

OPT(linki) = link 2  (index of the first entry of the next group
OPT(linki + 1) key 2  (key to the option)
OPT(linki + 2) the first word of the data (data2 ) for this option

OPT(li0 7 - 1.0 (Thlere are no more options to be considered.)

The following options are permitted:

key .= 6 Srale the nonzero columns of the matrix ( E ) so that they have
length 1. The data for this option is a single value. It must be
nonzei,, for the scaling to be performed.

key cc 7 Scale the columns of the matrix ( 2). The data for this option
consists of n scaling factois, one for each matrix column.

key -- 8 Change the internal tolerance r whi(:h is uiscd for rank deteriflina-
tion. The data for this option is the new tolerance. r may be set
to any value > ( where ( is the smallest floating point number for
which 1 -> 1. ( ( 2 47 for the C)C 67(X00) If the new value is
less than then it is ignored and r is set to f. The default value

employed for r is Vt.
key 9 Change the parameter IBOWU 1P. The reciprocal of this paraineter

is used in deterri in g whele solu tioni corypponenits are too large.

The data for this o)ption is the new value for BLOW UlP. It is
a-ssumied that BILO)WUII' - I. IBLOWUPI may be set to any vai le

-> ( where is the Smallest nibm)er for whilch I t t - 1. If the new

SvaIue is less than f then it is grore(d aidt INX)'VL ' is set to

The defatilIt Vwdc neused for IB)LOW LUIP is \./c.



Th'le order of' the options in the array OPT is arbitrary. If an option hias an unrecognized
key then the option is ignored. It is assurned that the. dirmension of OPT is no greater than
100000 anid that the number of options < 10W0. If either of these assumptions is violated
then MOD.E is set to 2 and the routine terminates. It is also required that linki $4 link, for
i / j. If this restriction is not satisfied then the linked list OPT is circular and we agai.n

have a MODE =2 error.

Example. Assumne that we have an array D containing n scaling factors for the columns of
th:ý matrix ( E), au(I that T17OL is the tolerance to be used for rank determination. Then
OPT will have to be of dimension > n + 6 and OPT can be defined as follows!

oi-T(1) =n- N + 3 (Scaling option)
OPT(2) =7.0
DO 10 1 -i-- 1, N

10 OPT(I + 2) D(I)
OPT(N + 3) IV + 6 (Tolerance option)

OP3T(N 4- 5) TOL
OPT(N -f 6) -ii1.0 here are no more op4ions.)

Remark. WNNLS mnay perform poorly if the norms of the rows of A and E differ by many
orders of magnitude, or if the norms of the rows of E are exceedingly small.

Programmitig. WNNLS employs the subroutines WNLSM and WNLIT. These routines
were written by Karen 11. llaskell and Richiard J. Hanson (Sandia Labcratories), and mod-
ifiedi ly A. 11. Morris and Virgis Dadurkevicius (Astronomical Observatory, Viinius Uni-
versity, Lithuania). The sub1routines 1112, SROTM, SROTMG, SCOF X', SSVýAP, SSCAL,
SAXPY and functions SlM1PAR, SASUM, SNRM2, ISAMAX are also used.

References.

(1) l)adutrkeýviciuis,V. ,"Re(iiiairk on Algorithm 587,"ACM Trans. Math Software 15 (1989),
pp. 257-261J

(2) H anson, R. J. and] IliLskell, K(. It., "A Igorith mi 587: Two AlIgorithims for the Linearly
Constrained Lea-st Squares Problermi," ACM 71-ans. Math Software 8 (1 982), Pp. 323
333.

(3) Ha~iskell , K, 11 anid H anison 1( J ., L'Ani Algorithrm for Linear Leaivi Stjuat -s lPro1lemins
with Equality and Nonnegal iv ity Constraints," 1 lath. Programming 2 (1981), pp.
98 11M



LEAST SQUARES ITERATIVE IMPROVEMENT SOLUTION OF SYSTEMS
OF LINEAR EQUATIONS WITH EQUALITY CONSTRAINTS

Let A be an m, x n matrix, E an me x n matrix, J an m. x t matrix, and F an
rn, x× matrix. It is assumed that 0< me < n and that the rank of E is rn. Let bl, ... ,bt
denote the column vectors of B and f'1, .. . , ft the column vectors of F. The subroutine
L2SLV is available for finding the unique minimum length column vector xj of dimension
vn that minimizes [lAx, -- bjjl subject to the equality constraints EXj = f (if there are any)
for j = 1, . .. ,L0 Iterative improvement is performed to compute the vectors x, . . .,Xt
to machine accuracy. It is assumed that ma > 0. Ift ma = 0 then L2SLV finds the unique
minimum length solution x. to Exj = f, for j = 1, .-. . ,- .

CALL L2SLV(m, n, m,, t, A, ka, h, kb, WGTS,TOL,NI,IPiVOT,
X, kx, R, kr, T, kt, WK,IERR)

if rn m In, + rn± then A is the rn x n matrix ( E) and B is the rn x t matrix (F). The
input arguments ka and kb have the values:

ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program

It is assumed that mn > 1, n > 1,f > 1, ka > m, and kb > m. A and B3 are not modified by
the routine.

WGTS is an array containing m nonnegative weights. The first m, weights are set to 1.0
by the routine. Let wl, ... , wn denote the remaining weights (i.e., let w, = WGTS(mr 4-0
for i m, 1. ., i). The remaining weights are supplied by the user. In effect, w, is the
weighting that is given to the Ith equation in the least squares problem Ax1 -- b1. If
W denotes the In, x rn, diagonal matrix diag(w , ... ,wu,.) then L2SLV finds the unique
minimum !ength vector that minimizes IJWAx¾ Wbj 1subjeCt to Ex. f, for j 1, f.
For convenience, W will denote the m x rn diagonal matrix dWag (I . . . , 1,W", . . ). ,w,.

X is an ta x f matrix that contains the solution vectors xi, ... , rt when the routine
terminates. The input argurnient, kx is the ;mnuber of rows in the (hiiensi() statement fo r
X in the calling program It is asisumed that kx v I.

f.
I? is an inn x' f matrix. Let b, denote the "ti columnn vvctor ( o,) of /B for j 1,

'l'i. 1 .-2S IN stres the residlual vector r, VV' b) W"Ix iII liW J0, (01n11n of R?. Tliv inplu•t
argunient kr is the numiber of rows in the dinioiision -itatement for It' in the (ailing progai,•.
It is :ssuiri (I that kr - in.

-WK iis all array of 4 iension ((vr i 1) 1 2f or larger that is used for a wAork spa;e
When 12 IV terrmin.itu s, for.) , .,

II, if iterat ivc inn ro)vcnim itt of Ow soYution ,
V K( 

t
S| * i f ' i t c 'r a t i v e J i j j j~ r o , v t ' H ( , j t • f 1 , f i t h,j t( , j f ~t r .'



where n. is the number of iterations in the Iterative improvement orocess that were per-
formed in computing x., Also

WK(f ý-J) - the estimated number of correct dJigits in x, befrure iter~ative Improvement

was performed
for j- 1,

TOL and NI correspond to the parameters r and k in the least, squares subroutines
IIFTI and I-IFTI2. TOL is a nonnegative number that is specified by the user, arid N I
le a variable that is set by the routine. When I,2SJNV is called, modified Crairn-Submid!
orthogonalization with column pivoting is used to reduce WVA to the foro- (A, A42) Where A I
is an m x N] mnatrix having rank NI. A, is of the form QU where QtQ -diag(dj, . .INi, )
arid U is an upper unit triangular matrix. The values d1 , d, --. correspond to the diagonal
elements C1 1, C22, generated by lIFT! and IIFT12 'd, c2 for I' 1, 2, . .The values
are ordered so that d, >- d, j 1 , and d1,,d2 , .. are stored in WK(2f 4 1), WK(2f 1 2),...
If rri - m, then N I is assigned the value rn, . Otherwise, if rn > trn, then N I is the largest
integer k for which 4k -r. IHere r TO L if 'IO L > 0, and] r -(ne' ) 2 d,., where ( is the
siiiallest valute for which I I (e 2 47 on the CDC 67(XW) If TO L 0. TIhius, If TOLI

0 then a tolerance ba.sed onl the cornpo ter prec Ision I s used to determine the rank of N,
of ýA-. Other wise., if T(L , I.0 then TO)I is the tolerance tihat is us~ed to specify the r in k
of the problvim to be solved. if the user lniiidvertenitly sets TOI, to he niegat ive thbent 1,25LV
resets roi, to t)e o,

1 P1VOT1 is an array of dimreinsioni n or larger that is uised1 by L2S IN to recordI the ordler
In which the (oliliips of CVA a, c !elected by the pivoting proceiuro whieni WA is reduiced to
Aý I A 2 ) If AN I -, theOn t he fi rst AAI elertiiens of IF IVOT are the, iridices of the cci olums of

WVA fromn which the mnat rix A4 Iis genrorated.

T' is a 2-(hInensionil, arraiý of 'Iirniiersiori ki '. ni thatt Is used for ternilorary, storage It
is a-ssunued thAt kt - m i Who'ii 1,2S1.V terniiiiates, if N I TI Ownei the ft~ch vi n

cilvarinlce mnatrix is stored Ini the first, n rows and( coleinins of 7'. ItevraitV iveinjpro,,iin ut IS
iiot performied o)if Owi covarvinule ritnmix

Error Return IFIMl 1, wi iSrit(-gkr v 'riiabh~,lehat is set bY the rout ilo' If ~il isqoii errors ;ire
lIte, tech aiid the ry-silts 1ppeu tobe satisfa.v tory, thwn lIK'iM Is set to () (t hrwpi(e, l1lt M

;.i.SIF )1Wiui~ ) I f th folo 1-1 JA ig ALl it5S

I F: RH I Lit ler vi,i ri o(r Fis Ti t ý[posit ive

FIK R R 2 [lie rr-it rct simi - TOj, - 1iiii rit, -I i., inot 4.,( r-o'ti d

IIKUB 3 lftbr Aci tu. kic vur, k -,r i, A-r toi or 0Al Y' fO Ti Isilt

1hýl fit i5t V f1St hcI ý jI '

hhI~l~ ' l'lc r~oik cl I iV r, 01.11 ? t

llfl I Itru ti li, i tc 'c, cr 1i , t 11" 1!, t rc %! 4 I cct ii l r~ , lii"Ir cl "'to r

~I i t~, jcl.c I! l, c'1 !11 .r 1?1 ;t 1, ." i' ret1 c I It it Iit I 'I

~~.kcr,1rlrcccl cc~~~~~cct~itcc'cc1 (liitv,~ccctu



p decimal digit floating-point arithmetic is being used. p = 14 for
the CDC 6700.)

IERR = 10 The accuracy of some xj before iterative improvement was esti-
mated to be less than half a decimal digit.

IERR = 11 One or more of the computed diagonal elements of the covariance
matrix is negative. This is due to roundoff error. Theoretically,
all the diagonal elements shoul i be nonnegative. No evidence of
severe ill-conditioning was detected.

IERR = 12 One or more of the computed diagonal elements of the covariance
matrix is negativ This is due to roundoff error. Theoretically,
all the diagonal clements should be nonnegative. The problem
appears to be extremely ill-conditioned.

When an input error is detected (!ERR = 1, 2, ... ,6) then L2SLV immediately terminates.

If evidence of sevw' il!-conditioning is detected, then 1FPRR is act to 8,:, or WO and com-
putation of the solutions continues. If iterative improvement appears to converge for one
or more of the solutions, then the covariance matrix is also computed (when NI = n).
However, if iterative improvement fails for all the solutions x1 , ... ,xt then IERP is set to
7 and the covariance matrix is not computed.

Note. WK(1), ... ,WK(2f) should be examined when severe ill-conditioning is detected.

Programming. L2SLV employs the subroutines DECOM2, SOLVE2, SOLVE3, and CO-
VAR. These routines were written by Roy Wampler (National Bureau of Standards). L2SLV
is a slightly modified version by A. H. Morris of the subroutine L2B discussed in reference
(4). The algorithm employed for finding and iteratively improving the least squares solu-
tions is described in references (1)-3). The function SPMPAR is also used.

References.

(1) B3jorck, Ake, "Solving Linear Least Squares Problems by Gram-Schmidt Orthogonal-
ization," BJT7 (1967), pp. 1-21.

(2) ..... "Iterative Refinerment of Linear Least Squares Solutions I," BIT 7
(1967), pp. 257-278.

(3) . "Iterative Refinement of Linear Least Squares Solutions II,"B1T 8
(1968), pp. 8 30.

(4) Wampler, Roy, "Solutions to Weighted Least Squares Problems by Modified Gram-
Schmidt with Iterative Refinement," ACM Trans. Math Software 5 (1979), pp. 457-
465.

.1( I



ITERATIVE LEAST SQUARES SOLUTION OF BANDED .,INEAR
EQUATIONS

Given an rn x n matrix A, a column vector b of dimension m, and a real number A

Let A (A ) where I is the n x n identity matrix, and let b- (b). The problem is to find

a column vector x of dimension n which is a least squares solution of Ax = b. If A is stored
in band form then the following subroutine is available for solving this problem.

CALL BLSQ(m, n, A, ka, rnt., m,,, A, b, x, ATOL,BTOL,CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM,WK)

A is an m x n matrix stored in band form, rri, the number of diagonals below the
main uiagonal containing nonzero elements, and mn, the number diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < mt < m,0 <
rn,, < n, and ka > m. When BLSQ is called, an iterative procedure is used to obtain a
least squares solution x of Ax = 6. The vector b is modified by the routine.

ATOL and BTOL are input -arguments which specify the relative accuracy of A and b
respectively. For example, if it is estimated that b is accurate to k decimal digits then one
may set BTOL = 10-k. It is required that ATOL > 0 and BTOL > 0. If ATOL 0 or
BTOL = 0, then it is assumed that A or b is accurate to machine precision.

Let cond(A) denote the condition number of A relative to the Frobenius norm.' In
each iteration of the algorithm being used, an estimate is made of the condition number
cond(A). The estimates form a monotonically nondecreasing sequence. The input argument
CONLIM is an upper limit on cond(A). If CONLIM > 0 then BLSQ terminates when an
estimate of cond(A) exceeds CONLIM. This termination may be needed to prevent small
or zero singular values of A from coming into effect and causing damage to the solution x.
CONLIM may be ignored by being set to 0. It is assumed that CONLIM > 0.

The input argument MXITER is the maximum number of iterations that are permitted.
Normoal!y BLSQ requires less than 4n iterations. The related argument ITER is a variable.
When the routine terminates ITER the number of iterations that were performed.

CON[),RNORM, arnd XNORM are variables. When BLSQ terminates CONI) the
last estimate mnade for cond(A), RNORM -- jAx bfl, and XNORM -- xfl.2

WK is an array of dinieirilon 2n or larger that is a work space for the routine.

The equations Ax b are considered to be compatible if for any least squares solutio!l
x, lAx -- (-. INI) is a variable that reports the status of the results. When llISQ
termhiates, IND bas on( of the followinig values:

cowl, (A) IAjr flA ý l,' whvre A is the I,•,udZ,in-vere of A. fl,, IvC1(11 V/ . f', ;ally i•atlix

ý`J)cf



IND -- 0 The solut~on is x - 0. No iterations were performed.
IND 1 The equations Azx ý- b are probably compatible. A solution x

has been obtained which is sufficiently accurate, given the values
ATOL and BTOL.

IND = 2 The equations Ax =: b are probably not cmpatible. A least
squares solution x has been obtained which is sufficiently accu-
rate, given the value ATOL.

IND- 3 An estimate COND of cond(A) exceeds CONLIM. The vector x is
the most recent approximation of a solution for Ax = b.

IND 4 The equations Ax = b are probably compatible. A solution " has
been obtained which is as accurate as seems reasonable on this
machine.

IND 5 The equations Ax = b are probably not compatible. A least
squares solution x has been obtained which is as accurate as seems
reasonable on this machine.

IND = 6 cond(A) appears to be so large that there is not much point in
doing further iterations. The vector x is the most recent approxi-
mation of a solution for Ax -- b.

IND = 7 MXITER iterations were performed. More iterations are needed.
The vector x is the most recent approximation of a solution for
Ax =b.

Remarks.

(1) A large estimate of the condition number cond(A) may be due to rank deficiency or near
rank deficiency of the matrix A. If it is suspected that a large estimate of cond (A) has
occurred for this reason, then it is recommended that CONLIM be set to a moderate
value such ePs Vr where c is the smallest value such that 1-I :: > 1 (c = 2--4 for the CDC
6000-7000 series computers). Setting CONLIM to 0 is equivalent to setting CONLIM
to c

(2) The vector b is the only input argument modified by the routine.

AIg:rithm. BLSQ employs an iterative algorithm developed by Golub and Kahan.

Programming. BLSQ calls the subroutines NORMLZ, BVPRD1, BTPRD1, SCOPY, and
SSCAL. The function SNRM2 is also used. BSLQ is an adaptation by A. 11. Morris of the
subroutine LSQR, written by Christopher C. Paige ( McGill University, Montreal, Canatla)
and Michael A. Saunders (Stanford University).

References.

(1) Paige, C. C. and Saunders, M. A., "LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares," ACM Tran8. Math Software 8 (1982), pp. 43-71.

(2) ........ "Algorithm 583. LSQR: Sparse Linear Equations and Least Squares
Problems," ACM Trans. Math Software 8 (1982), pp. 195-209.

404



ITERATIVE LEAST SQUARES SOLUTION OF SPARSE LINEAR
EQUATIONS

Given a i n matrix A, a column vector b of dimension m, and a real number A.
Let A •A 1; .1 is the n x n identity matrix, and let 6= ( 0). The problem is to find
a column ve( ý,m (,f dimension n which is a least squares solution of Ax =b. If A is sparse
then the follovvr ,mbroutines are available for solving this problem.

C Xýt ,PLSQ(m, n, A, IA,JA, A, b, x, ATOL,BTOL,CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM,WK)

Ci iTLSQ(rn, n, TA,ITAJTA, A, b, x, ATOL,BTOL,CONLIM,MXITER,
IND,IT•ER,COND,RNORM,XNORM,WK)

If SPIS( Rled then A, IA, JA are arrays containing the matrix A in sparse form.
Otherwise, if 11 Q is called then TA, ITA, JTA are arrays containing the transpose matrix
A' in sparse fo.m. An iterative procedure is used to obtain a least. squares solution z of
Ax = b. The vector b is modified by the routines.

ATOL and BTOL are input arguments which specify the relative accuracy of A and b
respectively. For example, if it is estimated that b is accurate to k decimal digits then one
may set BTOL = 1 0 -k. It is required that ATOL > 0 and BTOL > 0. If ATOL = 0 or
BTOL = 0, then it is assumed that A or b is accurate to machine precision.

Let cond(A) denote the condition number of A relative to the Frobenius norm. 1 In
each iteration of ,he algorithm being used, an estimate is made of the condition number
cond(A). The estimates form a monotonically nondecr, ing sequence. The input argument
CONLIM is an upper limit on cond (A). If CONLIM > 0 then the routines terminate when
an estimate of cond(A) exceeds CONLIM. This termination may be needed to prevent small
or zero singular values of A from coming into effect and causing damage to the solution x,
CONLIM may be ignored by being set to 0. It is assumed thatCONLIM > 0.

The input argument MXITER is the maximum number of iterations that are permit-
fed. Normally the routines require less than 4n iterations. The related argument ITER
is a variable. When the routines terminate ITER - the number of iterations that were
performed.

COND, RNORM, and XNORM are variables. When the routines terminate COND
the last estimate made for cond(A), RNORM = ijAx b ll, and XNORM =- 1<1.2

WK is an array of dimension 2n or larger that is a work space for the routines.

ICo,,d (A) xx IAjjyplA'+1 wher, A' is ther,, picudoinverse of A. ere 11Cr /i. for any mtrix

2h4i vii,1"C' for ally ve':tor c - (cr,.2, . .

405



The equations Ax -b6 are considered to be compatible if for any least squares solution
x, fl.Ax 611 zfl 0. IND is a variable that reports the status of the results. When the routines
terminate, IND has one of the following values:

IND C0 The solution is x ...: 0. No iterations were performed.
INDI I The equations Ax -. b are probably compatible. A solution x

has been obtained which is sufficiently accurate, given the values
ATOL and BTOL.

IND 2 The equations Ax ---b are probably not compatible. A least squares
solution x has been obtained which is sufficiently accurate, given
the value ATOL.

IND 3 An estimate COND of cond(A) exceeds CONLIM. The vector x is
the most recent approximation of a solution for Ax -- .

IND = 4 The equations Ax -- b are probably compatible. A solution x has
been obtained which is as accurate as seems reasonable on this
machine.

IND = 5 Thne equations Ax --- b are probably not compatible. A least squares
solution x has been obtained which is accurate as seems reasonable
on this machine.

IND = 6 cond(A) appears to be so large that there is not much point in
doing further iterations. The vector x is the most recent approxi-
mation of a solution for Ax - b.

IND = 7 MXITER iterations were performed. More iterations are needed.
The vector x is the most recent approximation of a solution for

Remarks.

(1) A large estimate of the condition number cond(A) may be due to rank deficiency or near
rank deficiency of the matrix A. If it is suspected that a large estimate of cond(A) has
occurred for this reason, then it is recommended that CONLIM be set to a moderate
value: such as Vi where E is the smallest value such that 1+-c > 1 (= 2-47 for the CDC
6000-7000 se•ries computers). Setting CONLIM to 0 is equivalent to setting CONLIM
to c

(2) The vector b is the only input argument modified by the routine.

Algorithm. SPLSQ and STLSQ employ an iterative algorithm developed by Golub and
Kahan.

Programming. SPLSQ and STLSQ call the subroutines NORMLZ, MVPRD1, MTPRDIl,
SCOPY, and SSCAL. The function SNRM2 is also used. SPLSQ and STLSQ are i laptations
by A. H. Morris of the subroutine LSQR, written by Christopher C. Paige (McGill Univer-
sity, Montreal, Canada) and Michael A. Saunders (Stanford University).

References.

(1) Paige, C. C. an(d Saunders, M. A , "LSQR: An Algorithm for Sparse Linear liquatiOS
and Sparse Le•kit Squares," ACM Trayss. Math Softwarc 8 (1982), pp 43 71.

(2) _ _ .A "lgorith in 583, LSQR: Sparse Linear EqTuation.- and Least Squ i res
Problems," ACM T'rans. Math Software 8 (1982), pp. 195 209

406



MINIMIZATION OF FUNCTIONS OF A SINGLE VARIABLE

Let F(x) be a continuous real-valued function defined for a < x < b. Then the following
subroutine is available for finding a local minimum of F(z).

CALL FMIN(F, a, b, x, w, AERR,RERR,ERROR,IND)

It is assumed that a <_ b. FMIN finds a value x in the interval [a, bI which is a local
minimum of F. ERROR and w are variables. When FMIN terminates, w = F(x) and
ERROR is the estimated maximum absolute error of x.

The input arguments AERR and RERR are the absolute and relative error tolerances
to be satisfied. For example, if k significant digit accuracy is desired then one may set
RERR : 10-k. It is assumed that AERR > 0 and RERR > 0. The setting AERR = 0
is equivalent to the setting AERR 2= 10-20, and the setting RERR = 0 is a request for
machine precision.

IND is a variable that reports the status of the results. IND = 0 if x is found to the
desired accuracy. Otherwise, IND = 1 when x cannot be obtained to the desired accuracy.
In this case, w satisfies the tolerances AERR and RERR.

"Note. F must be declared in the calling program to be of type EXTERNAL.

Algorithm. The golden section search procedure is used.

Programming. The function SI'MPAR is called. FMIN was written by A. It. Morris.

4()7



MINIMIZATION OF FUNCTIONS OF N VARIABLES

Let f(x) be a real-valued function of n variables x =- (xl,.. .,x,) where n > 2. If f(x)
is twice continuously differentiable then the following subroutine is available for finding a
iocal minimum of f(x).

CALL OPTF(F, n,RERR,ITER,X,FVAL,IND,WK)

X is an array of dimension n and FVAL a variable. On input, X contains an initial
guess a = (a 1 ,..., an) to a minimum of f. When OPTF terminates, X contains the final
estimate x = (xi,... , x) of a local minimum of f and FVAL = f(x).

The argument F is the name of a user defined subroutine that has the format:
CALL F(n, X,FVAL)

Here X is an array, of dimension n containing a point x = (xz,...,x.,), and FVAL is a
variable. F sets FVAL to the value of the function f at the point x. F must be declared in
the calling program to be of type EXTERNAL.

RERR is an input argument that specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant digits then one may set
RERR = !0- k. It is required that RERR > 0. If RERR = 0 then it is assumed that F
produces results accurate to machine precision.

When OPTF is called, line search iteration is performed to find the local minimum
of f. ITER is a variable. On input, ITER is the maximum number of iterations that
are permitted. When the routine terminates, ITER = the number of iterations that were
actually performed.

WK is an array of dimension n(n + 8) or larger that is a work space for the routine.

IND is a variable that reports the status of the results. When the routine terminates,
iND has one of the following values:

IND -1 (Input error) n_ <0.
IND -2 (Input error) r =- 1.
IND -4 (Input error) ITER <O0
IND -5 (Input error) Either RERR < 0 or RERR > 10-4.
IND 1 A local minimum x was found. The gradient of f at x was con-

sidered to be sufficiently small.
IND 2 The steps taken became so small that OPTF had to terminate.

X is probably a local minimum, but it need not be a lociJ mini-
mum. The algorithm frequently requires exceedingly small steps
to be taken, no matter whether X is close to or far from a local
minirriurn.

INI) 3 A local rim iworimn ha-s possibly been found O1 TF could not find
a point for which f would take a smaller value.

IND) 4 itel{ iterations were 1erfornmed.
INI) - 5 The algoritfim appears to be diverging This gnerally occurrs

when f is unbounidied from below.

,109



When an input error is detected, the routine immediately terminates.

Accuracy ard Efficiency. OPTF is frequently extremely efficient in finding a value FVAL
which roughly approximates a local minimum value f(xo), but at times it can be quite
slow in obtaining FVAL to greater precision. A rough approximation is often obtained in
20--30 iterations. If f(xo) $ 0 then FVAL may be accurate to 4-6 significant digits after
20-30 additional iterations, or FVAL may not be accurate to 1 significant digit after several
hundred iterations. 4-6 digit accuracy is the greatest precision that can be expected. In
general, it is recommended that ITER < 200. Each iteration can take considerable time,
even if the subroutine F is cheap to evaluate.

Remark. OPTF can be quite sensitive to the scaling of the variables (zt, ... ,z). The
routine tends to operate more efficiently when the components of a local minimum x
(xl,... , x,,) are all roughly of the same magnitude. If the components are of considerably
different magnitudes (say lxil ; 1.-0 and Ix2 1 p 103) then convergence may be extremely
slow. In such a case, OPTF attempts to rescale the variables, but the rescaling is not always
helpful.

Algorithm. The line search algorithm given in pp. 325-327 of the reference is employed.
Also, BFGS secant updates for the hessian are used.

Programming. OPTF employs the subroutines OPTDRV, OPCIIK1, OPSTP-, FXDEC,
SCALEX, LLTSLV, FSTOFD, FSTOCD, LNSRCH, SECFAC, QRUPDT, and JROT. OP1TF,
FXDEC, and SCALEX were written by A.H. Morris. The remaining subroutines were writ-
ten by Robert B. Schnabel (University of Colorado at Boulder) and modified by A.H. Morris.
The functions SDOT, SNRM2, and SPMPAR are also used.

Reference. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

4 tO



UNCONSTRAINED MINIMUM OF THE SUM OF SQUARES
OF NONLINEAR FUNCTIONS

Let f1(x), ... ,,.(x) be rn real-valued functions of n real variables x -= (xi, ... ,x,)
where mn > n. The problem under consideration is to find a point x which minimizes the

function O(x) - fj(x)"2. Assume that each fj(x) is differentiable and that an initial
i~ 1

guess a (a1 , .. ,a,) to a minimum of O(z) is given. Then the following subroutine is
available for finding a point which minimizes O(x).

CALL LMDIFF(F,m, n, X, FVEC,EPS,TOL,INFO,IWK,WK, £)

X is an array of dimension n and FVEC an array of dimension rn. On input X
contains the starting point a = (a,, ... ,a,,). When LMDIFF teirninates, X contains the
final estimate x - (xl, ... , x,,) of a minimum of € and FVEC contains the values of the
functions fl, ... , fm at the output point in X.

The argument F is the name of a user defined subroutine that has the format:
CALL F(m, n, X, FVEC,IFLAG)

Here X is an array of dimension n, FVEC an array of dimension in, and IFLAG an
integer variable. The array X contains a point x = (xI, . I,,,). Normally F evaluates
the functions f'1, ... , f,,, at this point and stores the results in FVEC. However, if Z does
not lie in the domain of fl, . , f,m then this cannot be done. In this case, the argument
IFLAG (which will have been assigned a nonnegative value by LMDIFF) should be reset
by F to a negative value. This will signal LMDIFF to terminate. F must be declared in
the calling program to be of type EXTERNAL.

EPS is an irput argument which specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant decimal digits then one
may set EPS- -CI-k. It is required that EPS > 0. If EPS = 0 then it is assumed that F
produces results accurate to machine precision.

TOL is an input argument which specifies the desired accuracy to be attained. The
Euclidean norm flxfl - v/ i is employed. If x denotes an actual ininimrnum of €, then
LMDIFF terminates when an iterate x is generated for which it is estimated that

(1) O(x) < (i +± TL)2 0(x) or
(2) ID(x -- ±)j < T0L - tDxjl

is satisfied. In (2) x and x are regarded as column vectors, and D is a diagonal matrix
generated by LMDIFF whose eutries are scaling factors. For convenience, criterion (1) is
called the P-convergence (or d-convergence) test and criterion (2) is called the x-convergence
test. It is required that TOI, > 0. In order for the convergence tests to work properly, it is
rec'oinniended that TO, always be sinaller than to0 5

IWK is an array of diinensiioa nt and WK is an array of direilolli f. IWK and WIK
are work spacwes. It is assuned that f trot 5n im.

,II11



INFO is an integer variable that reports the status of the results. When LMD1FF
termirnates, INFO has one of the following values:

INFO < 0 This occurs when the user terminates the execution of LMDiFF by
resetting the argument IFLAG in the subroutine P' to a negative
value. Then INFO = the negative value of IFLAG.

INFO =2 0 (Input error)I < n < m, EPS > 0, TOL > 0,or f_> rnai + 5n + 'n
is violated.

INFO = 1 The F-convergence test has been satisfied.
INFO = 2 The x-convergence test has been satisfied.
INFO 3 The F-convergence and x-convergence tests have been satisfied.
INFO 4 The gradient of k is 0 at point X.
INFO 5 The number of calls to the subroutine F has reached or exceeded

200(n + 1).
INFO z- 6 TOL is too 9mall. No further reduction in the value of O(x) is

possible.
INFO = 7 TOI is too small. No further improvement in the accuracy of X

is possible.

When LMDIFF terminates, if INFO t- 0 then A' contains the final iterate that was gener-
ated. Also, if INFO > 1 then FVEC contains the values of the functions fl, ... , f• at this
iterate. If INFO = 4 then X should be examined very closely. The gradient of 0 can be 0
when X is a local minimum or maximum, or when X is a saddle point. If INFO =. 5 then
it may (or may not) be helpful to continue the procedure by recalling LMDIFF with the
current point in X as the new starting point. Since TOL is a relative tolerance, this setting
can occur when 0(0) = 0.

Algorithm. A modified form of the Levenberg-Marquardt algor;'hm is employed.

Programming. LMDIFF is a slightly modified version of the MINPACK-1 subroutine
LMDIF1. The MINPACK-1 subroutines LMDIF, SPMPAR, ENORM, FDJAC2, LMPAR,
QRFAC, and QRSOLV are employed, The subroutines were written by Jorge J. More,
Burton S. Garbow, and Kenneth E. Hillstrom (Argonne National Laboratory).

References.
(1) More, J. J., Garbow, B. S., and HIillstrom, K. E., User Guide for MINPACK-1,

Argonne National Laboratory Report ANL-80 74, Argonne, Illinois, 1980.
(2) More, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory,"

Numerical Analysis, G. A. Wat.sn (ed.), Springer-Verlag, 1977.

,112



LINEAR PROGRAMMING

Let A = (ci,) be an rn x n matrix, B an array containing bl, . ,b.n, and C an array
containing cl, -. • , cn where aij, b,, cj are real. Consider the problem of finding nonnegative
values xj, ... ',x, which maximize or minimize the function clxl .' cx, tubject to

the constraints:

aix,, +.. + a.nX,{<,z =<, >}b,

In each constraint
a11z1 +- + a,X.n <_- b

only one of the relations <, =,> is used, but the relation may vary from constraint to
constraint. The following subroutines are available for solving this problem.

CALL SMPLX(A, B, C, ka, m, n, IND,1BASIS, X, z, ITER,MXITER,
NUMLE,NUMGE,BI,WK,IWK)

CALL SSPLX(TA.,ITA,JTA, B, C, m, n, IND,IBASIS, X, z, ITER,MXITER,
NUMLE,NUMGE,BI,WK,IWK)

It is assumed that m >_ 2, n > 2, and that each bi > 0. If SMPLX is called then ka is
the number of rows in the dimension statement for A in the calling program. Otherwise,
if SSPLX is called then TA, ITA, JTA are arrays containing the transpose matrix At in
sparse form.

The constraints a, x1 I + ai xn{<,=, ">}b, are assumed to be ordered so that the
< constrainti are followed by the > constraints, and the = constraints come lasit. NUMLE
and NUMGE have the values:

NUMLE the number of < constraints.
NUMGE : the uumber of > constraints.

It is assurned that N UMIE -.- 0, NUM(IGE > 0, and NUMIJE NUM( E - ,n.

When SM PLX or SSILX is called, the routine attempts to xiiaxiliz!, r: subj(ct
to the constaints. A iiootified form of tlhe. primal sinp)lhx algorithta is employed. Freuloent ly

the procedure requires less tlhan 5Yn iteratihos to perform the t.Lsk. The argument NXIT'[IC
ha.s the value:

MXITER the IxiaxiojuIui number of iteratiuns that inay bc per'rnined.

T'his arounie't is provided by the us.r. The retated argunivat 'l'l'E is a variable that is

set by the rmttin(e. When the rut tinie teriiiinats, Ill'.R h;id fur ,ts vahu. th. nuhidwr u)f

iteratikus that. wxvi p,•r,)rn d.

INI) 1us a variable, a id IHtASTI an atrra;y t,f d(1111 ul 1 ?I A I Itll. ttutsils UhI' " ttlit ,'.

(f thet Ofll ti u l) i, variabhe• _, and IND) is used fur inlltut,,'mitput pi[r tS ( )ttm
-- put IN )D -1 is rtntally -.cr by the i.u r ti 0 If IN ) IND then the rutlite clcýt1-i it: 4 we
E .!113



beginning basis and stores the appropriate indices in IBASIS. [The remainder of this para-
graph may be skipped by anyone not acquainted with the simplex algorithm.] If the user
wishes to use his own beginning basis, then IND must be set to 1 and the indices of
the initial basic variables stored in IBASIS. It is not required that the initial basis
be selected so that the basic variables are nonnegative. The initial basic variables may
be original, slack, surplus, or artificial variables. Slack and surplus variables are automat-
ically provided for the < and > constraints, and artificial variables for the = constraints.
The routine defines x,•+j to be the slack, surplus, or artificial variable for the ith constraint
a1 x1 4. .... + a,,x,{•, =, >}b If IND 7 0 then the slack, surplus, and artificial variables
are the initial basic variables that are employed.

On output IND reports the status of the results. The routine assigns IND one of the
following values:

IND = 0 The problem was solved.

IND = 1 The problem has no solution.

IND = 2 MXITER iterations were performed. More iterations are needed.
IND = 3 Sufficient accuracy cannot be maintained to solve the problem.
IND = 4 The problem has an unbounded solution.

IND = 5 An input error was detected. (See below)
IND - 6 A possible solution was obtained. The routine is not certain if the

solution is correct.

X is an array of dimension n +- NUMLE + NUMGE and z is a variable. If IND = 0 or
IND = 6, then z has for its value the maximum value obtained for Eycjxx and X contains
the values obtained for the original, slack, and surplus variables. If IND i- 5 then IBASIS
contains the indices of the basic variables currently in effect when the routine terminates.

BI is an array of dimension rn2 that is used for storing the inverse of the basis matrix.
The order of the column vectors of the basis matrix corresponds to the order of the basic
variables given in IAS IS. If INI) / 3,5 on output then II contains the inverse of the basis
matrix currently in effect when the routine terminates.

WK is an array of diiiensiloi 2mn or larger, and IWK is aun array of dimension 2n I n
or larger. WK and IWK arc work ,'paccs.

Input Errori. INI) 5 occurs )n witput when one of the folh>•wii', cokolitiois is viohlated:

(1) ,L ', 2 and ka v' i -- 2.
(2) NUJMI,E N ;I v

(3) Each b, . 0
(4) The bi-s miatrix st,(,ililed by tlw user in IbASI (whn-n INI) I on input) iN mWlonn-

giular and suffiti•ently well coI(iithiw, , !i,) that its invrse cai be cmluiput ci.

Remarks

(I) A, I• (',TAjTI'A,.i'I\,A Or, Oh ( ilt, ' Ii th4, riot ins

'Ilic Titilu lluýtuu I; l i sic T ý fill)( tj - ;ill hi. .1
;Llld ~ ~ ~ ~ ~ ~ ~~I Ihl hlgýg tc"ll ) h



(3) SMPLX and SSPLX generate the same results. For efficiency, SSPLX should be used
when A is sparse.

Algorithm. A three step procedure is used. The first step eliminates the negative variables.
Then phases (1) and (2) of the primal simplex algorithm are invoked. Negative variables
are eliminated as follows: Let XB1• .. , XBp be the basic variables and y,, the components
of the simplex tableau.

(1) Compute d= E'y~j for each nonbasic variable xj where the sum V is for all i wh ýe
xBi < 0. If all d3 > 0 then the problem has no feasible solution. Otherwise, select k so
that dk = minjdj, Then Xk is the variable to be made basic.

(2) If xBj >_ 0 and yijt > 0 for some j then go to (3). Otherwise, select a negative variable
XBr to become nonbasic where XBr/yk = max{X.B/yjk : XB, < 0 and Y'k < 0}. Then
update the basis and go to (5).

(3) Compute E = min{XBJi/Yk : XBj > 0 and y./k > 0} and check if a negative variable
XB, exists that satisfies the conditions:

(*) Yjk < 0 and f > XBI/Y~k

If such a variable exists then go to (4). Otherwise, select a nonnegative variable XBr to
become nonbasic where yrk > 0 and XI~rYrk = . Then update the basis and go to ()

(4) Select a negative variable XB, to become nonbasic where XBr/Yrk = max{XBj/ybk
Kuj < 0 and XZ3 satisfies(*)}. Then update the basis and go to (5).

(5) Check if there are any remaining negative variables. If not, then we are finished.
Otherwise go to (1).

Programming. SMPLX and SSPLX employ the subroutines SMPLX1, SSPLX1, and
CROUTI. These routines were written by A. I1. Morris. The function SPMPAR is also
used.

t i5



THE ASSIGNMENT PROBLEM

Let C =- (c,,) be an n x n matrix (the cost matrix). The problem under consideration

is to find an ,z x n matrix x (X,,) which minimizes T r- cj.7x, and satisfies:

n

ri

(1) Ej : I for j-- 1, .. , ,,

(2) E x I fori 1, n
j'=1

(3) Each x,, - 0 or 1

Each x which satisfies (1)-.(3) is called an assignment. For each such x, from (1) and (3)
we note that for each j there exists a unique integer 7r(j) such that ,(, 1. Also, (2)
and (3) assert that 7r is a permutation of { 1,... n}. Conversely, for any permutation 7r
there corresponds an assignment x defined by I'-( - 1 and x,- 0 for I / 7(j). Thus,

the problern is to find a permutation x of { .. n} which minimizes T - c,7).w)- The

following subroutine is available for solving this problem when all c,j are integers.

CALL ASSGN(Ya,C,JC,', IWK,IERR)

C is a 2-dimensiunal integer array of dimension n x (n i 1), JC an integer array of
dimension n, and T .an integir variable. It is assumed that n ý> 2 and that the first n
colliiuns of ( contain the ,(cst- matrix (c,,)) The (-, f 1)" column of C is a work space for
the routine1 When ASS( N is (ailed, the desired permutation x is obtained and the values
A(I)n,. ... 7r(n) stored in J. Also T" Is a"sigried the iinimmized value EjC.(j),j.

I IWK is an array of d!iuien sin 7n 1 2 or larger that is a work space for the rouitine.

I -ItI I is a variable that is set by the rniu tine. If JC( and 7I' are ol)tained then IFR is
a-ass:gie(d the value i) ( )t hierwise, if the probhlemi caini(,t be solved because of integer overilow,
then I {iM V

Rermarkv

(1) C is del (ro()Vl tby to ', tiitie
(2) ASS;N riiii iii i 'I T • 'Iis, i'i i.o, tlls h( " be ni:t 'ize.i] h:y 1iniiiimizig

ý:, ( c fv, I ) :hA ion (" ii giig imgih,. -i of tfi resilt

Programming A k'."(tN tut h ctieii'uitoe ,"ih( ; N I ASS(,NI wais written by (.iorgi•
I arpa•v!,) andl ',uil l(,ih (I t',,-rcýit, (d ko i,, Italy) iimi iililid I,, A II M\ ,rris

Referetce ', p•,. , , ' .Ii I I, , ( , ,..1:,1 "IS. -,ý hli, 4 the \:,>iii
Pr ,I i , A.4( 'At Tran i% i uth .'Softwc¢:re *, ( WS I) I ' (' I I1



0-1 KNAPSACK PROBLEM

Given n > 2 iteras, each having a profit p, > 0 and weight w. > 0, and m > 1
containers (knapsacks), each having a capacity ki > 0. Let xj = 1 if item j is assigned to
knapsack i. Otherwise, let xi' == 0. Then the problem is to find an assignment xij of the

m n
items to the knapsacks which maximizes or E _ rP' xi3 subject to

n 1=1 3=1

(1) j. wsx.i-! k for i= 1,...,m,and
3=1

(2) xij:.< 1 for j= 1,.. .,n.

Condition (2) states that each item may be assigned to a (single) knapsack or be rejected.
It can be assumed, without loss of generality, that

(a) the knapsacks are ordered so that k, •.'" _ k,,
(b) min( wi,... ,w,, } < k1 ,
(c) max{ w 1,...,w,}< k,, and(d ) E n 1W '; > k n.

Then the following subroutine is available for solving this problem when all pj, wj, and ki
are positive integers.

CALL MKP(n,m, P, W, K,NBCK,L, o,TEMP,ITEMP,NUM)

P and W are integer arrays containing Pi, .. ,p,n and w I,.. ,w,7 , and K an integer
array containing kl,. . ., k,. L is an integer array of dimension n or larger, and a an integer
variable. When MKP is called, if no input errors are detected then the maximum value for
o is obtained. Also, L(j) = t if item j has been assigned to knapsack i (j 1, ... n), and
L(j) =: 0 if item j does not appear in the solution (i.e., if xi3 . x --X 0).

A depth-first tree search employing backtracking is used. if no bound is placed on
the number of back tracks that may be performed, then the exact maximum o is assured.
However, if the number of back tracks must be restricted, then only an approximation
to the maximum may be obtained. The argument NBCK is available for limiting the
backtracking. NBICK is a variable. On input, if NBCK .--- 1 then no restrictions are
placed on the backtracking. Otherwise, if NICK -/ -- I, then it is assumed that NBCK
is the mraximumn number of back tracks that are permitted. When the routine terminates,
NBCK :-- the number of back tracks that were actually performed.

TEIMP) is a real array of (limension n or larger, and ITEMIP an integer array of dimenl-
sion NUM. It is assnmed that NUM > 5m i 14n I- 4mnn - 3. TEMPand ITEMP are work
spaces for the routine. It should be noLed that TEMP is tHie only argumnent of M KP that
is mot f integer type.

Error ieturm. If an input, error is dctected th. (7 o is set to oue of the followinig valueis:

1 1 if' Yn I or YL , 2.

,119



a = -2 if some pj, wj., or ki is not positive.
a = -3 if min{wi, ... ,w,,} > kj; i.e., if a knapsack cannot contain any

item.
a = -4 if max{wi, ... , w,,} > k,,; i.e., if an item cannot fit in any knap-

sack.
a =-5 if Ejwj. < k,,,; i.e., if knapsack m can contain all the items.
a --7 if the knapsacks are not ordered so that k, _ • kt.
a =-8 if NUM <Sm +14n + 4mn + 3.

Backtracking. For NBCK -1, the time required for finding the exact maximum depends
primarily on the value of m, and can increase quite dramaticaily for very small increases in
the value of m. It is recommended that this setting never be used when m > 10. Instead,
if rn > 10 then a setting of NBCK < 50 frequently suffices.

Programming. MKP employs the subroutines MKP1, SI(GMA1, PH1, PARC, SKNP, and
SKNP1. The interface subroutine MKP was written by A.H. Morris. The remaining subrou-
tines were written by Silvano Martello (University of Bologna) and Paolo Toth (University
of Florence) and modified by A.H. Morris. The subroutine RISORT is also used.

Reference. Martella, S. and Toth, P.,"Algorithm 632. A Program for the 0-1 Multiple
Knapsack Problem," ACM Trans. Math Software 11 (1985), pp. 135-140.

*412)



INVERSION OF THE LAPLACE TRANSFORM

Let f(t) be a complex-valued function that is continuous for t > 0 except possibly at
a countable set of values tk having no finite limit poirts. Then for complex z the Laplace
transform F(z) of f(t) is defined by 00

F~ ~f) = -t f (t) dt

when the integral converges. If the integral converges for Re(z) > c but does not exist for
Re(z) < c, then c is called the abscissa of convergence of F(z). If f0 0 if(t)Ie-at dt < o
for some real constant a, then F(z) is analytic for all z where Re(z) > a. Also, for any point
t for which f(t) is continuous and sufficiently well-behaved, the value f(t) can be obtained
from F by the inversion formula

f 1 lim I eAtF(A) dA (i =-V-4)
27171 T-o J.-,T

for any a > a. If f(t) is real for t > 0, then Ffz) F(Y). Given a transform F(z) where
.. -- = F(T), then the following subroutine is available for cornputirg f(t) for t > 0.

CALL LAIN V(MO,FUN,t,AERR,RERR,Y, c,ERROR,NUM,IERR)

IL is assumed that EU(z) = F(Y). The argument FUN is the name of a user defined
subroutine for computing F(z). FUN has the format:

CALL FUN(x, y, A, B)
A and B are variables. For real arguments x and y, A. and B are assigned the values
A = Re[F(x + iy)] and B =: h[F(x + iy)]. FUN must be declared in the calling program
to be of type EXTERNAL.

IERR is a variable that is used both for iuput and output purposes. If IERR > 0 on
input then it is assumed that the abscissa of convergence is k. own and tha•t, c = the abscissa
of convergence. Otherwise, if IERR< 0 then the abscissa of convergence mast be computed.
In this case, c is a variable. LAINV sets c to the value that is obtained for the abscissa of
convergence.

MO is an irteger which specifies lhe search procedii'e to be used fo- findiug the abscissa
of convergence c when IERR < 0 on input. A one-pass prccedure is employed whein MO
, 0, and a two-pass procedure when MO -:- 0. Norrnaily, the one-pass pr,,cedure sh:uld
be used. However, if all the singularities of F(z) are known to be real, then the two-pass
procedu're (MO 0- 0) will be more efficient.

It is assumed that t > 0 and that Y is a variable, When 1,AINV is called Y is set to
the value obtained for f(t).

A M 11I and REIMH are the absolute and relative error toleraoncs to be irsed in conl pitiig
F(1) (AEIRtH 1> 0 and RElRIt 0). if one wants wicura:y to k sigfifi( ant digits, then set

,'{RRI - 1O k If l{F, IRh 0 then it, Is ThulI•(I that f(t) is to be (corilp u tvd t') m.i

Si21



accuracy. LA.INV attempts to find a value Y which satisfies JY -- f < max{ AERR, RIiRR.
f(t) }.

ERROR and NUM are variables that, are set by the routine. When LAINV terminates,
ERROR is a rough estimate of the absolute error IY -- f(t)I and NUM is the number of
calls that were made to the subroutine FUN.

When LAINV terminates, IERR reports the status of the results. IERR is assigned
one of the following values:

IERR = 0 Y was obtained to the desired accuracy.
IERR = 1 Y was obtained, but it may not be accurate because of inaccuracy

in the computation of c. This setting occurs only when IERR < 0
on input.

IERR = 2 Y could riot be obtained, possibly because too much accuracy was
requested. Increase AERR and RERR, and rerun the problem.

IERR = 3 Y could not be obtained, possibly because of inaccuracy in the
computation of c or too much accuracy was requested. Increase
AERR and RERR, and rerun the problem. This setting occurs
only when IERR < 0 on input.

IERR - 4 (Input error) The argument t is not positive. Y and ERROR are
assigned the values 0 and 1.

IERR 5 The abscissa of convergence c could not be found in the interval
[-104, 104]. Y, c, and ERROR ate assigned the values 0, 0, and
1. This setting occurs only when IERR < 0 on input.

IERR 6 The argument t is too large for f(t) to be computed. Y and
ERROR are assigned the values 0 and 1.

Remarks.

(i) Accuracy decreases when t is near a discontinuity of f(t).
(2) The calculation may lose accura'cy or fail when F(t) is oscillatory.

Algorithm. Given c, f(t) is computed by a modification of the subroutine l)LAINV devei-
oped by R. Piessens and R. lluysorans, where the real Wynn (-algorithm has been replaced
with the corrpley Wynn ,-algorithm.

When IERI < 0, c is calculated by the sul)routine A BCON or the subrou~tine AB-
CON1. In Al CO)N, which is a two-pass search. procedure, the abscissa xi of the righitnrost
singularity in the strip -10 < x - Io, yj .01 is first deteririned. Then the abscissa of
the righltmrost singularity in the half-plane Re( ) > x, is found. In ABCON I these calctla-
tions are combnned into a single-piLass prce(dure.

In ABCON and ABCON( , the function P (z)/(z ..x. -1 1)' is integrated along paths (.,1
and C2 deli ned as follows: CI is the straight line Segment frori (xi ,0) tV (xi, .01), followed
by thi:• straight line segirenit froim (X , -1) to (cw),.0)1), and (', is the straight line segumielit
frori (,r , xo) to (x,, 0), followed by the strai .ht line segment from (Ti,,() to (oxo,0). The
intejrlal ida-ng C(J vaniishes if no singularit y iles to tic rirMht of 1, iM the st'rip iY! U 1,
anid tire integral along C2 vanishes if Im sinrgulIar ity hies il ie(z) -- X: (00,hrWrIsN, t0hese
integrals are nriOl|(ro M iii •ist, appliations. ,iip.on 's rule sufiliu(-s for integrating along the

2" -



finite line seg-:uent from (Xi,0) to (Xz, .01).

Example. Let F(z) = 1/(! + z2 ), in which case f(t) =- sin t. The following code may be
ul!ýd for computing f(t) at t 1, 1.1 1.2,.... ,1.9 and storing the results in the array W.

PEAL W(10)
EXTERNAL FT

C
AER -= 1.E--30
RERR = 1.E-12
IERR = --1
T= 1.0
DO 10 I = 1,10

CALL LAINV (1, FT, T, AERR, RERR, W(1), C, ERR, N, IERR)
IF (IERR .GT. 1) STOP

S= T + 0.1
10 CONTINUE

IHere FT may be defined by:

SUBROUTINE FT(X, Y, A, B)
COMPLEX Z,W

C
Z CMPLX(X,Y)
W - 1.0/(1-0 + Z**2)
A = REAL(W)
B1 AIMAG(W)
RETURN
END

Programming. LAIN¥ employs the subroutines ABCON, A[3CONI, SRCH, ACOND,
XCOND, LAINVI, CQEXT, QAGIl, QAGIE1, QELG, QK15f1, QLPSRT, CDIVID, CREC
and functions ACONDF, ACONDG, XCONT)X, XCONI)Y, SPMPAR, EXPARGI. LAINV
and ABCON were written by Andrew It. van Thyl (NSWC) anid no0tified by A.HI Morris.
AIICON I was written by A.II. Morris. LAINVI was written by Robert Piessens and Rudi
tuysrnans (University of Leuven, lheverlee, Belgium) and modified by Andrew v,.u TiRy .

QAGII is a rnodificatioii of QAGI by Andrew van "Iyl and A.l. MIorri.'s.

Feterence. Piessens, H. and fluysinans, R., "Algorit{hm n619. iutomýatic Numerical Invel-
sion of the Laplace Tiawisforru," ACM Trans. Math Software 10 (1984), ppi 34h8 :53.

.12



FAST FOURIER TRANSFORM

Let n be a positive integer and 0j = 2;rj/n for j = 0, 1, ... , n - 1. For any complex
n--1

valued functions f and g defined on the points 0j let (f,g) r, f(0j) g(0j). Then (f,g) is

an inner product when f and g are regarded as functions defined only on Oj. Also eitl(j --

0, 1, ... , n -. 1) form an orthogonal set of functions where each eiIj' has norm \/-i.' Thus, if
In-1

f is a function that is approximated by f(0) 1 ,, ceje° then each c. *(f(0), e116 ). The
Si=0

mapping f((0j) i-+ c. given by

1i O'- 2x,ijk/ti
C, - _ f(Ok)e

n k=O

is called the discrete Fourier transform and its inverse

-f(,) = E
k=0

the inverse discrete Fourier transform. The following subroutines are available for com-
puting these transforms.

CALL FFT(C, n, t, IERR)
CALL FFT1(A,B,.n,f,IERR)

Let c3. aj + ibi(j 0= , 1, ... ,n -- 1) be the data to be transformed. If FFT is called
then C is a complex array containing c0 ,c 1 , ... ,c,- 1 (where C(j + 1) = c3 for j < n).
Otherwise, if FFT1 is called then A and B are real arrays containing a 0 ,a,, .... an-I and
b0 , b1 , ... , b, 1  respectiveiy.

The argument f may have the values 1 or -1, and IERR is a variable. When FFT or
FFTI is called, if there are no input errors then IERR is Pet to 0 and

2rt-k/- •j •-: • cke2•k'
k-0O

is computed. The results a 3 ib, replace the original data c, -_ a_ +- ib, in C (or A
and B).

Restrictions on the argument n. When ]eFT and FFPI' are called, n is factored by 0he
routuile into its pri le f;at.ors. It is isrsuired that the largCsL prime factor of n is < 23. If
1 u 2rL where n is the square free portion of n , then it i further a.ssutied tfhat n <- 210

whenever nL is a product, of two or mnore priuneIS.

T 11r1,1gh ,out thuis .4 ( ti t,i / 1.

-125



Error Return. If an input error is detected then IERR is set as follows:

IERR I if n < 1.
IERR 2 if n has too many factors.
IERR 3 if n has a prime factor greater than 23 or the square free portion

of n is greater than 210.
IERR=4 if + l±.

The setting IERR := 2 can occur only when n > 4251528.

Remark. The complex array C is interpreted by FFT as a real array of dimension 2n. If
this association is not permitted by the FORTRAN being employed then use FFTL.

Programming. FFT and FFT1 are interface routines for the subroutine SFFT, which was
written by Richard C. Singleton (Stanford Research Institute).

Reference. Singleton, R. C., "An Algorithm for Computing the Mixed Radix Fast Fourier
Transform," IEEE Trans. Audio and A•lectroacoustics, vol. AU-17 (1969), pp. 93-103.

2126



MULTIVARIATE FAST FOURIER TRANSFORM

Let ni, I,- m be positive integers. For any J (j1 , ... , •) where j,, = 0,... n, n•
(v = 1, .,r) let 0j denote the point (2NjI/n 1 , ,2rjm/n,m). Also, for any complex
valued functions f and g defined on the points Oj let (f,g) = F, 1f(0j) g(js). Then (f,g)
is an inner product when f and g are regarded as functions defined only on Oj. Also the
functions Osj(0) = exp(ij1 01 ) ... exp(ij,mOm) form an orthogonal set where each Cj has the
norm ?-i. • .1 Thus, if f is a function that is approximated by f = Ejcj Oj then each
cj 1- (f,0) . The mapping f(0j) F- ci given by

rej =-,, .. .n_ EK f(OK) exp(-2n-ijk 1 !/n) ... exp(-27rijk,/n,)

is called the discrete multivariate Fourier transform and its inverse

f(Oj) = -K CK exp(27rijxkl/n 1 ) ... exp(22rijmkm//nm)

the inverse discrete multivariate Fourier transform. The sums E2 K are for all K
(ki, ... ,km) where k, = 0,1, ... ,n, -- 1 (V = 1, ... ,m). The following subroutines are
available for computing these transforms.

CALL MFFT(C, N,rn, , IERR)
CALL MFFT1(A,B,N,rm,e,IERR)

Let cl as + ib, be the data to be transformed where J = (j1, ... ,jm) for j,
0,1, ... n, - 1 (V = 1, ... ,m). If MFFT is called then C is a 1-dimensional complex
array containing the values cj where cj = C(1 +j-lI + jrn1  i3 nr+...+jmnl...ln,n-1).
Otherwise, if MFFT1 is called then A and B are 1-dimensional real arrays containing the
data aj and bj respectively.

Note. If MFFT is used and m = 2 or 3, then instead of having to store the m-dimensional
data cj into a 1-dimensional array C, the data may be stored in C where C is defined to
be an m-dimensional array, If in --- 2 thei C may be declared to be of dimension ni X n 2 ,
in which case C(j -f 1,32 4- 1) -- cj for all J --- (j1,j 2 ). Similarly, if tn : 3 then C may be
declared to be of dimension n1 X n2 x n3 , in which case C(j1 - 2 IJ 2 t 13" -11) cj for all
J :(. ,J, j. ). Similar comirenits hold for A and 1B if M F'FI'I is employed.

N is an array containing the integers ni, . .. ,n,,. The argument F may have the values
I and - 1, and IERR is a variable. When MFFT or MFFTI is called, if there are no input
erriors then IEIRI is set to 0 and the transform

cJ:>-"K cKext'(27rfijtkj/nt) -- -ext'(2"z;itj',,,,,/"I,,

is comipted. The results cj - (1j f 1'6j replace the (original data cj a. 1ib) (I (t(r A4
and 1.).

'ThrUgho)ut thin 4e•(tiun I ,/ I tid 0 (0i .... 0'n) dt-n,tc.i tn artitr~l It y p1,iit.

4 27



Restrictions on the arguments ni, ... n,n. When MFFT and MFFT1 are called, each nf,

is factored by the routine into its prime factors. It is assumed that the largest prime factor

of n, is < 23. If n, == P'in, where ii, is the square free portion of nt, then it is further

assumed that h, < 210 whenever ft, is a product of two or more primes.

Error Return. If an input error is detected then IERR is set as follows:

IERR = 1 if some n, < 1.
IERR = 2 if some n, has too many factors.

IERR = 3 if some n, has a prime factor greater than 23 or the square free
portion of some n, is greater than 210.

IERR = 4 if f ý ± .
IERR 5 if m < 0.

The setting iERR == 2 can occur only when some n, > 4251528.

Remark. The complex array C of dimension nj ... n, is interpreted by MFFT as a real

array of dimension 2n, -. " n,,,. If this association is not permitted by the FORTRAN being

employed then use MFFT1.

Programming. MFFT and MFFT1 are interface routines for the subroutine SFFT, which

was written by Richard C. Singleton (Stanford Research Institute).

Reference. Singleton, R. C., "An Algorithm for Computing the Mixed Radix Fast Fourier

Transform," IEEE Trans. Audio and Electroacoustics, vol. AU-17 (1969), pp 93-103.

4128



DISCRETE COSINE AND SINE TRANSFORMS

Let n be a positive integer and O, = (V + 1/2)7r/n for v = 0, .,,n - 1, For any

real valued functions f and g defined on the points O0 let (f,g) E f(O,) g(O.). Then
i0

(f,g) is an inner product when f and g are regarded as functions defined only on 0,,.
Also cos jO (j = 0, , ... ,n - 1) form an orthogonal set of functions where cos jO has
norm Vf, when j = 0 and norm Vr/-2 when j > 1. Thus, if f is a function that is

n-I
approximated by f(0) = a 0 + 2 E ajcos jO then each a. •(f (0), cos jO). The map-

ping f(0,,) -+ aj is called the discrete cosine transform and its inverse aj '-+ f(O0,,) the
inverse discrete cosine transform.

Alternatively, the functions sin jO for J = 1 .1 n also form an orthogonal set where
sin jO has norm \///2 when j < rn and norm v/'i when j --- n. Thus, if f is a function that

is approximated by f(O) 2 bj sin jO ± b, sin nO then each bj 1 •(f(0),sin jO). The
j=1

mapping f(0,) F-* bj is called the discrete sine transform and its inverse bj -* f(O,) the
inverse discrete sine transform.

The subroutines COSQB and COSQF are available for computing the discrete cosine

transform and its inverse, and the subroutines SINQB and SINQF are available for comput-
ing the discrete sine transform and its inverse. The subroutine COSQI provides information
that is needed for the cosine and sine transform routines.

CALL COSQI(n,WK)

WK is an array of dimension 3n -+- 15 or larger that is a work space for the routines
COSQI3, COSQF, SINQ3, and SINQF. COSQI stores in WK informatien needed for the
fast Fourier comnputation of the discrete cosine and sine transformv and their inverses. A
preliminary c:all must, be made to COSQI before COSQ11, COSQF, SINQlB, and SINQF can
be used. After this 1)reliniaiary call, COS`ýl Deed only be recalled when r, is modified.

Programmr ing. VJSQI ernploys the subroutines RFFI'TE and RWFITI1. I hese routines were
written by Pau) N. Sv,'arztrauber (Nat S ,lial (2cntt-r 'or Atiiosphcric search, louldr,

Colorado).

CALL COSQB(n, X, WK)

-'iX i l an arra,' of diuwiniioii tL or l:kipcr. 011 11+1ut it is aISsuiied that X contai:,s• the

.Xt:k J*(O, ), f(0 ~) ) , . , f(O,, ). Wblein (i()SQ ! i., calledq, -Ina, is comiiputedi and stored iII

X (. I I) for / 0,1, . I,,

\ViW i, an irvL of dt , • j!iis ' :i 4 I" 1 ,or larger that Is a work -Tace, fo)r htie rout,oiiý.
WK rmuiist 1Fe ,w( ip,, . :. rout~ic C(OSQI Isfore (0S3 h ' e use1 .

129)



Programming. COSQB employs the subroutines COSBI, RFFTB, RFFTB1, RADB2,
PADB3, RADB4, RADB5, and RADBG. These routines were written by Paul N. Swarz-
trauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL COSQF(n, X, WK)

X is an array of dimension n or larger. On input it is assumed that X contains the
data ao, a...,a,- 1 . When COSQF is called, f(O) is computed and stored in X(v + 1)
for v = 0,1, ... ,n - 1.

WK is an array of dimension 3n + 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before COSQF can be used.

Example. Assume that X contains the data f(Oo), ... ,f(O,-i). When the statements
CALL COSQI(n,WK)
CALL COSQB(n,X,WK)
CALL COSQF(n,X,WK)

are called, COSQB sto'es 4na 0 , ... ,4na, 1 in X and COSQF then sets X(v+ 1) = 4nf(O,)
for v -- 0, 1, ... , n -- 1. Thus, the terms of the original sequence X are multiplied by 4n.

Programming. COSQF employs the subroutines COSQF1, RFFTF, RFFTF1, RADF2,
RADF3, RADF4, RADF5, and RADFG. These routines were written by Paul N. Swarz-
trauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL SINQB(n,X, WK)

X is an array of dimension n or larger. On input it is assumned that X contains the
data f(0o), ... j .(0,-). When SINQI3 isi called, 4nb, is computed and stored in X(j) for
j- 1,...,)n.

WK is an array of diriension 3n 1 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before SINQB can be used.

Programming. S:NQB calls the subroutine COSQ1. SINQ13 was written by lPaul N.
Swarztrauber (National Center for Atmospheric Research, lIoulder, Colorado),

CALL SINQF(n,X,WK)

X is an array of dimension it or larger. On input it is awssiiied that AX contains the

data bi, ... ,b,. When SINQF is called, j](0,,) is computed anld stored in X(v 1 1) for

V 0, 1, ... ,V 1.

WK i•s a array of (I imenisio :ini 15 or larger that is a work ,-.i:lwe for the routo tiC,

WK tmust, be set iIp by t0e routine( X)SQI before S INQF C;,n be use(.

Example. As,Žium , that, X coltitilli the (itt ' bhi,...bt . When ti e t statt•Im c tnts

CALL (()SQl n )(vW K)
CALL1 SINQF(n, XV,W|K)

C('ALL SINQif(r, .,' ,WK

1:1(0



are called, SINQF stores f(Oo),... ,f(0-I) in X and SINQB then sets X(j) = 4nbj for
j = 1, ... , n. Thus, the terms of the original sequence X are multiplied by 4n.

Programming. SINQF calls the subroutine COSQF. The routine SINQF was written by
Paul N. Swarztrauber (National Center for Atmospheric Research, Boulder, Colorado).



RATIONAL MINIMAX APPROXIMATION OF FUNCTIONS

Let a < b and g(x) be a coritinuous nonvanishing function on the interval [a, b]. For any
continuous function f (x), let 11f 11 denote the weighted norm max{If (x)I/Ig(x)I a < x < b}.
Also let O4x) be a continuous strictly monotonic mapping on [a, b]. Then for any nonnegative
integers t and mn, the subroutine CHEBY is available for finding a rational function

Pa±pR(x) -P 1O +.. __+__ox

q0 +- q1 o(x) + - +i q,.(x)"-

which minimizes 11R - fI11. The subroutine performs the calculations in double precision. It
is assumed that the error cur've 6(x) =(R(x) - f(z))/g(x) satisfies I&(xj)j = JJR - fHl at
precisely t + mn + 2 critical points x0 < x, < .. < xTn(ni £ -:+- 1), and that 8(z,+i)
-6(xi) for each i < n.

CALL CHEBY(a, b, F,G, Plll, c, ITEýR,MXITERZ, , tn, P,Q,
ERROR ,I ERR, WK)

The arguments a and b are double precision real numbers. F, G, and PIll are functions
whose arguments and values are double precision real numrbers. The functions nriust be
declared in the calling program to be of types DOUB3LE PRECISION and EXTERINAL.
The functions evaluate f (x), g(x), and O(x) respectively.

The argument (is a double precision tolerance that is supplied by the user. If A denotes
the estimrated value of JJ ? f 11, then the routine converges when the error curve 6(x) satisfies
A(i -- c) < 16(xJ) < A( 1 ) for eachi zx. Thus (specifies the relative agrreineiit that miust
b~e attained between 11f H11 andl the 6(r, ) . Normally the setting I 0 1 will give
satisfactory resulfts. It is required that 0 <10) 2.

Tfle hteines-ty pe a]lgori thmn dIesignmed by Cody, Fraser, and HIart is eiiiployed TPh is algo-
rith ii normally requires less than '20 iterations. The arguineimt NIX l'lEi the in1axirIninII
iiumnber of iterations th at wiay b~e jperforiiied, . 'lhils argunient is set, by the user, Th'le relatvd

arunient l'l'hl is aui integer variahle thai. is set b~y the rouitine. When ('11E I~YermnowmLtcs,
ITEI{ will have for its Vallie the run miber of Iterationis tHAt were actuially perform ned.

P~ is a doublelt prc(Isuonmirray of dimneiisiomm f 1, 9 aioul precision array of d~iimn "IMum

in f 1, E hROR.1 a double precision variable, amid I Cl', R an Hintegr variable. WVhen ( 1KII Y
terumijimates, ~~~~~~~~~if lthe ratioimal funmctilon alpproximiriatiom lI It iSlei htiifIte ~~Hi

aissignied the value 0 andl~l fl( )R Is the e-st iniated error 111? fJ .1 Thle (,)efhiciciit, p. of I tic
numnerator of 1?(xr) is stored Imm /)(:' 1I) for i 0, 1, .. , i, amid the coefficient ty, of i lit,

,htnoiiiiiator Is sto(red inI Q(J I ) for -1 1, T.he Ifi ficitCni q,, Will ~wy;hv
lhe value 1.

Le t. k IF jm 11 2. le WK IN' a1 ,hi11hlC prtCIsi,0 lrr; of (IJinwIt~ili k(k ( or Lirycc
that is used for a xv, rk spice.



Error Return. IERR is assigned one of the following values when the desired minimizing
rational function R(x) is not obtained.

iERR = 1 An input error was detected, Either t < 0, m < 0, c < 0, c > 10-2,
or g(x) = 0 for some point x.

IERR = 2 MXITER iterations were performed. More iterations are needed
to obtain R(z).

IERR = 3 TLe system of linear equations that define the coefficients pi and
qj was found to be singular. This indicates that for the current
values of t and m, the numerator and denominator of R(x) may
have common factors.

IERR = 4 A nonmonotonic sequence of critical points x, was obtained. Mod-
ify t and/or m.

IERR = 5 The value of the error curve b(z) at some critical point x, appears
to be too large. This indicates that R(x) may have poles, and that
m (or possibly a or b) may have to be modified.

IERR =- 6 CHEBY completely failed to find (or roughly approximate) R(x).
All information in P,Q, and ERROR should be ignored.

If IERR = 2,3,4, or 5 then P and Q contain the coefficients of the most recent rational
function approAimation R(x) obtained, and ERROR is an estimate of the error 11R - f 1 of
the approximation.

Remark. The two most common weighting functions employed are g(x) = 1 and g(x)
f(x). If g(x) = 1 then the absolute error is minimized in constructing li(x). If g(x) f(x)
then the relative error is minimized.

Programming. CHEBY employs the subroutines CIIEBYI, CERR, and DPSLV. These
routines were written by A. If. Morris. CIIEBY, C(IEBY1, and CEER are slightly modified
translations of the ALGAOL 60 procedures Cheliychev, lineq, del, and suriris given in the
reference.

Reference. Cody, W. J., Frier, W., and Hart, J. F.,"IRational Chebychev Approximation
i:di rig Linear Equations," Numerische Matheematik 12 (19G8), pp. 2412 251

124



LP APPROXIMATION OF FUNCTIONS

For any continuous real-valued functicA, fix) defined on the interval [a, bJ, let IfHAP
denote the L. norm defined by

I'If IP = (f' If(z)iP dx)'I/P if < p < p 0
iflp = max{I!(x)l :a < x < b} if =- oo,

If p -- o then the norm is also known as the Chebyshev norm. For any rontinuous function
f, 0 < p < oo, and i > 0, the subroutine ADAPT is available for finding a continuous
piecewise polyiomial function 0 that satisfies jif - 011p < C.

CALL ADAPT(F, a, b, c, k, ERROR,XKNOTS, C, IND, j, n, t, ANORM,
DX,MO ,m,XBREAK,KDIFF ,DLEFTDRIGHT)

It is assumed that the polynomials which form the approximation 0 are of degree < n.
The argument n must satisfy 1 .f n < 19, and iND is a variable. When ADAPT is called, if
there are no input errors and q is succeý.sfully constructed, then IND is set to 0, a sequence
of points a = x, < ... < xk- I < xk = b is Pelected, anid 0 takes the formn

(X) = co + - X .) +-- +ce"(X - x _ X< x < xi 1

for i 1, ,k - i. The pointts xi, .,Xk are called the knots (or nodes) of ¢.

The argument ps is the maximum number of polynomials that may be used in forming
0. ERROR and k are variables, XKNOTS an array of dimension ps + 1 or larger, and C a
2-dimensional array of dimension p x (n + 1). ADA PT sets k to the number ot" knots that
are generated. The knots xj, ... , Xk are stored in the XKNOTS airay, and the coefficients
ciG, ... ,ci, are stored : C(i, 1), .. ,C(i,n + 1) for i = 1,...,k - !. FRROR is a ,'ough
estimate of the error lIf __01.

The argument f specifies the degree of smoothness that the approx:,ration 0 must
sati.sfy. It is assumed that 0 < e < 10 and n > 2f. If f -= 0 then it, is only iequ-rcd that
b !e continuous on the interval [a,b]. Othervise, if f > 1 then it is assulzred that f is of
class C' on [a, b] except at possibly a finite number of points (called break points), and it
is required that 0 b)e of class C' on [a, bj except postsibly at thc: break points.

TIhe avgment, ?I specifies tile Iuniber of break points of f. It L_4 assunied that in <1 20.
If Yri - 0 then the arguments XItREAK,KD)It ,IJL;IFT, and U Rlcll' can be ignor(d.
Otherwise, if m > I then it is assumed that XBRIEAK, K 1IF ILEFT, and DRIGIlT a e
arrays of dinnernsion i, or larger, and that

XBtREAK(i) the it'' break point, call if u,,
I") 'FF (i) the smallest integer v. fr whi,"h thd, vt t' hT'ivative of f does

Hot ex,St, or I:E 1ot C M(.IhIjOuýS alt U"

I)llJ'"'l'(i) the vahic fron) the left. , I the v:" detrivit~iw.v at v,, ... d
l)tl(;t11''(t) t1.11 V.iie1 froll the rig',ht Of t0 0 v•' (leriv:djiv at u,

fiur I. , ri It isa also) aVsi•ill,(d that a - a l " u b ari ya , 9v, for t t!Iv 1¾.



F is the name of a user defined functioo that hwLs the value F(x, D) 1: f(x) for a < x <. b.
If f = 0 then 1) can be ignored. (However, D) must, still be given as an argument of F.)
Otherwise, if f I then 1) is an array of dimerision greater than or equal to f. For any x
not a break point in XBREAK, the user must, set 1)(j) := the jth derivative of f at x for
j t L However, if x = XBREAK(i) then the user need only set D(j) = the jh derivative
of f at x for j < KDIFF(i). The function F must be declared in thc caflling program to be
of type EXTERNAL.

The argument DX ,specifies the maximum distance to be permitted between the knots
xj, and the argument ANORM specifies the norm to be used. Set

ANORM = ±1.0 for L, approximation.
ANORM = ±2.J for L2 (least squares) approximation.
ANORM = 3.0 for L, (minimax) approximation.
ANORM = -p for L () < p < oo) approximation.

Before c-nsidermng the argument MO, one should be briefly acquainted with how
ADAPT oierates. ADAPT employs the following procedure to construct €.

(1) Set. I = [a, b] and k -- 1. Let a be the first knot of ¢.
(,) If the interior of I contains no break points then go to (3). Otherwise, if I Z [c, d] then

partition I into the subint'ervals [c, u] and [u, d] where u is the smallest break point
greater than c. Stack the right subinterval [It,d] and reset I to [c,u].

(3) Construct a polynomial 0, on I using Hermite interpolation. If the length of the interval
I is < DX and et 3atisfactorily approximates f on I, then go to (4). Otherwise go to
(5).

(4) Set k to be k + 1. Let 01 be the (k -- 1)"t polynomial forming 0 and let the right end
point of I be the ktP knot of 6. If the ;nterval stack is empty then the procedure is
finished. Otherwise, obtain frorm the stack the next interval I to be considered and
return to (2).

(5) The polynomial 0I cannot b( used. Partition ' into halves, stack the right subinterval
and reset I to be the left subinterval. Then go to (3).

The argument MO specifies the accuracy criterion that the approximation 0 is to satisfy
on a subinterval I -z [c, d[ of [a, b[. It is assumed that MO ý. 0, 1, 2. If the L,, norm is used
then MO is ignored' and 0 is required to stiaisfy If(x) '(x)l c for c < < d. Otherwise,
if the L, (0 < p < Lc) norm is used then ¢ is required to satisfy:

-d f(x) ¢(x,)I" t•": for M(.) ;. 0

The setting MO 0, which is tO.hw iri.st. c0i ,-,:nly used setting, requires the total error
!If ¢Ii•, o: . The i.ltrflr a' ,,c!.tihyf, MO( 2 1 t~hpy)V 0 to ,•.(lIt,,l (hLi ;a('ccuracy If ,
(enoe;istst (If k I po!yvnoials then tb. :,tAl error If 01, (k ) ! ( . Thisw set.to;g oai

L, wt v,. , it i: til! re( ir. I thi t o ', (o , 1,2



El • W U .• Uml -N I ., .i

be useful when f is rough. A (heuristic) cornpromnise strategy is provided when MO

At each step in the formation of 0, the MO 1 1 strategy estimates the total number of
subintervals that will finally be needed and adjusts the error requirement for the subinterval
I accordingly. This strategy attempts to keep the total error to a minimum while relaxing
the local accuracy rriterion demanded by the MO -: 0 setting.

Remarks. IND, k, p, n, t, MO, rn, and KD!FF are integer arguments. All other arguments
(including F) are double precision arguments.

Error Return. ADAPT assigns IND one of the following values:

IND = 0 The approximation was successfully constructed.
IND =- 1 Either a > b or one of the arguments c, n, t, ANORM, MO, rn is

assigned an incorrect value.
IND = -2 [a, b] is too small an interval.
IND = -3 DX is less than (b - a)/,a. Since only p subintervals can be used

and each subinterval must be of length •< DX, the interval [a, b]
cannot b,- covered. Make DX or p larger.

IND =-4 The restriction a < ul < ... < u, < b on the break points is
violated.

IND =.--5 Either KDIFF(i) < 0 or KDIFF(i) > (n - 1)/2 for sorne i.

IND = I ADAPT selected p + 1 knots. More knots are needed to complete
the problem.

IND= 2 A subinterval I = [c, d] must be partitioned into subintervals [c. u]
and [u, d] where u is a break point. However, this cannot be, done
either because the interval stack is full, or partitioning will produce
too small an interval. (The stack can hold only 50 subintervals).

IND = 3 A subinterval must be partitioned because its len4gt.4 is greater
than DX. However, this cannot be done since the interval stack is
full.

IND = 4 A subinterval must be partitioned so that the accuracy criterion
can be satisfied. However, this cannot be done either because the
stack is full, or partitioning will produce too small an inter.,;'.

If an input error is detected (i.e., if IND < 0) then no computation is performed. Otherwise,
if IND > 0 then when ADAPT terminates k the nurrnber of knoos generated, XKNOTS
contains the Knots, C contains the coefficients of the polynomials generated, and EjiltOli
contains the error es3timate for f -- 0 over the interval covered.

Remarks.

(1; if the Lo, norm is used then i controls ab.:,)lute accuracy, not ii, .tivew acuracy. This
should be kept ii mimd when ( is to be set for any Lk norm.

(2) ADAPT require3 mnore time when f' > 2 than when f 0 or 1. fulwever, the (.hoice oi
the norm normally has litAle effect on thlc eftcicncy of the rolti iie.

(3) AI)AIPT can yield exct-bl-nit renili- even when the d(rivatives of f iia•vrignties.
The one ri.ajor excoptioxi is w ý' , hý Ar' do nOerivvo.i,.e of J] iLi rot bhomdvd. Ilel r tOe
r(ol ine (.can be expected to fad. ,

437



Example. The following code can be used for approximatiig f(x) = e on the interval [0, 1].

DOUBLE PRECISION F, A, B, EPS, ERROR, ANORM, DX
DOUBLE PRECISION XKNOTS (11), C(10,20)
INTEGER KDIFF(1)
DOUBLE PRECISICN XBREAK(1),DLEFT(1),DR1GIT(1)
EXTERNAL F
DATA MAX, A, B, DX/10, 0.DO, 1 oD0, I.DO/
N=8
L=I
EPS = 1.D-12
ANORM '- 3.DO
CALL ADAPT(F,A,B,EPS,K,ERROR,XKNOTS,C,IND,

* MAX,N,L,ANORM,DX,0,O,XBREAK,KDIF F,DLEFT,DRIGHT)

Here F may be defined by:

DOUBLE PRECISION FUNCTION F(X,D)
DOUBLE PRECISION XD(i)
F:-= DEXP(X)
D(1) = F
RETURN
END

In the ADAPT statement XBREAK, KDIFF, DLEFT, and DRIGHT are ignored since
in 0.

Programming. ADAPT employs the subroutines ADAPTI, ADSFT, ADTAKE, ADCOMP,
NEWTON, ADCHK, ADPUT, AI)TRIAN •iad functions ERRINF, POLYDD. These rou-
tines exchange information in labeled coirunon blocks. The block aames are INPUTZ,
RISULZ, KONTRL, and COMDIF. Th',ý routines were written by .,ohn R. Rice (Purdue
University) and modified by A. If. Morris. The function DPMPAR is also used.

References.

(1) Rice, J. R.,"Algoridi'im b25. ADAPT, Adaptive Smooth Curve Fitting," ACMTrans.
Math Software 4 (19i8), pp. 82-94.

(2) .... . "Adaptive: Approximation," J. Approx. Theory 16 (1976), pp. 329--337.

-138



CALCULATION OF THE TAYLOR SERIES OF
A COMPLEX ANALYTIC FUNCTION

Let f(z) _ a,(z -zo)'* denotc the Taylor series of an analytic function f around

a point z 0 . Then the subroutines CPSC and DCPSC are available for obtaining the coef-
ficients a, of the series. CPSC obtains ,ringle precision results and DCPSC obtains double
precision results.

CALL CPSC(f zo, n,IND,E, R, A,ERR)

it is assumed that f(z) is a user defined function whose arguments and values are
comp!ex numbers. The argument f must be declared in the calling program to be of types
COMPLEX and EXTERNAL.

The argument zo is complex, n is an integer where 1 < n < 51, and A is a complex
array of dimension n or larger. IND may be any integer. If INDz = 0 then a3 is computed
and stored in A(j 1- 1) for j = C, 1, ... , n - 1. Otherwise, if IND $ 0 then f(zo) and the
derivatives f'(zo), ... ,f(n-1)(z 0 ) are computed and stored in A.

The argument c specifies the relative accuracy of f. If it is estimated that f produces
results accurate to k significant decimal digits then one may set c = 1 0 -k. It is assumed
that c > 0. If c = 0 then the results of f are assumed to be correct to machine precision.

W!hen CPSC is called, f(z) is (valuated on circles of various radii around the point
z 0 . R i., a real variable. On input, k is th,2 radius of the first circle on which f(z) is to be
evaluated. After using this radius, the radius is repeatedly modified (first by factors of 2
or 1/2) until a suitable final radius r, is obtained for deriving the values cf the coefficients
aJ. This radius, whose value depends on c, is called the comnputational radius of the series
,aj(z . zo). When the routine terminates, R is assigned the value r,.

ERR is a real array of dimension n or larger. On output, ERR(j) is the estimated
absolute error of A(j) for j : 1, .-. ,n,

Usage. Given a radius R, f(z) is evaluated on k equidistant points on the circle of
radius I? around z0 where

k 8 when I < n < 6,
k 16 when 7 < n < 12,
k --- 32 when 1.3 < n < 25,
k .- 64 when 26 K n .< 51.

It is assumed that f (ý) has at lesft, one n.ozeio i(.:oefiicient a. among t!he first k/2 coef[icients,
and at. least ov e nonzero coefticient aniong the next, k/2 c efficerits. Thus, the routine
shi mIld not ke used to obt aii) coeicientis of a low degree polyrio nninal such as f (z) Z 2,
In such cases, the result-s will hornially be i'i correct.,

In generI, the select.ioot of ihe radios 1R. of the first. circle on wh ich f(z) is (:valuatcd idý
not. bothersonu . A ratndomlny selected value of mioderate sizc, such as H 6.2738, aha ost



always suffices. No difficultie3 normally arise when the iaitial radius R is greater than the
radius of convergence of the series Eaj(z - Zo)3. However, difficulties do arise when

(1) the routine attempts to evaluate f too close to (or exactly at) a singularity,
(2) f has a Taylor series expansion which contains one or more extremely large isolated

terms (e.g., f(z) = 108 + sin z),
(3) f has a branch point near z0 , or

(4) The initial radius R is too far from the computational radius r, (see the error return
section below).

The risk of (1) occurring is minimized by the random selection of an initial radius R. For
(2) and (3), a severe loss of accuracy can occur when a large number of coefficients are
requested. In these cases, any loss of accuracy is reported by the ERR array.

Error return. A(j) is assigned the value 0 and ERR(j) is set to 1010 for j 1, ... ,n when
the initial radius R differs from r, by a f'actor of 30000 or greater.

Programming. CPSC was written by Bengt Fornberg (California Institute of Technology)

and modified by A.H. Mor-ris. CPSC employs the function SPMPAR.

References.

(1) Fornberg, B.,"Numerical Differentiation of Analytic Functions," ACM Trans. Math

Software 7, 1981, pp. 512-526.
(2) --- ,"Algorithm 579. CPSC: Complex Power Series Coefficients," ACM Trans.

Math Software 7, 1981, pp. 542-547.

CALL DCPSC(F,xo, y0, n,IND,:, R,AR,AI,ERR)

F is the name of a user defined subroutine that has the format:
CALL F(x, y, u, v)

This subroutine is used for evaluating f(z) at point z. The arguments x and Y are the
real and imaginary parts of z, and u and v are the real and imaginary parts of f(z). The
arguments x and y have double precision values, and u and v are double precision variables.

F must be declared in the calling program to be of type EXTERNAL.

The arguments x0 and yo, which have double precision values, are the real and imagi-
nary parts of zo. The argument n is an integer where 1 < n < 51, and AR and At are double
precision arrays of dimernsion n or larger. IND may be any integer. If IND --) 0 then the
real and iiaaginak-y parts of a, are stored in AR(j + 1) and AI(j + 1) for j = 0, 1, ... , n -- 1.

Otherwise, if IND - 0 then the real and imaginary parts of f(zo) and the derivatives
fl(ZO), . . . , f(n-'÷)(zo) are stored in ARt and Al respectively.

The argument (., which ,Ls d')uble precision values, specifies the relative accuracy of
the subroutine V. If it is estimated that F produces results accurate to k decimal digits
then one may set -- 1( k. It is assumed that, 0. If 0 then the results of F are
assumed to be correct to machine orecisiou.

When D)CISC is called, f (z) is evaluated on circles of various radii around the point
Z I. ft i." a d(ouble precision variable. ()n in put, It is the radius of the first cir(:cle on which

4410



f(z) is to be evaluated. After using this radius, the radius is repeatedly modified (first by
factors of 2 or 1/2) until a suitable final radius r, is obtained for deriving the values of the
coefficients atj. This radius, whose value depends on c, is called the computational radius
of the series Ea 3 (z - zo)j. When the routine terminates R is assigned the value r,.

ERR is a double precision array of dimension n or larger. On output, ERR(j) is the
estimated absolute error of the complex value stored in AR(j) and AI(j) for j --- 1, ... , n.

Usage. DCPSC is used in the same manner as CPSC. See the usage section for CPSC.

Error return. AR(j) and AI(j) are assigned the value 0 and ERR(j) is set to 10"° for
j = 1, ... , n when the initial radius R differs from r, by a factor of 30000 or greater.

Programming. DCPSC is an adaptation by A.H. Morris of the subroutine CPSC, written
by Bengt Fornberg (California Institute of Technology). )CPSC employs the function
DPMPAR.

References.

(1) Fornberg, B.,"Numerical Differentiation of Analytic Functions," ACM Trans. Math
Softwere 7, 1981, pp. 512-526.

(2) _... , "Algorithm 579. CPSC: Complex Power Series Coefficients," ACM Trans.
Math Software 7, 1981, pp. 542-547.

441



LINEAR INTERPOLATION

Let a be a real number and (xi,yi), ... ,(x,,y) a sequence of points. The following
function performs a linear interpolation at point a.

TRP(a,n,X,Y)

It is assumed that n > 2 and x, < ... < x,. X and Y" are arrays containing the
abscissas xi, ... ,x,, and ordinates yl, ..- , y, respectively. TRP(a,n,X,Y) = b where b is
the value of the interpolation at a.

Programmer. A. H. Morris.

443



LAGRANGE INTERPOLATION

Let f(Xi,yi) i -, ... ,n} be a set of n > 2 points where xl < < xnm be an
integer where 2 < m < n, and ±1', ..... k be k > 1 points at which rn point Lagrange
interpolation is to be performed. The subroutine LTRP is available for performing this
interpolation.

CALL LTRP(rn, X, Y,a 1XI,YI, C, T, IERR)

X is an array containing xl, .. . ,z ,, Y an array containing yj, ..- ,y,, XI an array
containing ti, . . . ,k, and YI an array cf dimension k or larger. When LTRP is called, if
no input errors are detect;ed then interpolation is performed at each tj and the result stored
in YI(j) for j = 1, . .. , k.

T is an array of dimension m or larger. The array is used ms a temporary storage area
by the routine.

Error Return. IERR is a variable that is set by the routine. If no input errors are detected
then IERR is assigned the value 0. Otherwise, IERR is assigned one of the following values:

IERR = I if m <2.
IERR=2 if m>n.
IERR =3 if k < 1.

When an error is detected LTRP immediately terminates.

Algorithm. If t" = (xi + x,+,,t)/2 for some i, then (xi y,), (xi&m-1, y-+,i-1) are the m
data points used in the Lagrange interpolation at xi. Otherw;ise, th, data points selected
for the interpolation are those m points (xi, y0) whose abscissas are closest to ij.

Linear Interpolation. For rr -= 2, if the abscissae xi are not equally spaced then LTIIP
can produce different results than the linear interpolating function TRP. If ±j lies in the
interval [xi,xi+i) then TIP always uses the data points (x,,y,) and (x,+l,yi+1 ) to find
the interpolated value at x;. However, the operation of LTRP is somewhat different. Fcr
example, if the point ±tj in [x, r,. 1 I) is closer to x,- 1 than to x,+l, then (Xi- 1 ;,Yi-1) al
(xi, y0) will be the data points employed in the interpolation. Thus, TPlU will normally be
the procedure that will be desired for linear interpolation.

Programming. Developed by A. II. Morris. The portion of the code for finding the subin-
terval containing x. was written by Rondall E. Jones (Sandia Laboratories,).

445



HERMITE INTERPOLATION

Let x 1 , .. ,xk he k > 1 distinct points. For each xi assume that we are given n, > 1
values Y, .. ,yi" (-j - . If n = +. + nk, then there exists a unique polynomial of
degree n - 1 which satisfies

k( i) =Yi

p (x-)

for each i = 1, ... , k. The subroutine HTRP is available for obtaining this polynomial.

CALL HTRP(n, X, Y, A, WK,IERR)

X and Y are arrays of dir.aension n containing the following information: X(j)

x, for j = 1, .- , n, and Y(1), .. ,, Y(,, 1) contain the values y , IY, . Y ,n -'). For
i ~=. 2, ... , k let rnj = a, + ""+ nj- 1. Then X(mi +) =xi for j , .,i and
I . (n,- 1)

Y (mi + 1), ... , Y(r, + n) contain the values y,, y, ..

A is an array of dimension n and IERR an integer variable. When HTRP is ca~led,
if no errors are detected then IERR is assigned the value 0 and the coefficients aj of the

i--i

polynomial p(x) = ao + E %j(x -- X(1)) ... (x - X(j)) are computed and stored in A(j+ 1)
j=lfor j 0,1 .. ,In -- 1

WK is an array of dimension n or larger that is a work space for the routine.

Error Return. If an error is detected then IERR is assigned one of the following values:

IERR 1 The argument n is not positive.
IERR 2 There exists integers i and e for which X(i) = X(i) but X(i) -

X(j) for somoe j where i < j < f. In this case, the values i and F
are stored (in floating point form) in WK(1) and WK(2).

When an error is detected, the routige immediately terminates

Example. If ,(0) - 2, p(--1) ý 1, and p'(---1) 2 where x, 0 and X2 .. 1, then IIThP
stores 2, 1, -1 irn A. Hence, p(x) --- 2 + -r z(x + 1) is the desired polynomial.

Remark. The Newton representation ao a, (x -- X(1)) ... (x - X(j)) of the polynomial
j=1 n--I

p(x) can be converted to the Taylor series representation X: c_(x - c)J by the subroutine
j'm (I

PCOEFF.

Programmer. A. II. Morris.

447



CONVERSION OF REAL POLYNOMIALS FROM NEWTON
TO TAYLOR SERIES FORM

For n > 1 let p(x) = ao + E (x - x) ... (x - x,). Then for any real number ce,
j'=1

the subroutine PCOEFF is available for converting the polynomial p(x) to the Taylor series
n--I

form E cj(x - a),.
3=0

CALL PCOEFF(a,n,X, A,C,T)

X is a single precision real array containing x1 , ... X- 1 , A a single precision real array
containing ao,al, ... ,a,-1 where a. is stored in A(j + 1) for ] - 0,1, ... ,n - 1, and C
a single precision real array of dimension n or larger. When PCOEFF is called then the
coefficients c. of the Taylor series representation are computed and stored in C(j + 1) for
j ==0, 1, ... , n -- 1.

T is a double precision array of dimension n or larger. The array is a work space for
the routine. (The conversion of the coefficients is done in double precision.)

Note. A and C may reference the same storage area, in which case the results cj will
overwrite the input data a3 .

Programmer. A. H. Morris.

44!9



LEAST SQUARES POLYNOMIAL FIT

Let {(xi,yi) :i= 1, ... ,m) be a set of rn > 2 points where x1 $ xj for i $ j. Then
for any positive integer n where n < m, the subroutine PFIT is available for obtaining the

(unique) nth degree polynomial p(x) = ajxj which minimizes r (p(x,) -- y,)2.
j=O 1=1

CALL PFIT(n, m, X, Y, A, RNORM,PII,WK,IERR)

X is an array containing x1 , .. ,Zm, Y an array containing yi, ... ,y, and A an
array of dimension n + 1 or larger. RNORM and IERR are variables. When PFIT is called,
if no input errors are detected then IERR is set to 0, the coefficients a1 of p(z) are stored
in A(j + 1) for j = 0, 1, ... , n, and RNORM is assigned the value VE,(p(x,) --- y,)2.

PHI is an array of dimension 2(n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI and WK are work spaces for the routine.

Ekror Return. IERR = 1 if n < 1 or n > rn.

Algorithm. The abscissas xi are first mapped into values in the interval [-1, 11. Then the
Forsythe procedure is used.

Programmer. A. 1I. Morris.



WEIGHTED LEAST SQUARES POLYNOMIAL FIT

Let {(Xi,y i) i = 1, . .. ,rn} be a set of m > 2 points where xj € xj for i - j, and
let wi > 0(i = 1, ... , m) be weights. It is assumed that mn, > 2 where mn,, is the number
of nonzero weights. For any positive integer n where n < mr, the subroutine WPFIT is

n
available for finding the (unique) n th degree polynomial p(x) I' ajxj which minimizes

ZE w,(pxi) -y .0
i=1

CALL WPFIT(n, m,X,Y,W,A,RNORM,PHI,WK,IERR)

X is an array containing x1 , ... ,x,,, Y an array containing yi, .. ,Ym, W an array
containing wl, .. ,wm, and A an array of dimension n + 1 or larger. RNORM and IERR
are variables. When WPFIT is called, if no input errors are detected then IERR is set to
0, the coefficients aj of p(x) are computed and stored in A(j + 1) for j 0, 1, ... , n, and
RNORM is assigned the value V wi(p(x,) -

PIHI is an array of dimension 2(n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI and WK are work spaces for the routine.

Error Return. IERR= 1 if n < 1 or n > mr, and IERR= 3 if some wu is negative.

Algorithm. The abscissas x, corresponding to the positive weights are first mapped into
values in the interval [-1, 1]. Then the Forsythe prozedure is used.

Programmer. A. H1. Morris.

i:}



CUBIC SPLINE INTERPOLAIION

Given xz < ." < x,•. A function f(x) is a cubic spline having the nodes(knots)
xj, ... , x, if f is a polynomial of degree < 3 on the interval [zi,xi+1J for i = 1, ... n- 1,
and the first and second derivatives f'(z) and f"(x) exist and are continuous for all x. If
fj denotes the polynomial for the interval [x,, xij+] then f, has the form:

f (x) =- yj + a1 (x - xj) -- bi(x - xj) 2 + ci(z - x,)3 .

Consequently, the function f is obtained by fitting the polynomials fl, ... ,f,-i together
at the points X2, ... ,x,,- 1 . For x < xI f(x) = f,(x), and for x > x, f(x) = f, -l(x). Also
f(x,) yi for i n1, ... , - 1. Hence, if f(zx,) = y,, then f interpolates the points (Xi, y)
fori= 1, .... n.

Assume now that the ordinates yl, -. .,y, are given. Then there exist an infinitude
of splines with nodes xi, .. .,x,, that interpolate the points (xi, yi). In general, two inde-
pendent conditions must be imposed to uniquely specify the interpolating spline f which is
of interest. Frequently, f is restricted on the first interval [x1 , , ] by requiring that f'(xl)
or f"(xi) has a given value, or that f is continuous at x2 . Also, f is restricted on the
last interval [x,,x,nj by requiring that f'(x,) or f"(x,) has a given value, or that f is
continuous at X,- 1. The subroutine CBSPL is available for obtaining the spline when these
restrictions are employed. Alternatively, f may be required to satisfy the conditions

f"(x O) af"(, 2 ) f 13 a! < 1

f'1(X'n) nrf"(X"1 - J) ýi 3 Ka I

when n > 4. Then the subroutine SI'LIFT is available for obtaining ,he splirie.

CALL CBSPL(X, Y, A, B,C, n,,'11, W1 , WU 2 , II"Ri)

X and Y are arrays containing the abscissas xi, .. . , r,, and ordinates Y1, .. • ,y, It i's
L.L-5Uuiid that x I x ....... , and , 3. A, B anld C are arrays of dimension n or larger,

and l1Rl{, an inlteger variable. When (bSPI'I, is called , if no iiJ)Iit errors are (0t(,'(lted tI hen
ll' il is set to (0. Also, thc covtlici'tits a,, b,c,, (i 1,.., 7 i) oif the iJItrrt)IatitIg spJig
J(x) are stored ili ?A, 11, Ci', ;Ili(] 4(71) i"; sit to f'(r,,3

'Thei argunlIntsV I j, 1,2, " 1 , W,2 N'Wo ify Ih, i ,,,,iltiojs t ha, I he shi'lie' '(i) 111ist Satisfy It,.
is ýL;suIIIcd that Il and t2 have t he vah,,l (), l,2 where:

i 0 f) f Is co iiiiois at r2.f I' 's (SIt Iit i ()jIi ;I .1-,, 1

ii I f'(r, ) hiss the Va it ,1,". 1. I f'(x,,) 4Li. th, vwJIi W_,,

S 2 f''(..rl) liýIi(. the ij sun' ,i'2 2 f'(~-,, ) tt.Ls tin va! ii, iv,,

If t' I() t n thl i O ,iwii tn ,i i g i.s Ignlor diI, tin1  if c I ie t ?1, i '. is• 1, r'.d

Error Return. II M'l! I it' - 3 'n1  lIh .. 2 if r, -j , I 1ir sins I

-1.,:•



Remarks.

( ) B(n) and C(n) are used for temporary storage.
(2) If il = i2 = 0 and n - 3, thcn it is aLo assumed 'that f'(X2) + f'(xs)
(3) After A,B and C have been obtained, then SCOMP or SCOMPI may be used to

evaluate the spline at any point x. SEVAL or SEVALI may be used if derivatives are
also desired.

Programming. CBSPL is an adaptation by A. H. Morris of the subroutine CUBSPL,
written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-V nrlag, 1978.

CALL SPLIFT(XY, DY,DDY, nW, IERR,MO, e,,,)0

X and Y are arrays containing the abscissas z 1 , . . ,x, and ordinates Yl, ,y,,. It is
assumed that x, < ... < x, and n > 4. DY and DDY are arrays of dinensinn n or larger,
and IERR an integer variable. When SPLIFT is called, if there are no input errors then
IERR is assigned the value 0, the first derivatives .'( .... f'(x,) are computed and
stored in DY(1), ... ,DY(n), and the second derivatlcc f"(.x,)., ... ,f"(x,) are computed
and stored in DDY(1), ... ,DDY(n).

W is an array of dimension 3n or larger that is used for a storage area. On the first ca'l
to SPLIFT the argument MO must be set to 0. When SPLIFT is initially called, certain
calculations which depend only on the values of a,a, and xj, . .. ,x, are performed and the
results stored in W. On subsequent calls to SPLIFT, if only values of /, P or Yi, • • •, Y,
are modified, then the information in W need not be recomputed. Set MO = 1 and the
information in W will be reused.

Error Return If there is an input error then IERR is set as follows:

IERR - 1 if cl >- 1 or Id.,l - 1.
IERI= 2 if n < 4.
IERR = 3 if the restriction x, < < x, is not satisfied.

Remarks.

) After i)Y and I)I)Y have been obtained, then SCOMIPI or SCOMP2 may be used to
evaluate the spline at any point x. SEVALI or SEVAL2 may be used if derivatives are
also &-sired.

(2) Given the value,; Y'l anld y,. Then there exists a uniquC interpolating cubic spline f
that :latisfies f'(P ') Y m'nd f'(x,,) y',. This spl ine can be obtained by setting
a - -. 1/2 and(I

I2 Y2 - YJ 1
Programmer. IcR,,dall EC. Jmlies (SaLi ia bI .oratI) oroes),



WEIGHTED LEAST SQUARES CUBIC SPLINE FITTING

Let tj < . - tt be a sequence where £ > 2, {(xi, yj) :i =- 1, . .. , m} be a set, of -r > 4
points where t 1 < x, < ... < XT < tt, and wi, ... , win be positive weights. Then the
svbrovtilý SPFIT is available fo: obtaining a cubic spline f(x) with the nodes tj, .. .,tt

rn,
which minimizes '. w (f(x2) . This spline is represented by

j(x) - z. + aj(x - tj) i•,b.(x -- tj)2 + c.(x - t.)'

for :z , K < 4  (< J ,. - 1). if the nodes are selected so that i < m - 2 and
cach in;ervai (t,, tj+._) contains r. data point xi,., then this least squares approximation is
unique.

CALL SPFI1(X, Y,W, rn,T,e, Z, A, B,C, WK,IERR)

X ib an array containing x 1 ... ,xM, Y an array containing Y1, .. ,Ym, W an array
coataining wl, ... , and T an array containing tj, ... ,tt. Z,A,B,C are arrays of
rinnension f -- 1 or larger, and IERR is an integer variable. When SPFIT is called, if no
ifiput errors are detected then IERR is set to 0. Also, the coefficients z., aj, b,, cj of the
least, squares approximating spline f(z) are computed and stored in Z, A, B, C.

WK is an array of dimension 7f + 18 or larger that is a work space for the routine.

Erru; Return. IERR is set to one of the following values when an input error is detected.

IERR 1 if' < 2.
IERRi- 2 if tI < ... < tt is not satisfied.
IERR -• 3 if r > 4 and t1 _< x, < .-. < xz , tt are not satisfied.

If an error is detected, the routine immediately terminates.

RkLmarks,

(1) Occasionally, accuracy can be lost when tt = xm. Therefore, it is recommended that
tt > X'.

(2) After A, 13, C, and Z have been ol)taiined, then SCOMP may be used to evaluate the
spline at any point x. SEVAL may be use(d if derivatives are also desired.

Programming. SPFIT employs the subroutines L3SPlI, BLSLSQ, IISPVB, BCI1FAC, and
13C'JISLV. SI'tlIT was writW,ei by A. II. Morris.

A57



LEAST SQUARES CUBIC SPLINE FITTING WITH
EQUALITY AND INEQUALITY CONSTRAINTS

Let t, < < tt be a sequence where £ > 2, and {((:i,yi) : i - 1, ... ,m} be a set
of points where t, < x, < ... < x <_ t1 . Then the subroutine CSPFIT is available for
obtaining a cubic spline f(x) with the node: ti ... ,t, which minimizes _i(f((x,) -- y)2
subject to a set of constrainid. This spline is rej1 zescnted by

fort, < z t L. u x , < 0.

Notation. For any real x, f ()(x) will denote the value f(z) if j 0- 0, the jth derivative of
f at x if j I or 2, and the right third derivative j"'(x-) if j = 3

CALL fSPFIT(X, Y, rn, T, £,XCON,R,NDER,k, Z, A, R, C,WKIWKJPD)

X is an array containing xi, ... , x,, Y an array containing Yl, -. , ym, and 7' an array
containing tL, ... , it. The argument k is the number of constraints to be satisfied (k -> 0)
and XCON, I?, NDE,? are arrays of dimension max{1, k} or larger.

"if k > 1 then XCON contains the points xf1 , ., - .: at which the constrainWs are placed.
The points may he given in any order and need not be distinct. It is, assumed that t, _
•i _< t<. for i --- 1, .. , i. At -j a.ny of the following types of cwistraints

itype -:7 0 f6) (±j) < ri
itype = 1 f(J(: > ri

"2 f W)(xi) -r-

itype =.- 3 f(1)(rj) f W )(ri)
can be imposed where j (, 1, 2, or 3. For the selected coistraint, it, is assume:i that
R(i) - r4 and NDER(i) = itype + 4j. if an itype 3 constraint is ipniosed Ihen it is iurther
assumed that t, < ri < tt.

WK and IWK are arrays that are work spaces for the routine. On input, IWK(I) is thd
dimension of WK and IWK(2) the dimension of IW[ If 1: 0 thea one may set IWK(l) ....
NB, and VWAK(2) -7 2 where NB --- 7(e-+- 7). Otherwise, let v .... F 3, rn, be the number oý
equality (i.e.,. :ype 2 and 3) constraints, and m, the numnber ,)f irequality (itype 0 and 1)
constrairits. Tlhe oe•e must set

I WK( 1) >_ ND -1 1F k)v -f 2(m, I- v) V- (rv;i - v) I- (rrt, 4-~. (v 1- W)
SW K (2) >".: rmi-[a

Remarks.

(I) If k "..- I iien -oe can let th,." rob•,rie :+ te•ui 1 ( the i:inomit (,•.' ,, oYJ thatL is •i(d((]
for VWE� ahrd W. Set IV€K(y ) N.! an(.[ INVI!z) 2, in 11 ich ch errrs wilJ l.:cr
(see th- IND .. 7 crro valies i.e l,,)

(2) Ntn).,(i) Hay it', . ,gatlve va,,(. -. .,k). It NI)<(( 'I ý , 01c
5th a

.17;



Z, A, 13, C are arrays of dimension f. -. I or larger. When CStPFJ'T is cal' d, if the cubic
spline f(x) is obtained then the coefficients Zj, aCj, b.ý, cj of the spline are store I in Z, A, 13, 0.

iN!) is a variable that reports the status of the results. When CSPFIT terminates,
IND is assigned one of the following values:

IND 0 The spline was obtained.
IND = 1 The equality (i.e., itype 2 and 3) con.straints are contradictory. The

spline was olbtained where the equality constraints were satisfied
in a least squares sense.

IND = 2 The spline could not be obtained. The constraints are contradic-
tory.

IND= -1 < 2.
IND --2 mr< 0 r k <0.
IND --3 ti > t+ I for some i.
IND = --4 The assumption tl < xi < ... < x.., < ti. is not satisfied.
IND -5 The ith constraint is incorrect for the value of i stored in IWK(2).
IND -6 Insufficient storage w.as specified for the WK array. IWK(1) has

been reset to the amount of storage needed by WK.
IND -- 7 Insufficient storage was specified for the IWK array. IWK(2) has

been reset to the amount of storage needed by IWK.

IWK(1) and IWK(2) are not modified when IND -j -5, -6,--7.

Example. if one wants f to be convex on an interval [tj,tj+±j, then this is equivalent to
requiring that .f"(x) > 0 on the interval. Thus, since f is a cubic polynomia! on the interval,
it !'uffices to require that f"(tj) Ž 0 and f"(t,+4) >_ 0. For these two constraints, 9 is the
ap3ropriate value for the NDER array.

Programming. CSPFIT employs the subroutinles BFIT and 13SPP, and the functions and
subroutines used by BFIT. CSPFIT was written by A. H. Morris.

4W0



CUBIC SPLINE EVALUATION

Given x, < ... < x,. .A function f((r) is a uhii spline hiaving the nodes (knots)

.- 1, . .. ,x,, if f is a polynomial of degree < 3 on the interval [xz, xi.I Ii for i - , IL --- I,
and the first and second derivatives f'(x) and f '(x) exist and are continuous for all x. If
Af denotes the polynomial for the interval [xi, Xj--I j then fi has the form:

AW Yi - I- a i (x -x j) -f i b(x --- xj)2 i cj(x--j'

Consequently, the function f is obtained by fitting the polynomials f.l, together
at the pointX 2. -, x,,._1. For x < x, f(x) :. fi(x), and for x > x, f (x) M -
Also f(xi) :=: yj foe = 1, .. ,n - 1. Uence, if f(x,,) y,, then f interpolates the points

(Ti, %A) for i =1,.. n...

A cubic spline f given by the polynomials f,, is uniquely defined by an.y of
tihe followinghree .... sets of data:

(1) the pcints (zx, y,) aad coefficients a , bi, c, for i I,... ,n - I
(2) the points (A,, yi) and first derivatives f'(xj) for i =- 1, ... , n
(3) the points (xi, yi) and second derivatives f"(xi) for i 1, ... , n

The subroutines SCOMP, SCOMPI, SCOMP2 are available for computing the spline af.
any point x. S(,COMI- is used if data set ([) is given, SCOMPi is used if' data set (2) is
given, and SCOMP2 is used if data set (3) is given.

CALL SCOMP(X, Y, A, 13, C, IV, XI,Y1, rn, IEIRR)

Let N =- n -- 1. Then N is the number of polynomials ti that form the spline, X and
Y are arrays containing th abscissas X 1 , .. . , £,; ard ordinates yl, .., yN, and A, B, C
are -arrays containing the coefficients aj, bi, ci (i = 1, ... , N). It is assumed that N > I and
that x, < .* * x<v.

Let tl, ..... be the points at which the spline f is to be evaluated. XI is an array
coriLaining tI, -. , xr, YI an array of dimension rn or larger, and IERR a variable. When
SCOMP is called, if rn < 1 then IERR is ;et to I and the routine terminat•es. Otherwise, if
rn >- 1 then IEI-(R is set to 0 and f(t..) iL. computed and sttored in YI(J) for j = 1, .. , i.

Note. SCOMP does riot require f to be a spline. It. is only reqiired that fa(x) be a cub)ic
poly nornial yi -) b1(x - xi)• . c1(x -- ,)a and that

yx+ -"x) for x that

fjXz z f,(x) fov rý <' x r.r~ (1 K i < N)

f (x) fvA (:r) fo r XN

in thi, ca~se S(COMP cornpittes the value f~y. I ) fo r j J , .,n.

4 (; I



Programming. Adaptation by A. U. Morris of code writt(!ri by Rondall E. Jones (Sandia
Laboratories).

CALL SCOMPI(X, Y, )Y, n, XI,Y, ra, II.,RR)

X, Y, DY are arrays containing the abscissi.s xl,. . ., x,, ordinates Yi,..., Y,, and first
derivatives f'(xi),.,., f'(xr,) respect; vely. It is assumed that n > 2 and x, < ... < x,,.

Let ;t, ...... tm be the points at which the spline f is to be evaluated. X! is an array
containing :k, ... ,tm, YI an array of dimension m or larger, and 1ERR a variable. When
SCOMPI is called, if rr < 1 then IERR is set to I and the routine terminates. Otherwise,
if m > 1 then IERR is set to 0 and f (%t) is computed and stored in YI(j) for j = 1, . .. , m.

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SCOMP2(X, Y, DDY, n, XI,YI, m, JERR)

X, Y, DDY are arrays containing the abscissas x1 ,...,x,, ordinates yl,...,y, and
second derivatives f"(x,),...,f"(x,) respectively. It is assumed that xj < < x, for
tn > 2.

Let ti, ,ý. be the points at which the spline f is to be evaluated. XI is an array
containing t., ., ,,, YI an array of dimension m or larger, and IERR a variable. When
SCOMP2 is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise,
if m > 1 then IERR is set to 0 and f(±,) is computed and stored in YI(j) for j = 1, ... ,r.

Programmer. Rondall E. Jones (Sandia Laboratories).

4G;2



CUBIC SPLINE EVALUATION AND DIFFERENTIATION

Given x, < ... < x,,. A function f(x) is a rubic spline having the nodes (knots)
x, ... ,x,, if f is a polynomial of degree < 3 on the interval [Xi,,X+ 1i for i := 1, ,n - 1,
and the first and second derivatives f'(x) and f"(x) exist and are continuous for all x. If f,
denotes the polynomial for the interval [x', xi+i] then fi has the form:

f,(x) =- y, + a, (x - x,) + b,(X - x,) 2 + C (X - X,)3

Consequently, the function f is obtained by fitting the polynomials fl, ... , f-i together
at the points T 2 , .. .,x,- 1 . For x < x1 f(x) = f 1 (x), and for x > x, f(x) f•(x). Also
f(x,) yj for i 7 1, ... , n - 1. Hence, if f(x,) = Yn then f interpolates the points (x,, y,)
"•for i 1, ... , n.

A cubic spline f given by the polynomials fl, . is uniquely defined by any of
the following three sets of data:

(1) the points (xi, y,) and coefficients aj, bi , ci for i = 1,... ,n - 1
(2) the points (xi, y,) and first derivatives f'(xi) for i = 1,..., n
(3) the points (xi, y) and second derivatives f"(xi) for i= 1,...,n

The subroutines SEVAL, SEVAL1, SEVAL2 are available for computing the spline and its
first and second derivatives at any point X. SEVAL is used if data set (1) is given, SEVALl
is used if data set (2) is given, and SEVAL2 is used if data set (3) is given.

CALL SEVAL(X, Y, A, B, C, N, XI,YI,DYI,DDYI, m, IERR)

Let N = n - 1. Then N is the number of polynomials fi that form the spline, X and
Y are arrays containing the abscissas xi, •.. .,XN and ordinates yi, • •.,YN, and A, B,C are
arrays containing the coefficients ai,b,,cj(i = 1, ... ,N). It is assumed that N > l and that
X1 < ... < XN.

Let x1,. • m be the points at which the spline f and its first two derivatives are to
be evaluated. XT is an array containing xj, ... •m, YI, DYL, DDYI are arrays of dimension
m or larger, and IERR is a variable. When SEVA.L is called, if m < 1 then IERR is set to
I and the routine terminates. Otherwise, if rn > 1 then IERR is set to 0 and the values
f(j), f'(zj), f "(.j) are computed and stored in YI(j), DYI(j), DDYI(j) for j = 1, ... , rn.

Note. SEVAL does not require f to be a spline. It is only required that f'(zr) be a cubic
polynomial y. -1 a,(x - xS) + bl(X _ x,) 2 + c,(x -. x,) 3 and that

f(X) =f I(X) for X < X I

f(x) =f,(z) for x, < x < zx+ (+ I I < N)

f(X) 7 )-fN(X) for X > XN.

in this case, S EVAL cotiputes the va!ues f(x, +), f'(x + ), f"(xz,+) for j , ..... ,.,.

463



Programming. Adaptation by A. 1I. Morris of code writt(-n by Rondall E. Jones (Sdn-
dia Laboratories).

CALL SEVAL1(X, Y, DY, n, XI,YI,DYI,DDYI, vra, IERR)

X, Y, DY are arrays containing the abscissas zx, ... , x,, ordinates Y1, ... , Y,,, and first
derivatives f'(xj), ... ,f'(x,) respectively. It is assumed that n > 2 and x. < ... < x,,.

Let tj, ... ,i,, be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing xi, .... x,,±, YI, DYI, DDYI are arrays of dimension
m or larger,and IERR is a variable. When SEVAL1 is called, if rn < 1 then IERR is set
to 1 and the routine terminates. Otherwise, if rn > I then IERR is set to 0 and the values
f (j), "(ij), f' "(.j) are computed and stored in YI(j), DYI(j), DDYI(j) for j 1, , .. ,rm.

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SEVAL2(X, Y, DDY, n, XI,YI,DYI,DDYI, rn, IERR)

X, Y, DDY are arrays containing the abscissas xl,.. .,x,,, ordinates Yl,. .,Yn, and
second derivatives f1"(xi),., , f"(x,n) respectively. It is assumed that n > 2 and x1 <... <X,1 .

Let -ti, ... ,)ra be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing ;i, ... , ,,m,YI, DYI, DDYI are arrays of dimension
m or larger,and IERR is a variable. When SEVAL2 is called, if m < 1 then IERR is set
to 1 and the routine terminates. Otherwise, if m > 1 then IERR is set to 0 and the values
f (i), f'(•i), f "(Xj) are computed and stored in YI(j), DYI(j), DDYI(j) for j = 1, ... ,m.

Programmer. Rondall E. Jones (Sandia Laboratories).

464



INTEGRALS OF CUBIC SPLINES

Given x, < ... <2 x,,. A function f (x) is a cubic spline having the nodes (knots)
j, ,.x,, if f is a polynomial of degree <2 3 on the interval [xi, zi+i] for i = 1, .-. ,n --- 1,

and the first Anid second derivatives f'(x) and f "(x) exist and are continuous for all x. If fi
denotes the polynomnial for the interval [xi, x + I I then fA has the form:

fi (x) --y, + aj (x - xj) -f - bi (x - x-)' cj ( X._ X) 3

Consequently, the function f is obtained by fitting the polynomials fl, *.,Aitogether

at the points X2 , . ., x. -x 1 . For x < x 1 f (x) =f I(T,), and for x > x,, f (x) f,- I(x). Also
f (x1 ) y, for i =1, . ,n --- 1. Hence, if f (x,,) =~ yn then f interpolates the points (Xi, YO)
for i 1, . n.

A cubic spline f given by the polynomials fi, ,fn -- I is uniquely defined by any of
the following three sets of data:

(1) the points (xi, yj) and coefficients ai, bi, c for: ,. . ,n 1
(2) the points (xi, y*j) and first derivatives f'(xj) for i1, . .. , n
(3) the points (zi, yj) and second derivatives f"(x1 ) for i 1, . .. , ,-

For any real oe and 3 the functions CSINT, CSINT1, CSINT2 are available for computing
the integral jff f (t) dt. CSINT is used if data set (1) is given, CSINT1 is used if data Get
(2) is given, and CSINT2 is used if data set (3) is given.

CSINT(X, Y, A, B, C,N,a, fl)

Let N =n - 1. Then N is the number of polynomials fj that form the spline, X and
Y are arrays containing the abscissas x 1 , .. . , XN and ordinates yI, ..... ,Y, and A, B, C are
arrays containing the coefficients aj, bi, ci(i -: 1, ... , N). It is assumed that N > 1 and that

..- 1. < <Xl. Then CSINT has the value f # f (t) dt.

Programming. CSINT cadis the function INTRVL. CSINT was written by A. H. Morris.

CSINT1(X, Y,DY, n, a, #

X, Y, DY. are arrays containing the abscissas xj, .. ,n, ordinates yi, .. ., y,, and first
derivatives f'(XI). -f'(Xn) respectively. It is assumed that n > 2 and x, ... <2 X,1
Then CSINT1(X, Y,DY, n, c, 13) Jfff(t) dt.

Programming. CSINT1 c-alls the function INTRVL. CSINTJ was written by A. H. Morris.

CSINT2(X, Y,DDY, n, a~, 13)

X, Y, DDY are arrays containing the abscissas xl,... ,x,, ordinates yl,. . , y, and
second derivatives f u(xi),,. . , f "(x~,) respectively. It is assumed that n > 2 and xj.. ,

Then C"SJNT2(X, Y,lDDY, 71, U, ) f f(t) (it.

Programming. CISINT2' calls the funiction INTRVL. CSINT2 was written by A. 11. Moi ri4.

'I6(5



PERIODIC CUBIC SPLINE INTERPOLATION

Given ,< .. x,., A finction f(x) is a cubic spline having the nodes (knots)
_x, . .,x, if/ is a polynomial of degree < 3 on the interval [xi, ,o ] for i 1, ,n - 1,
and the first and second derivatives "'(x) and f"(x) exist and are continuous for all x. If
-A denotes the polynomial for the intorval [xi, xi+ij then fA has the form:

f-x) = y + a (x - xj) 4 b1(X - ' c,(X -

Consequently, the function f is obtained by fitting the polynomials fl, .. , f,-- together
at the points X2, .. ,-I

Normally, a cubic splinp f is defined for x V [x1 , x,,] by letting f(x) .f (x) for x < x,
and f((x) --- f,,_.-(x) for x > x,,. However, if

f(Xj) =fkx)

f"(xi-t-) Z ('f "(Tl+. -- f " (X",-.-)

are satisfied. then f may be defined for x V [x1 , x,,] by requiring th•,t f(x + p) f (z) for
all x where p = z, - xi. The function f is called a periodic spline when this is done.

Now if the values Y1, .. ,y-.1 are given, then there exists a unique jeriodic cubic
spline f having the nodes x1 ,...,x,, and satisfying f(xj) = y, for i = 1, .. n - 1. The
following subroutine is available for obtaining the coeffic2rits ai, b,, cj of this spline.

CALL PDSPL(X, Y, A, B, C, n,WK,1IRR)

X is an array containing x 1 , . .,,;:, and Y an array containing yi, ... ,,y,-. It is
assumed that x, < ... < x, aijd n > 3. A, B, C are arrays of dimciisiom n-- 1 or larger,
and IERR a variable. When PDSPL is cafled, if ro input errors are detected then IERJI is
rset to 0 and the coefficients ai,bi, c, of the interpolating periodic cubic spline are stored in
A,B,C.

WK is an array of dienwsion n - 2 or larger that is t work space for the routine.

Error Return. IERR 1 if n < 3 and IICR 7-: 2 if xj --, 1 for some :.

Remark. After A, B, and C have been obtaincd, then t)SCMIP may be used to evudlnate the
periodic spline at any point x. I)SEVL may be nsed if derivatives are also desired.

Programmer. A. II. Morris.

4(67



LEAST SQUARES PERIODIC CUBIC SPLINE FITTING

Let t, < ". < tl be a sequence where f > 2 and { (xi,,y) : i = 1, ... ,m} a set of points
where tj < x, < .'. < x,,, < tt. Then the following subroutine is available for obtaining a
periodic cubic spline f(x) with the nodes t1 , ... ,ti which minimizes (f(xz) - y,) 2 . This
spline is represented by

f (x) z, + aj(x - t.) + bj(x - t,.)2 + C1 (X - t,)

-=ifor tj< :5 < t.+; (U = 1,.., e- 1).

CALL PDVIY(X, Y, m, T, f, Z, A, B, C,WK,IWK,IERR)

X is an array containing xl, I.. ,x1 , 1Y an array containing Yi, ... ,ym, and T an array
containing ti, . .. , t. Z, A, B, C are arrays of dimension f - 1 or larger. When PDFIT is
called, if tne desired periodic cubic spline is obtained then the coefficients zj, aj, bj, cj of
the spline are stored in Z, A, B, C.

WK and IWK are arrays that are work spaces for the routine. On input IWK(1) is
the dimension of WK and IWK(2) the dimension of IWK. It is required that IWK(1) Ž
(e -J- 6)(••- 15) + 10 and IWK(2) > 2f-[+ 6.

IERR is a variable that reports the status of the results. When PDFIT terminates,
IERR has one of the following values:

IERR = 0 The desired spline was ob6ained.
IERR = 1 The spline could not be obtained.
IERR = 2 Either rn < 0 or t < 2.
IERRý 3 t. > tj+ 1 for somej.
IERR = 4 The assumption ti < x, < < xm < tt is not satisfied.
"IERR i5 Insufficient storage was specified for the WK array. IWK(i) has

been reset to the amount of storage needed by WK.
IERR - 6 Insufficient svorage was specified for the IWK array. 'WK(2) has

been reset to the amount of storage needed by IWK.

If an error is d&tected, then IERP > 2 and the rout;ne terminates.

Remark. After A, 13,C, and Z have been obtained, then PSCMP may be used to evaluate
the pe2riodic spliie at any point x. PSEVL may be used if derivatives are also desired.

Programming. PDFIT employs the subroutines BSPP, BFIT, BFITO, NINDACC, !3NDSL,
IiSPVB, BSPVD, LSEI, and the subroutines and functions used by LSEI. PI)FIT was
written by A. I. M!u)rris.

4G9



PERIODIC CUBIC SPLINE EVALUATION AND DIFFERENTIATION

Let x, < "'" < x,, be a sequence where n > 2, and f a periodic cubic spline where

f(x) y, + ai(x - xi) +- bx x,) 2 -I+ ci(x - x,)3

for xi <: x < x+ I (i = 1, .. 1,n - 1). Then the subroutine PSCMP is available for evalu-
ating the spline for all points x, and the subroutine PSEVL is available for computing its
derivatives.

CALL PSCMP(X,Y, A, B,C, n,XI,YI,m, IERR)

X is an array containing xi, ... ,x,n, Y an array containing yl, ... ,Yn-i, and A, B,C
arrays containing the coefficients a,,bj,c, (t = 1, ... ,n-1). It is assumed that x, < ... < x,,
and n > 3.

Let tj, ... ,5,. be the points at which the periodic spline is to be evaluated. XI is an
array containing ,.. ., a,, YI an array of dimension m or larger, and IERR a variable.
When PSCMP is called, if no input errors are detected then IERR is set to 0 and f(2y) is
computed and stored in YI(j) for j = 1, . . .,m.

Error Return. IERR = 1 if n < 3 or rn < 0.

Programmer. A. H. Morris.

CALL PSEVL(X, Y, A, B, C, n,XI,YI,DYI,DDYI,m, IERR)

X is an array containing xi, ... , x,,, Y an array containing yi, ... , y,--i, and A, B,C
arrays containing the coefficients aj, bi, ci (i = 1, ... ,n-- 1). It is assumed that x, < < xr,
and n > 3.

Let ±•, .. , be the points at which the periodic spline and its first two derivatives
are to be evaluated. XI is an array contaiining x .. m, YI, DYI, DDYI are arrays of
dimension m or lar-ger, and IERII a variable. When 1PSEVL is called, if no input errors are
detected then IERR is set to 0 and kf(xj) j'(x), f"(i3) are computed and stored in Yl(j),

DYI(j), DDYI(j) for j = 1, ... , r,.

Error Return. !ERR =.. 1 if n < 3 or rr < 0.

Programmer. A. II Morris.

,171



N-DIMENSIONAL CUBIC SPLINE CLOSED CURVE FITTING

Given m > 2 points xi = (x2, ... ,xin) where n > 2. One procedure for fitting a
closed curve to the points is to first let sl = 0,si = si-1 + x,-xi_ 11 for i = 2, ,.. ,m, and
sm+i = sM + i[x1 - x,11, 1 next Jet t, = si/s,+, for i = 1, .. ,m+ 1, and then to find for
each j < n the periodic cubic spline -. (t) having the knots ti, .. . ,ttm+l where y.(ti) = x- j
for i < m. The mapping 1)(t) = (-y(t), ... y,%(t)) then defines on the interval [0, 1] a closed
curve which traverses the points (ti, xl), ... , (t,., x.), (1, xi) and satisfies y'(0) = -j'(1) and

"(0) =- -y"(1). For t < 0 and t > 1, -y(t) is defined by periodicity (having period 1). The
subroutine CSLOOP is available for obtaining the derivatives Y'.(tj) which characterize this
curve, the subroutine LOPCMP is available for computing the curve, and the subroutine
LOPDF is available for diff rentiating the curve.

CALL CSLOOI'(m, n, X, kx, T, DX, kdx, WK,IERR)

X is an m x n matrix whose ith row contains the point xi = (XiI, . .. , xi), where Yn > 2
and n > 2. It is assumed that the points xj, ... ,I, are indexed in the order that they are
to be traversed by the curve -/(t). It is also assumed that x, 4 x+.1 for i 1,...,i -

and that z,, rn xi.

DX is a 2--dimensional ai ray containing at least in rows and n columns. The arguments
kx and kdx have the fcollowiý,g values:

kx = the numiber of rows in the dimension statement for X in the calling program
kdx = the nvunbf, of r )ws in the dimension statemenL for DX in the calling program

It is required that kx • m md kdx > m.

IERR is a va.iab) and 7' an array of dimension rn or larger. When CSI-)LOP is called, if
no input errors aie du.ected then IERR is assigned the valu( 0 and tI, ... : , are corrputedi
and stored in T. Also, the derivatives "T•.(t,) are computed IIId stored in DX, where the ith
row of DX contains 7'(t,) ('-h (ti), ... , ", (t)).

WK is ar :tray of dimension 4(m 1) or larger thlat is a work space for the rouitoe.

Error Return. IERR reports the following input errors:

IERR -1 if ,n < 2 or n < 2
IERit 2 if x, x, j 1 for sonic i.
I1MR 3 if x, x,,.

Remark. Afier 7' and DIX are obtainedL, I)CM I' may be used th colmlute the (I crve ai,,
LOI I)F inat 6e u:sed to differvntiatte tLe curve.

Programming. (H,([)Qj)} calls thdie suhro1u1i ('•SLI ()l A fd fmi tit SNINI2 ('SN1()( )''
awd C;IX)I•1 were writ ten by A. 1l Niurris

I fr ally 7

.73



CALL LOPCMP(m,n, ',X,kx, DX, kd2,f, TI, Z, kz)

T is an array containing the knots ti, ... , tn, X an mX n matrix whose 0th row contains
the point xz, and DX an m x n matrix whose ith row contains the derivative -y'(tj). The
arguments kx and kdx have the following values:

kx = the number of rows in the dimension statement for X in the calling program
kdx = the number of rows in the dimension statement for DX in the calling program

It is assumed that n > 2, n > 2, kx >r m, and kdx > m.

Let ii, ... ,t be the points at which the curve 7 is to be ovaluated. TI is an array
containing ti, ... .It, and Z a 2-dimensional array containing at least E rows and n columns.
The argument kz is the row dimension for Z in the calling programn. It is assumed that
i > I and kz > f. When LOPCMP is called, ( 1,) (i)... ,Yn(ii)) is computed and
stored in the i"' row of Z for i 1, ..

Programmer. A. H. Morris.

CALL LOPDF(m, n, T, X, kx, DX, kdr, to, Z, DZ,DDZ)

T is an array containing the knots t1 , ... ),t,, X an m X n matrix whose i10 row
contains the point xj, DX an m x n martrix whose Ith row contains the derivative j'"(ti).
The arguments kx and kdx have the following values:

kx =: ý.he number of rows in the dimension statement for X in the callir•g program
kdx = the number of rows in the dimension statement for DX in the calling program

It is assumed that m > 2, n > 2, kx ", rn, and kdx > m.

Z, DZ, and DI)Z are arrays of dimension n. For any real to, -),(to) (Y1 (t•t), ... , Y,(to)),
y'(to) ..(.y.(to), ,.., n:(to)), and -1"(to) (-")'(tj), , -,,to)) are computed and stored
in Z, IZ, and I)I)Z respectively.

Programmer. A. 11. Morris.

.... _=_



SPLINE UNDER TENSION INTERPOLATION

Given real o- and x, '< ... < x,•o A function f(x) is a spline having the tenaion factor
a and the nodes (knots) xi, ... , x, if f(x) and its first two derivatives are continuous on
[xi, xn], and f"(x) - &2 f(x) aix + b1 on the interval [Ti, xT+i] for i = 1, ... , n - 1.
Here & 1 (n -- 1)/(x, -- xj) and ah, b, are constants. For xz < x < xj+1 f (x) can be
represented by

f(x) =- A sinh &(x -- x,) + 13 sinh &(x,+ -x) -- (aix + bj)i&-

when a t 0, and by a cibic polynomial when o = 0.

A-sume now that n ordinates yi, ... , Yn are giver. Then there exist, an infinitude of
splines f(x) having tension oy for which f(xj) = yj (i = l,...,n). Ifowever, if values y1
and y' are given then oily one of these splines will satisfy f'(x,) = y' and f'(x,,) = y'.
For convenience, denote this spline by f,. If a = 0 then it is clear that f, is the standard
cubic spline. Also it can be verified that when o --+ oo, f, converges uniformly on [xi, X,]
to the piecewise linear function f(x) where t(x) = y, + m1 (x - xj) for x1 < x < xj,+I
(i = 1, ... , n -- 1). Here ni =z (yi+I -- y1)/(xji+ -- xi). The following subroutine is available
for obtaining the spline f,.

CALL CURVI(n, X, Y, SLPI,SLPN,IND,DDY,TEMP, a, IERR)

X and Y are arrays containing the abscissas xi, . .,x, and ordinates yi, ... , Y,. It is
assumed that n > 2 and x, < ... < x,.

SLP1 and SLPN are assigned the values y' and y'. The user may ornt values for
either or both of these arguments. IND specific-' the information that is provided.

IND = 0 Values are supplied for SLPI and SLPN.
IND = I A val~ie is supplied for SLPi but not for SLPN.
IND xx 2 A value is supplied for SLPN but not for SLUI.
IND. 3 Values are not supplied for SLPI and SLPN.

If a vaae is not supplied by the user, then the routine provides a value.

L)DY is an array of dimension n or larger, and IE11 is an integer variable. When
CURVI Is called, if no input crrors are detected then liFlll is ass-gned the value 0 and the
.siecond derivative,,, I( 1), f,,(i ,,) ate computen and stored in DDY.

E'I:MP is an array of dimsension n or large; thaa is used for it work space.

Error Return. LtI{ It reports the, following inpu)t ,rrorM:

liJ' ?R 1 if n 2.
l1iURP 2 i'f •. ..... i,* iK i,,t ,t 'i" ,'

Vhwit iithg hr of toivý;, cS r is lvc ted thed' Owuhs lniiiiir-atckv tf~riioat

4 7 5



"Remarks.
(1) After DDY is obtained then CURV2 may be used to evaluate the spline at any point '.
(2) X, Y, n, SLP1, SLIPN, IND, a are not modified by CURVI.

Programming. CURVI employs the subroutines CEEZ, TERMS, and SNHCSH. CURVI,
CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

Reference. Cline, A. K.,"Scalar and Planar Valued Curve Fitting using Splines under
Tension," Comm. ACM 17 (1974), pp. 218-220.

47 0



SPLINE UNDER1 TENSION EVALUATION

Given a and x1 < ... < -. A function f((x) is a espline having the ten4ion factor
a and the nodes (knots) x1 , ,e, if J(x) and iti first two derivatives are continuous on
[x1,x,'J, and f"(x)- 672f(x) = aix + b, on the interval [xi,xj+&j for i -- 1,- . ,n- 1. Here

- o-J(n - 1)/(x, - a)d aj, bi are constants. If f(x) fi(x) for x:•x<.Ki+i then fi(x)
can be represented by

Af(x) : Aj sinh U(x-- x) + I3 sinh 6(xj+1 - x) -((,x + bj)/z- 2

when -:$O, and by a cubic polynomial when a = 0. For -c < xi we let f(x) fi (x), and for
x --' x, we let f(x) = fA--I(x).

Assume now that f(xi) = yi for i = 1, ... , n. Then for a fixed a, f(x) is uniquely
defined by the points (xi,yi) and the second derivatives f"(xj)(i = 1, . .. ,n). When this
data is availab~e, the following function may be used to compute the spline at any point t.

CURV2(t, n, X, Y, DDY, a)

X and Y are arrays containing the abscissas xj, ... ,x,• and crdinates yi, ... ,y•, and
DDY is an array containing the second derivatives f"(x1), ... ,f"(x,). It is assumed that
nŽ>2 and x, < ... < a,,. CURV2(t,n, X,Y DDY, a) = f(t) for any real t.

Remark. After DDY has been obtained, CURV2 may be repeatedly called to evaluate
the curve at different points so long as the tension factor a remains fixed. However, if a is
modified then the derivative information in DDY will have to be recomputed before CURV2
can be used with the new tension factor.

Programming. CURV2 employs the function INTRVL and subroutine SNfICSII. CURV2
was written 1y A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

Reference. Cline, A. K., "Scalar and Planar Valued Curve Fitting asing Splines under
Tension," Comm. ACM 17 (1974), pp. 218-220.

477



"DIFFERENTIATION AND INTEGRATION OF SfLINES UNDER TENSiON

Let f(x) be a spline having the tensien factor u wnd the ic 3,es x, ... ,. Assurne that
f (xe) = yf for i == 1, ... in. If tLe serond derivatives f"Ix;),... ."(x,) are known tlen
the following functions may be us&ed for differezitiatiing and izitegtiting the spline.

CURVD(t, r, X', Y, DDY, o)

X and Y are arrays containing the abscissas x*k, ... , x, wnd ordinates y•, ... , y,, and
DDY is an array containirng the second derivatives f"(.,:), .. , "(x,•). It is assuned that,
n > 2 and x, < ... < x,. For any real t, the derivative f'(t) is ccmnputed and assigned to
be the value of CURVD(t, n, X, Y, DDY, a).

Programming. CURVI) employs the function INTRVL and subroutine SNHCSI1. CURVD
was written by A. K. Cline and R.. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

CURVI(a, b, n, X, Y, DDY, o,)

X and Y are arrays containing the abscissas xj, ... ,x• and ordinates yl, yY and
DDY is an array containing the second derivatives f"(xl), ... , f"(z,). It is a=ssumed tha•
n Ž2 and zx < < z,. CURVI(ab,,n,X,Y, DDY, u) f 6f(t)dt for any real a and b.

Note. It is not required that a < b.

Programming. CURVI employs the function INTRVL and subroutino. SNHICSH. CURVI
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). ýNTRVL was
written by A. H. Morris,

4 7¶9



TWO DIMENSIONAL SPLINE UNDER TENSION CURVE FITTING

Giv,,m a sequenck of points (x1 , yt)• .. , (xn,,y y)..ne procedure for fitting a curve to
the points is to let s, 0 and si := sj_ 1 + \/(z...xi--,_) + (yi - yi-.,) 2 for i = 2,...,
and then to find two splines x(s) and y(s) with tension u that satisfy x(s1 ) xw A and
j(sj-) --- yi2 for i :1, J.., n. If 01 ad #, are the desired angles for the curve a '-- (W(s), y(s))

at the points (x1 ,y1) &nd (z,,y,"), then the splines x(s) and y(s) can be selected so that
x'(s,) = cos 90, and y'(s,) -.: sin 0, for i = 1,n. The curve s , (x(8), y(s)) then passes
through the points (xi, yi) and has the required slopes at the end points. The subroutine
KU RVI is available for obtaining the secomc derivatives X"(si), y"(,3j)(i =- 1, . . , n) which
characterize this curve, and the subroutine KURV2 is avaiiable or conmputing the curve.

CALL KURVI(n,X, Y,SLPI,SLPN,IND.,DDX,DDY,TE.MP, S,o%,IERR')

X and Y are arrays containing the abscissas x1 , . .. x,, and ordinEtes yi, . - , y. It is
assumed thati n > 2 and that the poinLt (1ý y;) are indexed in the order that they are to be
traveised by t.he curve. It is also assumed that (xi, yi) 74 (zx+x, yjy) for i = 1, n-- 1.

SLPI and SLPN are amigned the values 01 and 0,,. These angles are measured counter-
clockwise (in r-adians) frcm the positive x-axis. The user :may omit values for SLP! and/or
SLPN. IND specifies the information that is provicded.

IND = 0 Values are supplied for SLPI ard SLPN.
IND I- 1 A value is supplied for SLP1 but not for SLPN.
IND 2 A value is supplied for SLPN but not for SLP1.
INDI 2 Values are not supplied for SLPI ind SLPN.

If a value is not supplied by the user, then the routine provides a value.

_ is the tension factor to be employed. If Iji is small, say 1a, < 10-3, then x(s) and
1,(s) approximate cubic splines. Otherise, if Jul is large, say lal > 100, then the resulting
curve approximates the polygonal line from (xi, yt) to (X,,, y,").

IE-.R is an integer variable and S, iA)X, DDY awe arrays of dimension n or larger.
M WiA l(URV1 is called, if no input errors are detecfted then IERR is assigned the value

0 ý,, the values s,, ... , ,• are computed and .t.ored in S. Also, the second derivatives
,),..,r"(s,,) and y"(s,), ... , y"(sj,) are computed and stored in DDX and DDY.

TEMP is an array of dimension n or !arger that is used for a work space.

Error Return. IERR reports the following input errors:

IERR 1 if n < 2.
IERR . 2 if (xi, y,) . (xr+ 1, yj- i) for some 2.

Wheci either of tihew err-)rs is detected, the routine immediately terminiates.

Remrnk. Aftet S, DDX, I)I)Y are obtained, KUtRV2 inay Ie used to corniute the curve.

Programinming. K UltV1 employs the ,ubrhotiineZ, C TERMS, awd S NIICSMi. KU II1

481



CEEZ, and TERMS were written by A. K. Cline and 1. J. Renka (University of Texas at
Austin).

CALL KURV2(t, XT,YT, n, .X, Y, DDX,DDY, S, a)

X and Y are arrays containing the abscissas x1, .. . , xn and ordinates Yi, y,Y,, S
is an array containing s1, ... ,s,, and DDX and DDY are arrays containing the second
derivatives x"(s 1 ), ... ,x"(s,) and y"(si), ... , ,).

Now consider the change of variables t = s's,,, and let t " (5t(t), q(t)) denote the curve
in terms of the new parameter t. XT and YT are real variables. For any 0 < t < 1, KURV2
computes the point (.(t), q(t)) on the curve and assigns XT the value i(t) and YT the value
q(t).

Remark. After DDX and DDY have been obtained, KURV2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor a remains fixed. However,
if a is modiied then the derivative information in DDX and DDY will have to be recomputed
before KURV2 can be used with the new tension factor.

Prograrnmiag. KURV2 employs the function INTRVL and subroutine SNHCSH. KURV2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL wa&

written by A. H. Morris.

482



TWO DIMENSIONAL SPLINE UNDER TENSION
CLOSED CURVE FITTING

Given n > 2 points (, y), ... , (n y). One procedure for fitting a closed curve to the
points is to let s, =- f(z X ,1 -. )+ (YI-Y and si =: si-I + V/-( -i-,_)a-t + (yi - yi_•)2 for
i = 2, ... , n, and •hien to find periodic splines x(s) and y(s) with tension a that pass through
the points (s1, , ) (s,i,,), (sI 5 s,(,x,) and (st,y,), . . . , (sn, yn), (a, + s,,, yi). The
mapping s --+ (x(s), y(s)) then defines a closed curve that passes through the points (xi, y,).
The subroutine KURVP1 is available for obtaining the second derivatives x"(sj), y"(si)(i =
1, ... ,n) whiicl chararý,crize this curve, and the subroutine KURVP2 is available for com-
puting the curve.

CALL KURVP1(r, A, Y, DDX DDY,TEMP, S,e7, IERR)

.X and Y are arrays containing the aX1ciss:u x1, . .. , -,, and ordinates Yl, .. ,y,,. It is
assumed that n > 2 and that the points (xi, yi) are indexed in the order that they are to be
traversed by the curvw. It is also assumed that (T,, y,) $. (xj+ 1 , y+ 1) for i = 1, . ,n -- 1.

oa is the tension factor to be employed. If oli is small, say lji < 10-3, t(hen x(s) ai,1
y(s) approximate periodic cubic splines. Otherwise, if Jul is liu'ge, say joj > 100, then the
curve approximates the closed polygonal path that traverses the points (xi, y%).

IERR is an integer variable and S, DDX, DDY are arrays of dimension n or larger.
When KURVP1 is called, if no input errors are detected then IERR is assigned the value
0 and the v,' C.•s si, . .. ,.v, are computed and stored in S. Also, the second derivatives
x"(s8), . X'(s,,) and y"(s8), ... , y"(s,) are computed and stored in DDX and DDY.

TEMP is an array of dimension 2n or larger that is used for k work space.

Error Return. IERR reports the following input errors:

IERR=I ifn <2.
IERR = 2 if (x,,y,) -= (Xi- 1 ,Yi-+) for sorer i.

When either of these errors is detected, the routine immediately terminates.

Remark. After 5, DDX, DDY are obtained, KURVP2 may be used to compute the curve.

Programming. KURVP1 employs the sibroutines TERMS and SNHCSII. KURVPI and
TERMS were written by A. K. Cline and It. J. Renka (University of Texas at Austin).

CALL KURVP2(t, XT,YT, n, X, Y, I)DXI)DY, S, a)

X and Y are arrays contiuining the absci;•sas xI, I.,, and ordinates yi, , y.,,, S
is an array containing s1,... , and l)I)X eid I)I)Y are arrays containing th, Second
derivatives x"(S ) ... , x"'(s,,) and Y"(sI), . y"(s ).



Now consider the change of variables t :-. (8 - a1)/s, and let t .--+ (x(t), ý(t)) denote

the curve in terms of the new parameter t. Then t ý-' (j(t), y(t)) maps 0 and 1 onto the
point (xI, yI), and tI --+ (-(t), y(t)) is a periodic function (with period 1).

XT and YT are real variables. For any real t, KURVP2 computes the point (WI(t),(t))
on the curve and assigns XT the value Y(t) and YT the value i(t).

Remark, After DDX and DDY have been obtained, KURVP2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor a remains fixed. However,
if t is modified then the derivative information in DDX and DDY will have to be recomputed
before KURVP2 can be used with the new tension factor.

Programming. KURVP2 employs the function INTRVL and subroutine SNHCSH. KURVP2
'was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

,184



THREE DIMENSIONAt SPLINE UNDER TENSION CURVE FITTING

Given n > 2 points (xI,y 1 , zI), .. , y,,z,,). One procedure for fitting a curve to
tile points is to let s 0 and sj z s1-1 (x• -- zj.) 2 + (YZ - Y-..) , - (z, - 2)- for
=i - 2,...,n, ard then to find splines x(s), y(s), z(s) with tension a- that satisfy x(81 )
X,,y(s,)- =y, and z(s,) = z, fori= 1, . n. If (xi, y', z) aad (x',y',z), are the desired
slopes for the curve s •-* (x(s), y(s), z(s)) at the points (xi, yl, z1 ) and (x,,, y,, zn), then thc
splines x(s), y(s), z(s) can be selected so that x'(sj) Xý. '(s)) yý, and z'(s) 7:' for

= 1, n. The curve s i-- (x(s), y(s), z(s)) then passes ough the points (xi, yi, zi) and has
the required slopes at the end points. The subroutine QURV1 is available for obtaining the
second derivatives x"(s)-, y"(si), z"(s,) (i = 1, . .. , n) which characterize this curve, and
the subroutine QURV2 is available for computing the curve.

CALL QURVI(n, X, Y, Z, SLP1X,S.,P1Y,SLP1Z,SLPNX,SLPNY,
SLPNZ,IND,DI)X,DDY,DDZ,TEMI', S, u, IERR)

X is an array containing xi, . . . . . Y an array containing Yl, ... ,y, and Z an ar-
ray containing zl,. ,z,, It is assum d tL.at n > 2 and that the points (xi,y,,zj) are
indexed in the orde; ihai, they are to be traversed by the curve. It is also assumed that
(xi, Yi, Z0)(xi+m,y,+l,zi+1 ) for i= 1,... ,n- 1.

SLP1X, SLP1Y, SLP1Z and SLPNX, SLPNY, SLPNZ are assigned the values x', yj, Z,
and x, , Yz'. The user may ornit values for SIP1.X, SLPIY, SLP1Z and/or SLPNX,
SLPNY, SLPNZ. The argument IND specifies the information that is provided.

IND (i Values are supplied for SLP1XSLP1Y,SLPJIZ and SLPNX,SLPNY,
--SIA)NZ.

IND- I Values are supplied for SLP1X, SLP1Y,SLP1Z but not for SLPNX,
SLPNY, SLPNZ.

1I1\D z 2 Values are supplied for SLPNX,SLt'NY,SLPNZ but uot for SLPLX,
SLP1Y, SLP IZ.

IND 3 No values are supplied for SLPIX, SEPIY, SLP1Z and SLPNX,
SLPNY, SLPNZ.

If a value is not supplied by the user, then the routine provides a value.

a is the tension factor to be, rnployed. If Jlj is ým4nall, say Jui < 10- 3, then x(s 8), z(s)
approximate cubic splines. Othe, wise, if lo I is large, say Jul > 100, then the resulting curve
approximates the polygonal line from (x j, y,, z1 ) to (,l, y,,, Z,).

I'I'RM is au integer variable and S, i),;)\, I)I)Y, DDZ are ai .a;-sof r(li1CIISion n or
larg, r When QURVI is calied, if no input ý ,ors are detect,,d then l! 'LIM is assigned th,
valil, 0 an, I the values .si, .. , are •:omlput, .old sttored, i11 S. A L,,u, the se, O11d derivativts

"(.sj y'/ 4),Z "(..,) (1 1 , . , YI) i.re culi(I'tL, i.ild ltred III )i X, O)I)Y, 1)l)'.
TJ' t,! 'is an array of (Iirel i (si• n o r la ;er is I :sed f(,r a '.,,rk space,

,:•. 11



Error Return. IERR reports the following input errors:

IERR = 1 if n <2.
IERR = 2 if (x,,yi,z,) = (x,+1,y.,+1,z,+1) for some i.

When either of thev - errors is detected, the routine immediately terminates.

Remark. After S, DDX, DDY, DDZ are obtained, QURV2 may be used to compute the
curve.

Programming. QURV1 employs the subroutines CEEZ, TERMS, arid SNHCSH. QURVI,
CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at

Austin).

CALL QURV2(t, XT,YT,ZT, n, X, Y, Z, DDX,DDY,DDZ, S, a)

X is an array containing xj, ... ,x,, Y an array containing Yi, ... ,y,,, and Z an array

containing zl, ... ,z,. S is an array containing si, ... ,s, and DDX, DDY, DDZ are arrays
containing the second derivatives x I(si), yi(sj),z"(s•) (i 1,... ,n).

Now consider the change of variables t -= s/s,, and let t - (•(t),•(t),-(t)) denote the

curve in terms of the new parameter t. XT, YT, ZT are real variables. For any 0 < t < 1,

QURV2 computes the point (•(t),•(t),-(t)) on the curve and assigns XT, YT, ZT the
S~~~~~values xt,•t,()

Reriark. After DDX, DDY, DDZ have been obtained, QURV2 may be repeatedly called
to evaluate the curve at different points so long as the tension factor a remains fixed.
However, if a is modified then the derivative information in DDX, DDY, DDZ will have to

be recomputed before QURV2, can be used with the new tension factor.

Programming. QURV2 employs the function INTRVL and subroutine SNHCSH. QURV2
Sww; vritten by A. K. Cline and R. J, Renka (University of Texas at Austin).



B-SPLINES

For k > 1 let f(t) (t --- r)k- when t > x and f(t) = 0 when t < x. Then for
any sequence ti S ... _< ti+k where ti < 444, let Bik(x) = (ti+k - t4)f[ti, ... , t,- k] where

[ti,-... , t4-k is the !Cth order divided difference of f(t). The function Bik is ca.led a
B-Bpiine of order k. For k = 1 it folows that

WilX)= 1 if t :_ _ <ti+
-- ) 0 otherwise.

More generally, for k > 2 Bik(x) 0 when x V [t, ti+k). For t' 4 X < ti+k

B k W +k X- when ti =..=ti+k--.: and
/ - ti k-1

Bjk ~ k -t when t+1  ..- a+k.
Být(r) - tj__ hnt~i- -t 4~

Otherwise, if no point appears more than k -- 1 times in the sequence {ti, ... , tj+k} then

Bikz) X - t,: ti+k - X
B -( W 3i~ k1(X) + Bi+ ,k- I

ti+k--1 -- ti 4ýk - t4+ 1

From these relations it follows that Bik(x) > C when t, < x < ti+k.

Now let < ... < Ct+1 be a sequence of points where e. - 1. If inj is an integer where
1 < In3 < k- 1 for j = 2, .. ., f, let Pk[1, .... ,t41; rn 2 , .... ,mt denote the collection
of piecewise polynomials p(x) where p(x) is a polynomial of order < k (degree < k - 1)
on each intervd [G, j.# 1) (j = 1, ... ,f), and p(z) is of class Ck-l-'m at each point ýj
(j = 2, . .. , t). Then , ... t+ are called the knote or break points for these piece-
wise polynomials, ý2, , & the interior knots, and m2, mt the multiplicities of the
interior knots.

If n = k + "1 2 .+ ... + + mt, consider any sequence t 5 ""5 t,+k where
(1) t _ ... - tk <• ,
(2) tk j- .1 . ,, arn the interior knots, where each interior knot ý, appears

exactly rn, times, and
(3 C 4 < t.[I "" _ t.+k-

Then the B-splines Bik, .. , k ,P'e pecewise polynornials in Pkt[1, ,t+l M 2 , .. tt],

formingi a basis for this vector space. Consequently, any piecewise polynomial p(z) in the
space cin be rvpresented uniquely in the form p 1 ),,"_ I a, 11,k. This representation is called
a BV Rphne representation for p(i). If p a 1n ,k tutu we note that p(t) () if X t
or X >t' tIk

Remark. fft, < x t, where k 1,n then ?,k(x) / (01only wh(n i ' i k,.,j
Ai:io B, th(z) I

4187



FINDING THE INTERVAL THAT CONTAINS A POINT

Let ti " < t,, be a sequence where ti < ti. Then for any tj < x < t,, the function
INTRVL finds the interval [ti, ti+ 1 ) that contains x.

INTRVL(x, T, m)

T is an array containing ti, .. ., t , and x a real number. If tj 5 x < tm then INTRVL
has the value i where ti < x < ti+,. Otherwise,

INTRVL(x, T, m) 1 1 if x < t,

where t is the integer such that tt < tt+l and tt+l - t.

Programmer. A. 11. Morris.

S .



EVALUATION AND DIFFERENTIATION OF PIECEWISE POLYNOMIALS
FROM THEIR B-SPLINE REPRESENTATIONS

For n > k > 1 let t1  -< t,+k be a sequence where tk < t,• 1 and ti < t,+k

for i = 1, . .. , n. If f(x) a, Bik(x) then the following subroutine is available for
evaluating f(x) and computing its derivatives.

CALL BVAL(T, A, n, k, x,j, w,WK)

T is an array containing t 1 , ... ,t,+k and A an array containing a,, ... ,a,. The

argument j is a nonnegative integer, x is a real number at which f(x) or its jth derivative
f(W)(x) is to be computed, and w is a variable. If x 7 t,+k then w is assigned the value
f(x+) if j =0 and the value f W)(x+) if j Ž 1. Otherwise, if x = t,,+k then w = f(t,+k-)
if j = 0 and w f(W)(t,,+k-) if j > 1.

WK is an array of dimension 3k or larger that is a work space for the routine.

Remark. The left limits f(t,•+k-) and fC')(t,+k-) are the only 'irits of interest when
X =- tf+k since f(x) - 0 for all x > t,+k.

Programming. BVAL employs the function INTRVL. BVAL is a modified version by
A. H. Morris of the function BVALUE, written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

VA



EVALUATION OF THE INDEFINITE INTEGRAL OF A PIECEWISE
POLYNOMIAL FROM ITS B-SPLINE REPRESENTATION

For n > k > 1 let tj • . : tn+k be a sequence where tk < t,+, and ti < ti~k for
S1, ... , n. If f - aBik then the following subroutine is available for computing

F (x) = ft- f (t) dt.

CALL BVALI(T,An,k,x,w,WK)

T is an array containing ti, . . ,t,,-+k and A an array containing a1 ,... ,a,,. The

argument x is a real number and u, is a variable. When BVALI is called, tu is assigned the

value F(x).

WK is an array of dimension n + 3(k + 1) or larger that is a work space for the routine.

Algorithm. For m = n + k, let t,,+i, ... . ,t,,+k be any sequence where tm < tm,+ <_

tm+k. If x < t, then F(b) Z sB i k+ l(x) is used where b .E,., a"(t, +k t,)
-- fori= 1, ... ,n arid b -= b,, forit*=n ---l,. , - 1.

Programming. BVALI employs the subroutine t3VAI,10 and the function IN'I'RVI. BVALI

was written by A. 1I. Morris.



CONVERSION OF PIECEWISE POLYNOMIALS FROM
B-SPLINE TO TAYLOR SERIES FORM

For n > k > I let t I < t,+k be a sequence where ti < ti+k for i =- 1, ... ,n.

Further assume that tk < t, + and let f(x) = ai FHik(x) for t k _< x < t,+. If ý1 < <
i=-

are the distinct points in the sequence {t, .. ., t,+} then the piecewise polynomial f
k

can be represented in the form f(x) = ci(x - •,)t-1 for Cj < x < Cj+I (= 1,f.. .

The following subroutine is available for obtaining the coefficients cij of this representation.

CALL BSPP(T,A,n,k, BREAK,C, L, WK)

T is an array containing t, ... ,t,+k and A an array containing al,..,a,. BREAK
is an array of dimension t + 1 or larger, C a 2-dimensional array of dimension k x E, and

L a variable. When BSPP is called then L is assigned the value e? (which is computed by
the routine), the break points C, < ... < ýt+j are found and stored in BREAK, and the
coefficients ci1 are cornputed and stored in C. The jth column of the matrix C then contains

the coefficients of the jtn polynomial forming f (j = 1, ... ).

WK is an array of dirnension k(k + 1) or larger that is a work space for the routine.

Remarks.
(1) Since t.< n- k + 1, BREAK may be declared to be of dimension n - k + 2 and C to

be of dimension k x (n - k + 1).
(2) After C is obtained, then PPVAL may be used to evaluate f(x) for any x E [C , •t+iI.

However, PPVAL cannot be used for evaluating f(x) if x or x > . BVAL
must be used it; this case.

Programming. BSPP is a modified version by A. 11. Morris of the subroutine BSPLll,
written by Carl de Boor (University of Wisconsin).

Reference. dIe Boor, Carl, A Prartical Guide to Spllnes, Sprixnger-Verlag, 1978.



EVALUATION OF PIECEWISE POLYNOMIALS FROM
THEIR TAYLOR SER:ES REPRESENTATIONS

k
Given xI < < xt+1 . 1f f is a p iecewise polynomial where f(x) _ c13(X - X.)

for Xj < x < Xj'+I (j z 1, ... ,), then the following subroutine is available for computing
f at any point x.

CALL PPVAL(X,C,k,f,XI,YI,m)

X is an array containing the knots xj,...,xt and C a k x t matrix containing the
coefficients cij. It is assumed that k > 1 and t > 1. Let xj, . • •, Y, be the points at which
f is to be evaluated. XI is an array containing Y1, ..- ,Y,,, and YI an array of dimension m
or larger. When PPVAL is called, f(Yj) is computed and stored in YI(j) for j= 1, ... ,m.

Remarks.

(1) X need not contain the knot xt+1 .
(2) It is not required that f be continuous at an interior knot x,. If x, appears in XI then

f(x,+) is computed.
(3) It is not required that, the output points Y, in XI be in the interval [1x, Xtj I). if

Y. < x, then >,cdl(x -- xi)"- is evaluated at Y.. Otherwise, if Y_, ý2 xt+l then

r_,, 't (x - Xt), is evaluated at x).

Programming. PPVAL is an adaptation by A. 11. Morris of code written by Rondall E. Jones
(Sandia Laboratories).

*1!•'



PIECEWiSE POLYNOMIAL INTERPOLATION

For n > k > I let tl < . < t,•+k be a sequent: ,Atiere tj < ti+k for i z 1,...,n.
Consider a set of points {(x,,y,) :i-- 1,...,n) where tk < x 1 < < , _<X t,41. "Then
we wish to find a piecewise polynomial f z= EUn a1 Bik which satisfies f(xi) 7- y, for
i 1, .. ,nI This problem has a unique J -,lution when t< < x, < ti+k for 1 < i < n . The
following subroutine is availabie for obtaining the coefficients a, ...l , a,. of the interpolating
piecewise polynomial.

CALL BSTRP(X,Y,T,n,kA,WK,IFLAG)

X is an array containing x1 , .. ,n,,, Y an array containing y1 , ... ,Yn, and T an array
containing tl, .. ,tn+k. A is an ar-'"y of dimension i' or larger, and IFI,rG an integer
variable. On an initial call to the routine the user may assign IFLAG any nonzero value. In
this case, if no errors are dielcted then IFLAG is reset by the routine to 0 and the B-spline
coefficients a,, ... , a, are computed and stored in A. The routine may be recalled with
IFLAG = 0 on input when only Y is modified. In this case, no error checking is performed
and IFLAG= 0 on output. Also the B-spline coefficients a,, ... a,., of the new interpolating
piecewise polynomial are computed and stored in A.

WK is an array of dimension (2k - 1)n or larger that is used for temporary storage
by the routine. When BSTRP terminates, WK contains information needed for subsequent
calls to the routine.

Error Return. IFLAG is assigned the value 1 if any of the conditions

X1 <'...< Xn

tk < X1 < tk+l

t. < x, < 1, Ak for 1 < t < n

tr < X' < t"4 1

is violated. When an error is de~ected, the routine i;numedlately terminates.

Remarks.

(1) It is recominen 'ed that tI . . . . . . . . . k an(d t,1 f . . t-r f:

(2) After .he B-spline representation >, a, 11,k is obtained, then th1! subroutine BVA L Can
be used to evaluate or (tifferenuate the pie(cewise poly noniid

Example (Given n i 4 data poinfts (:.,y.), then furi k 4 (nr. may set 1 ... tk .x.,

t A, , x,,2 for I,. ... ,n k, ( I d r,, illl . t ,, .. Il lk 'H X .h . ,, ') are

t0e iuterior klnotx for the irt,'rpolatinig p•,i (,eewise" i),1y1;,,,1i; f Hiee .Vt ijve !T111w
)nUtr1.•r) .odLI where the dati. p;oofs 2 orid x,, are int [irt.ý fr f

x Own i 'Acn H.(F I v= j



Progrramming. BSTRP calls the subroutines [M"S[V13, PANFAC, and IBANSIN. I.STIRP
is a modified version by A. IA. Morris of the 'subroutirie SPLIN'IT, written by Carl de, Boor
(University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to S'plines, Springer-Verlag, 1978.

!,II



WEIGHTED LEAST SQUARES PIECEWISE POLYNOMIAL FITTING

For n > k > 1 let ti ! ... <_ t,+,. be a sequence where ti < t.+k for i = 1,... ,n.

Considerasetof points { (xyi):i = 1, ... ,m } where tk < x, "" < x,, <_ t,+ 1 and m >
max{2, k}. Let w, > 0 (i = 1, ... ,m) be weights. Then the following subroutine is available
for finding a piecewise polynomial f - alBik which minimizes L w(f()-

CALL BSLSQ(X, Y, W, r, T, n, k, A,WK,Q,IERR)

X is an array containing xP, . ,)X, Y an array containing Yi, y..,Y, W an array
containing uw, ... , wm, and T an array containing tj, ... , tn+k. A is an array of dimension
n or larger. When BSLSQ is called, if no input errors are detected then the coefficients

l, . .. , a,, of a least squares approximation f are computed and stored in A.

WK is an array of dimension n or larger, and Q an array of dimension kn or larger.
WK and Q are work spaces for the routine.

IERR is a variable that reports the status of the results. When BSLSQ terminates,
IERR has oae of the following values:

IERR = 0 The coefficients were obtained. The least squares approximation
is unique.

IERR = 1 The coefficients for a least squares approximation were obtained.
The approximation is not unique.

IERR = -1 (Input error) Either tk < X1 75" < x, < t,+ 1 or in > max{2, k}
is violated.

Selection of tk • " •_ t,+I given the data (Xi,y,). It is recommended that the knots
t, be selected so that the.e are data points xj, < ... < x., satisfying ,. < Kj, < t,,+k
for v* = 1,... ,n. If these conditions are satisfied then the least squares approximation is
unique.

Remark. After tie B-spline representation Is obtained, then the subroutine BVAL can be
used to evaluate or differentiate tie piecewise polyno)mial.

Programming. BSLSQ calls the subroutines BSPVB, BCIIFAC, and B3CIISLV. B,1LSQ is
a modified version by A. It. Mnrris of the subroutine L2APPIR, written by Carl 1: Boor
(University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

SIf~ , .o •, ,. Y f(_," v.e m • Jf(i, .



LEAST SQUARES PIECEWISE POLYNOMIAL FITTING WITH
EQUALITY AND INEQUALITY CONSTRAINTS

For n > k > I let, t, 5 ... ' !< n+k be a sequence where ti < t (i = ,...,n).

Consider a set of points { (x1 ,y) i = 1,..., m} where tk __ x < .- < x, < t Then
the subroutine BFIT is available for obtaining a piecewise polynomial f -=, Ent aBik
which minimizes -i (f(x,) - yj) 2 subject to a set of constraints.

Notation. If tk _< x < t,,+l then f(W)(x) will denote the value f(x+) if j z- 0, and the right
.th derivative f(i)(x+) if j > 1, Otherwise, if x = t,,+, then fW(x) f(t.+1 -) if j = 0

and f(i)(x) = (i)(t+•+--) ifj > 1.

CALL BFIT(T, n, k, X, Y, m,XCONC,NDER,R,IND,A, r,WK,IWK)

T is an array containing tl, . .. ,tn+k, X an array containing xi, ... ,x., and Y an
array containing yi, .. ,ym- The argument f is the number of constraints to be satisfied
(f. > 0) and XCON, C, NDER are arrays of dimension max{1,J} or larger.

Iff > 1 then XCON contains the points :ý,, ... , t at which the constraints are placed.
The points tj may be given in any order and need not be distinct. It is assumed that
tk _• ±, _• t+ 1 for i = 1, ... , t. At tj any of the following types of constraints

itype = 0 f(3')(t) < c,
itype = 1 f W)(-;,) > ci
itype = 2 f ()((,) = ci
itype = 3 f W)(±) fO)(ci)

can be imposed where I is a nonnegative integer. For the selected constraint, it is assumed
that C(i) = ci and NDER(") -itype + 4j. If an itype 3 constraint is imposed then it is
further assumed that tk < c <4 tJ I .

WK and IWK are arrays that are work spac.es for the routine. On input, IWK(I) is the
dimension of WK and IWK(2) the direneimi,, of 1W K. If f --- 0 then one triay sct ]WK( ()
NB and IWK(2) - 2 where NB -- (7L + 3)(k i 1) k2 . (t herwise, let vI n 1 1, mi be the
number of equality (i.e., itype 2 and 3) constraints, and yn,, the number of inequality (itype'
0 and 1) constraints. Then one must set

IWK(I) .> NB I (v -f f)v f 2(m, v)f (m, v,) t (7n, I 2)(,v ! ()
IWK(2) >1 m, 2v.

Rema. ks

(1) If f -i then ome call let tie roULIt.W d(tletrHi'it tW 01 a11M1it. (f rage tht Is liledc

Wr WK and IWK. S:;vt IWK'I) NIB awl IWK(2) 2, mi which u ý ' errors will occur
(see the IND) -6, 7 error v:•!diw, cl]hw).

(2) NlDEh .(t) miay he '.t.sigl ,I a legat,.ive value (i , , f) If NI)I,1l(() , ir
9 (.0(st r al it. 1e-. iignore,



IND is a variable u(sed for input/output purposes, A an array of dimension n. ur larger,
anrd r a variable. IND! must be set to 0 on an initial call to BFIT. When tile routine is
called, if f is found then IND is a-ssigned tho value 0 or 1, the coefficients. al, o, o are

stored in A, and r is assigned the value V •• (f(Xi)- __,) 2

After an initial call to BFIT, if only the constraints are modified, then the informarlit,:
in WK concerning X and Y can be reused. In this case, one may set IND to a nmol.ero
value and recall BFIT to solve the new problem. The input setting IND -/ 0 can be used
only when T,n,k,X,Y,m, and WK have not been modified since the last call to BFIT"

When BFIT terminates, IND reports the status of the results. IND is assigned one of

the following values:

IND = 0 The piecewise polynomial f was obtained.
IND = I The equality (i.e., itype 2 and 3) constraints are contradictory.

The solution f was obtained wheir the equality constraints were
satisfied in a least squares sense.

IND = 2 The problem could not be solved. The constraints are contradic-
tory.

IND --1 k < 1 or k > n.
IND --2 m< 0 or f < 0.
iND .- 3 ti > ti-j., for some i.
IND -..4 The assumption tk < Xl < ... < x, < t,+1 is riot satisfied.
INI -- 5 The it" constraint is incorrect for the value of istored in IWK(2).
INDI -- 6 Insufficient storage was specified for the WK array. IWK(1) has

been reset to the amount of storage needed by WK.

IND) - 7 Insulficlcnt storage was specified for the IWK array. IWK(2) has
been reset to the amount of storage needed by IWK.

IWK(1) and IWK(2) are not, modified when IND / -5, -16, --7.

Example. If one wants f to be convex on an interval [I,, t, i• ), then this is equ ivalent to
requiring that f"(x) > 0 on the inrtervaw. Thus, if k 4 then it suffices to requiire tbhat
Pf'(t, f ) ', 0 and i]"(t, , -) > 0. For these two conslra ijts, 9 is the appropriate value f,,r
the NI)ER array.

Programming. BHFIT employs thw routines ITEI'IO, BN I )Aj(CC,lNf)SIL, BSPVI8, B S1\ 0' ,
ISE'I, and the suibroutines arid fuiictions used by ISI. IT is a modificat Iý -y A. If.
Morris ()f the s!brortoiine F"(, writ ten b7y Richard .J WInsom (Sandia laboratori-s). Thle
subroutines I;NI)ACC and I',NI)SI, were written tby Pliciijrd .1 1lanson ail d harhs 1,
Law;oni (Jlet P'ropulsion, Labdorato.ry), and are dc(scribed in rf'creitce (').

References

( 1 Ilains R• 1J (, Constrained Least .,;qqAtre( 'uriw ,itting to Discercte DIta using It

.vhpliysr A IIser's I'uide, IPtporr F AN i ) 7• t >anrlnalaloratri,., Albn~ooy,
New hh'. ut 1979.

Flng. )v,- Cawson, ( Lir'id Ilan i,. P.., -,lti .iI .'quI -,reV I'TfblEi . , i ll is !



BICUBIC SPLINES AND FWISPLINES UNDER TENSION

Gliven a real value a and a SAtX {= xi, ,,}where x, < -- < xZm. Let, S,,(X)
denote the coflection of splines having the tension factor a and knots xi,, x,. If u 0
then S, (X) is the collection of cubic splines with the knots x 1, ., m

Now S~,(X) is a vector space, where each of its splines f (x) is uniquely characterized
by the values f (x 1), . .,fJ(xm) anad deri vatives f '(x 1) and f '(x,). Let V~j(X) (i 1 rn)
be the spline in 5,(X) w~tere

0i (x,) 1
lki(Xk) =0 for k- ý
0N(T1) = ,(xrnV=O0

and let V&m±1,0,.±2 be ti, splines where

0 t/ 2 x) 0 (i =1, m

Om' +I (-q") 0 0?b1 4- 2 (Xm-) 1-1

Then {01, -,mA2 is abasis for SG(X-)andf m (dk~'x)/mif(mtr+

for each spline f (x) in S,(X).

Let Y =C- fi.., y,,) where yj < . < y,. and let IV),, 2} be the corresponding
basis for S,(Y). Then a function of the form

vn4-2 n42

3-1 -I

is catlled a bisplinie with the tensiou factor a (also, bicubic svline when or 0). A bispI)IIe1
"(.r, y) h;as die follo~winig properties:

(1) 1,(X, Y) IS a1 , IýI;appilig on jxiXTI' xI ,<

(21) F, r each Ii •'ed y the Iiiapping x I"( r. y) is it sl lun- iI .S', (,V), and for rach fixedI x
tie 111appil ý'Y P(,y is a Splinie i ~(

(3)l F' IS uIquI( ly lIIýLractcrize(J by the v~ab ies ./r ,t ) I) 'V(Xk, Y1 ), and (

DI D2 I"(iX, le) where t* 1, In . , 1 n, k-- 1 m, and f In.1

If a G then a I ci hbic splilne FI' ~xY) h<" iie Value

3 "A

h'(x,y >>c1(. ")(N t')

T,~ x~ Arid i, - I/ - ) w tre r 'k it r ~ c , 1i



WEIGHTED LEAST SQUARES BICUBIC SPLINE FIT'"ING

(Civc u < . u,r and v, < < v,, where m, n Ž 2. Let {(xr,Ys,Zra) : r
1, ... ,p;. 1,..,• be a set; of points where puv > 4, ul  x X . x,, urn, and
V1 YL < y : V". Also let wi, ... , w, and iP1 , ... ,w0 be positive weights. Then
the follh,,vinmq subrcutine is available for finding a bicubic spline f(x,y) having the knots

0u (, Vj k2 - , ... =, , n) which minimizes [f(x-, y,) Wr
r=1 8=i

CArL SPFLT2(X,WX,p, Y,WY,w, Z, kz, U, m, V, n, F, S, T,WK,NUM ,IERR)

X is an ' ray co• taining x1 , ... ,xp WX an array containing wl, .I W/, an array
ntiain ; .,y, WY an array containing iW ......-T,, Z the y x v matrIN (Zr"), U

M array inl mning ,... ,un, and V a.n array containing vi, ... Iv,. It is assimed that
k• >zi, wh'ejro kz is 1he number of rows in the dimension statement for Z in the calling
proram,,fam.

F is a 3-dimensional array of dii tension m x n x 4, and IERR a variable. When SPF .'1'2
is called, if no input 1rrors -are de•i,:,ted then IEP• is set to 0 and the value- 1'(uiliy),
i) t f(o., vi), .D2 f(tz,, ,v), D1• D, (ui, v )of a weighted least squares bispline approxin.aflon
f (ý., Y) are cornputed and storod in F. Specifically,

P'(i, j, 2) 1): ff(,u )

l" ; J,3) 11 f++ •(ii ,,, v ,)

, C i -... 1, li Ud J 1, .,n.

5 is an array rn;,nsiun r I (T, a'm arrary of d iin,•,usin T1 6, and Wh an arra ' y
ixICtision N UM- hr NU NA iiax ((r ') (m I2)v , 5 initx (m 2, YLj 2}
a , ai(f I K aiý. wuork s icvs for thi roat!i,

Error Return. liJ:li• ol.• o ( 1 t hi win", , If an i 1ii ut (er I, J- ti'(.(-1

I'H I it , l l ,, Ou TOr r> ' vi oltcd.
}:['•• '/ lik tU I 1-1 . . ... J/, o q r Pg 1." "'| :: )o~la !tc

1¾1( di. V) 1. , oi- n '" 11 ! 1c I(,,latedN,.

Ill . I R, . . , 1 " + \r Is viol.1tcd

1 k A h'cr I! Lr. ri 1. u 1 k k, (:.:4 1, 1I, ,

t tl f



Programming. SPFIT2 employs the routines CSSP, BSLSQ2, BSLSQ1, BSPV13, BCHFAC,
and BCIISVI. SPFIT2 was written by A. U. Morris.



EVALUATION AND DIFF7RENTIATION OF BICUBIC SPLINES

Given ul < ... < u, and v, < ... < v, where m, n > 2. Then a bicubic spline f(x, y)
having the knots (uj, vj) is uniquely defined by either of the following sets of data:'

(1) the values f(uj, vj) and derivatives Dif(ui, vj), D 2f(ui, v.), Di D2f(ui, vj) for
i= 1, ... ,mand j= 1, ... ,n

(2) the values f(uj, vj) and derivatives D2f (u,v), D2f(u1 ,v,),D 2 0 2 fu v,) for

= 1, ... ,m and j= 1, ... , n
The subroutines CSURF and CSURF1 are available for computing f(z, y) or its derivative
D'D'f(z, y) if data set (1) is given, and the subroutines CSRF and CSRF2 are available
for computing f(x, y) or its derivative if data set (2) is giver.

CALL CSURF(k, e, X,1 i,Y, v, Z, kz, U, mV, nW, kw,
W 1, kwtv , W2, k U 2, W ý,2, k w12)

U is an array containing ul, ... ,u,r, V an "rray containing v1, ... , v,, and W, Wl,
W2 , W12 the in x n matrices (f(ui,,v3 )), (Djf(u,,v.7 )), (D 2 f( 1,,tj)), (DD 2f(u,,,',)).
The arguments kw, jcwl, kw 2 , and kw12 have the following values:

kw the number of rows in the dimension statement for W in the calling program
kwl the number of rows in the dimension statement for W, in the calling program
kw 2  the number of rows in the dimension statement for W 2 in the calling program
kw, 2  the number of rows in the dimension statement for IVW,- in the calling program

It is assumed that kw - m, kwl > rn, kw2 > rn, and kw,12 > Yn.

The arguments k and e are nonnegative integers. Let (xr,ys) (r ,- 1...,ji, s
I, ... ,v) be the points where r). O~f is ýo be computled. X is an array containing T,

X,,M Y an array containing Yl, .. ,y,, aid Z a 2-dimensional array of dimension kz x v
where kz > M. When CSURF is called, the values DI• I) f(:,.,gy) arc coiputed and sttore

in Z for r - 1, ... ,p and s - I, .. ,

Programming. CS1URF calls the function INTRYVL. CSURF lR .s written by A. 11. Mluri.s.

CALL CSURFI(k, f,X,p, Y', ,,Z, kz, U, V, V, n,'ýt

U is an array containing u1, . -,, , V an array cmitaiflinlg ti ,T,,, tld 1' a W 8-
dimensional array of dimension rn a n x 4 It is assur•ied tat.

W (J,• j,) f/(1., , ",)

2), 1. ) f( ,, vj1f4(u., t")

for I' i, mn arld ('I, .,

a) n f 1nd l).f dt e the! pirtili dvrivttlv,-' "f fy L1n1 I !• l 1"' , lk] i ,0, 1,

'It t 3 then 1 1 h1 )'f( 1 , Y) delijte tile Il lt W ) " ("'f



The arguments k and f are nonnegative integers. Let (x,.,ya) (r 1,...
1, ... ,V) be the points where Dloaf is to be computed. X is an array containing xj,

Sxj,, Y arn array containing yj, ... ,y,, and Z a 2-dimensional array of dimension kz x v
where kz > ;A. When CSURF1 is called, the values DkODf (xr, Yo) are computed and stored
in Z for r1, ... , and s- 1, ...

Programming. CSURF1 is a driver for the subroutine CSURF. "'he tnction INTRVL is
used. CSURF1 was written by A. H. Morris.

CALL CSRF(k,f, X,jp, Y, u, Z, kz, U, m, V, n, W, kw,

W1 , kw 1 , W22, kw 2 ,W1 2 ,kw 12 )

U is an array containing ul, ... ,u,•, V an array containing vi, ... ,v,, and W, W 1,
W 2 , W12 the m >' n matrices (f(ui,v.)), (D2f(u,, j)) , (D'f(u1 , vj)), (D2D2f(u1 , tv)).

The arguments kw, kwl, kw2 , and kw 12 have the following values:
kw the number of rows in the dimension statement for W in the calling program
kw, the number of rows in the dimensicn statement for W1 in the calling program
kwt 2  the number of rows in the dimension statement for W2 in the calling program
kw1 2  the number of rows in the dimension statement for W12 in the calling program

It is assumed that kw > m, kwl > Yn, kw 2 > in, and kw 1 2 > m.

The arguments k and f are nonnegative integers. Let (xi, y,) (r 1- 1..,_p, s -

1, ... ,V) be the points where DI) l)f is to be computed. X is an array containing x1,
Xa., Y an array containing yi, ,1, and Z a 2-drmnnsioaal arr ty of dimension kz x r
where kz > p. Wlwn C(SRF is callhd, the e !)kl),ff(x.,y,,) Irk, (oiliputed and stored
in Z for r: ,...,pand t l ,..,u.

Programming. CSRF calls the functinn INTRVI,. CSRl,' w;Ls written by A. II. Morris.

CALL CSRF2(kt, X p, 1', ', 7, kzii, V n, W, ki,,I)l))

U is an array coiahiiinIg 11,., 1"" V ain array c(t1tiltanlig; Vt1 . , ,,, W the T1n it

wn 'rix (j (u,, v,)), and l) A'1)W a 3-dIm :i,,,a array of dini• -1( in . ,, .3 i,,

W (1,,3 ) 07 1) 2 f (u,,t 1")
W'(z ,,I) I', ),l:,f(A ,,,v,)

for , : 1, and Ft . ,n HI' arginr nt ku, h•t he fth le w altv
Skw the rinimbir ," rows:% in hOw dtii si ,,i -, t leviit fhr It' litO Wiglhi, pr •,Li•i

It is ;vL. nillo.d that kin ?I

-li' r . k , l f ire ;.i ,.it , nt ,r:a I., (.ar (r k .mi F,.

I ,. , L') he tit, ptriy yht I,•lll)w 1 , f 11, 1 I) , ci uij"it ,iiI A >i. i t fi lirrii. l .

r. r , V tim airri ty ( it y1 I tg Y~ ý , AJI 1 I" I *2 1; IIoI'1(. j 11 I .Al , f I
.h,,r e k z •(. W h e n s'.- " ' . til t , it oh . \ , ,,I 1 )k i) !( , f ./. .r ( ' Itit,, i I , !

in Z ftr r 1, . ,/• arid•d 1, .,,



Programming. CSRF2 is a driver for the subroutine CSRF. The function INTRVL is used.
CSRF2 was written by A. H. Morris.

-I



BISPLINE UNDER TENSION SURFACE INTERPOLATION

Given zx < .. < x, and yl < ... < y,,. Also assume that we are given the values
zj(i = 1,...,m;j = 1, .. , n) and a tension factor a. Then the subroutine SURF is
available for finding a bispline F(x, y) with tension a that satisfies F(z 1 , y,) = zi, for each
i,j. Boundary conditions can be imposed on the surface F(x, y) if desired.

CALL SURF(rn,n,X,Y,Z,kz,OPT,DDZ,WK, a,IERR)

X is an array containing xl, .. . , x,•, an array containing yi, . • , y,,, and Z the m x n
matrix (zjj). The argument kz is the nurnber of rows in the dimension statement for Z in
the calling program. It is assumed that m > 2, n > 2, and kz > rn.

OPT is an array, called the option vector, which permits the user to specify any
boundary conditions that are to be imposed on the surface. If no boundary conditions
"are to be specified then OPT may be declared to be of dimension 1 and OPT(l) must be
assigneu the value 0. The details concerning the specification of boundar) conditions in
OPT are given below.

DDZ is a 3-dimensional array of dimension m x n x 3 and IERR is a variable. When
SURF is called, if no i)put, errors are detected then IERR is assigned thl. value " and the
partial derivatives I)'F(x,, y,), D2 F(x,, y3 ), D2 D2 F(x,, y,) (i 1, ,rn; j 1, n)
are comiputed aid stored in VIZ. D)IZ(M,'j,I) 1 2 ))Z(Ij,2) ( y),
and l)l)Z(s, 1, 3) 14 D1)2 F(x,, y ) for each I,j.

WK is an array of difiension n f 2n or larg-.,r that is utsed for a work space.

Error Return. IERIZ :-ct)p rts the following input '.,rors:

I1,l1M I If rn - 2 or ni 2.
II-,It R 2 if rl - ,, ( or y. isr t .Sitti~ h'd

11;(( 3 if O)PT c'onlt;I.J i ,aill crr-t~r

hi ;ii r v Lr is (i(ttc'tid, !li l r intm in r ininwedatti'"rt'i'i

Remark Aftcr l)f )/. si ( t .t litn. t l' o 0 f i. t nfll ~twih II''s ii l t' to t , thtL

-ih .lAn " b'(. , ) \l'Y) , A .f , ' J) theii the siihr()%twitn (u l' tii'5 l •ina it ) (ht aJteto latt or

. d~bfh.'tci t v ii " '(r, ij)

The option vector (,PT If i,, 'IltIldltt SIl i'ti tkx he l thenI T i' i wi
dc,( larcd to, hc, 4l diwcl itl'q q i ,artid mt (I' ' ,t.,t i,t,otc Lith %a[l(' 0) ( t tr'• v ( )PT~ IS, ,Ah

m :i'V ti ;himmfg thc u ft ii kt L K. io ItI .

1, rx -jj h" 'A'fjt ý' t rt I 'if"~ .)~ f.~ p

kI 2 li uic 1i',.] 1 '( I,;.,. ) (I 1 n14 111- t "



key 4 The values D 2 F(x,,yY) (i 1,... ,i) must be satisfied.
key 5 The value D 1 D 2 F(Cl, Y1) must be satisfied.
key 6 The value D ID2F(x,,, yi) must be satisfied.
key 7 The value DID2 F(x1, y,,) must be satisfied.
key 8 The value DID 2 F(x,r,y,,) must be satisfied.

The order of the options in OPT is arbitrary. It an unrecognized key is used then the error
indicator IERR is assigned the value 3 and the routine terminates.

Example. Assume that we have an array Di1 containing values D 2 F(x,, yi) (i = 1, ... , m)
which are to be satisfied, and that we also want D1 D 2 F(xm,yn) = -- 1.3 to be satisfied.
Then OPT must be of dimension > m + 4 and OPT can be defined as follows:

SOPT(l) = 3.0 (First option)
DO 1.0 I = 1,M

10 OPT (I + 1) = DY1(I)

OPT (M + 2) - 8.0 (Second option)
OPT(M+ 3): .- 1.3
OPT (M -+- 4) 0.0 (Terminates the option vector)

Background. The evaluation of D',F(x1 ,yj),.D'F(x1 ,y.), and D ".D i(xi,,y,) reduce to the
evaluation of second derivatives of splines. Specifically, for each i < m D12F(x,, yi),

2DF(xi,y,,) are the second derivatives thait characterize the spline y v-- F(xz,y), and for
each j < n Dr( .. . , DiF(x,,),yj) are the second derivatives that characterize the
spline x - F(xz,y.). Also DD2F(xl,yj) and DD•F(xr,yj) (j 1, ... ,n) are the second
derivatives that characterize the splines y 1-+ DF(xi,y) and y k-- DIF(Xm, y). For each
j < m, after one obtains the values DPF(xz, ,) through which the spline x -- * D'.. y)
will pass and the end slopes D, D2 F(xl, yj) and D, D2 F(X,,, y,) which this spline must have,
then the second derivatives that characterize this spline can be computed. D2D2F(xj., Yj),

D 'D F(x, yi) are the second derivatives that characterize x -D 2 rF(x, y,).

Programming. SURF ernpioys the subroutines CEEZ, TERMS, and SNIICSII. SURF was
written by A. K. Cline and R. j. Renka (University of Texas at Aust;n), and modified by
A. 1H. Morris.

_2 1



BISPLINE UNDER TENSION EVALUATION

Given x, < < xr, and y' < < y,,, and let Fix,y) be a bispline with tension a. If
the partial derivatives DF(xj, yj), D'F(xj, yj), DD'F(xj, yj) are known for i M.
and j n,1, ... , .% then the function SURF2 may be used for evaluating F(x, y) at a single
point, and the subroutine NSURF2 may be used for evaluating F(X, Y) on a grid of points.

SURF2(s, t, m, n, X, Y, Z, kz, DDZ, a)

X is an array containing xi, Ym, an array containing Y, -.. ,yn, and Z an
n, x n matrix containing the values F(zj, yj). The argument kz is the number of rows in
the dimension statement for Z in the calling program. It is assumed that rn > 2, n > 2,
and kz > m.

DDZ is a 3 dimensional array of dimension m x n x 3 containing the partial derivatives
where

DDZ(i,j, 1)= D2F(x1,,y•)
I DDZ(i, j, 2) = D? F(xi,yj.)

D)DZ(i, j, 3) = D'D 2F(xj,,y.,)

for each i,j. SURF2(q, t, m, ,, X, Y, Z, kz, DDZ, a) = F(s, t) for any point (.', t).

Remark. After DDZ has been obtained, SURF2 may be repeatedly cailed to evaluate the
bispline at different points so long as the tension taclor c, remains fixed. hlowever, if o is

modified then the derivative information in DDZ wil! have to be recomputed before SUItF2
can be used with the new tension factor.

Programming. SURF2 employs the function INTRVL and subroutine SNIICSJI. SURF2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin).

CALL NSURF2(s,1 ,,,,, S 7f ls tmjin, tmax , 7 V, kw, Yn, n,
X, Y, Z, kz, DDZ,WORK, a)

'The arguments stain and s....x are the lower avcd upper limits of the x-coordinates of
die grid on which F(x, y) is to be evaluated, and the argumentri t,,ij, and t,,,x are the lower
and upper limits of the b-coordinates. The purpose of the routine is to evaluate the bisplinc
at the points (s,,t,) where

tI 
5 1n a x - m i n

tj 8 ,•mia 1)+

for 1 ,. rn,, and j 1 .. , ti, It, is a-sstimcEd that rn, I an(] itt 1.

IW is a 2-dirnensiorial array of diimensiou kw x nt where kw n, Wihen NS UJIRF2 i,:
called W (i, j) is assigned the value F(s,, t,) for , I .. ,, an.d j 1, . 7.1.t,

5i5/ ~

a 0



The arguments rn, n, X, Y, Z, kz, DDZ, o are the same as in SURF2. WORK is an array
cf dime.ision 4rnm or larger that is used for a work space.

Programming. NSURF2 employs the subroutine SNIhCSII. NSURF2 was written by
A, K. Cline (University of Texas at Austin).

516



BIVARIATE B-SPLINE PIECEWISE POLYNOMIAL INTERPOLATION

Forra > k > I and n > > 1let si "..< sm+k andti :. .. < t,+, be sequences
where si < ,÷k ("= i1, .,m) and t < t.+t (j= 1,...,n). Let Blk,...,Bmk be the
B-splines for the knots s9 < ... • s,•+k and Bt, ... , B,t,. the B-splines for the knots
tj ..< ... _< t,,+t. Given sk _<Xl < ... < X,, __ s,,+ 1, tt _< Y1 < " '" < Y, _< t,+l1, and the

values z, (i =1, .. ,mn, j 1, .. ,n). Then we wish to find a piecewise polynomial of the
form

m ni

f (Xy) y ajjBik(x)IBye(y)
i=1 3=1

which satisfies f(xi,yj) = z~j for i - 1, ... ,m and j -i, ... ,n. 1 This problem has a
unique solution when si < Xi < si+k and tj < yj < tj+t for i J, .. .,m and j = 1, .. .,n.
The following subroutine is available for obtaining the coefficients aij of this piecewise
polynomial.

CALL BSTRP2(X, Y, Z, kz, S,rn,k,T,n,e,A,ka,WK,NUJM,IERR)

X is an array containing xi, ... , x,,, Y an array containing Yi, ... ,Y,,, Z the m x n
matrix (zij), S an array containing si, si,+k, and T an array containing ti, ,t,+t.
It is assumed that kz > m, where kz is the number of rows in the dimension statement for
Z in the calling program.

A is a 2-dimensional array of dimension ka"< xn where ka > m, and IERR is a variable.
When BSTRP2 is called, if no errors are detected then IERR is set to 0 and the desired
coefficients a~i are computed and stored in A.

WK is an array of dimension NUM where NUM > mn +- max{2krn,2En}. WK is a
work space for the routine.

Error Return. IERR has one of the following values if an input error i.3 detected.

IERR I1 sk <x < ... < x,, < sm+ Ior si < x < Si+ (i 1,...,rn) is
violated.

IERIH =2 tt <<_ y < < y, < t,• + or t, < y' < t3• (j'- 1,...,n) is
violated.

IERR 3 NUM < mn f max{2krn,2nj}.

Remarks.

(1) One may set A : Z, thereby replacing the data zj, with aij.
(2) Aftvi• th, coefficients ai, are obtained, then the subroutine BVAL2 can be used to

evaluate or differentiate the piecc-,vise polynomial f(x, y).

Programming. lSTRPl2 employs the subroutines HSTR'I, BIST'I'lI, BSI'Vt1 BANFAC,
and BANSIN. l ST!'l.'2 was 4. ritten by A. II. Morris.

If A- f, I then by f(I.., y) we mta, f(.,,, ' id ify, - i,fI then by f(x, y,,) we mcan f(P , y,,-

517



BIVARIATE B-SPLINE PIECEWISE POLYNOMIAL
LEAST SQUARES FITTING

For rn > k > l and n > £ > I let s1 _< "- < 3,+k and tt < ... < ,,+t be sequences
where si < 8s+k (i =n .. ,r) and t. < t+t ( 1,...,n). Let Blk, ... ,B,k be the
FB-splines for the knots s, < ... <_ s ,,+k and Bt, ... , B,, the B-splines for the knots

Stj < ... _< t,•+ t. G iven sk, <5 x, _< ... <5 x,. < s,,n+ ,, tf _< Yj : -< "" _ ý y ,, :5 t,+ ,, and the

values Zra (r = 1, . ., I, s = 1,...',L) where ji > max{2, k} and v > max{2, }ý. Also let
-w1, ... , wA arid U1, . .•, w, be positive weights. Then the following subroutine is available
for finding a piecewise polynomial of the form'

m na

Si=1 j'=1

which minimizes Wr- w [f(Xr, y9) - Zr 8 ] 2
.

r-=1 8=1

CALL BSLSQ2(X,WX,i, Y,WY,v, Z, kz, S, m, k, T, n, f,
A, ka,WK,NUM,IERR)

X is an array containing xi,...,x ,, WX an array containing wv,..., w,, Y an array
containing yt, ... , y,, WY an array containing iw-, ... , , Z the p x v matrix (Zr,), S an
array containing s1 , ... ,sm+k, and T an array containing tl, ... t,,+t. It is assumed that
kz >1 p, where kz is the number of rows in the dimension statement for Z in the calling
program.

A. is a 2-dimensional array of dimension ka x n where ka > rn. When BSLSQ2 is called,
if no input errors are detected then the coeflicients aj, of a weighted least squares piecewise
polynomial approximation f(x, y) are computed and stored in A.

WK is an array of dimension NUM where NUM > rnv + max{(k+ 1)rn, (f +- 1)n}. WK
is a work space for the routine.

IERR is a variable that reports the status of the results. When BSLSQ2 terminates,
IIElRI? ha.9 one of the following values:

IEI, - 0 The coefficients were obtained. The least squares approximation
is unique.

llEH R .. I The coefficients for a least. squares approximation were obtained.
The approximation is not unique.

lEllR I J (Input error) Either Sk < X1 < ... < x;, < s,,, or p > max {2, k}
is violated.

I E, I? .. 2 (hx pot. error) Either tt K y -. < < y,,- or v -' niax{2, f}
is violated

SI!ERl 3 (hIpit, (,rr(,,r) NINi is too small. Th' 1i;,111 ill~i,, t)r, ,,iSýb.l Value

If • 4  ,-,, , the,, by f(x,,,,Y) we ,,,val, f(.r,, , ) and if y. t.,V thu1 ,y f(r, Y,.) we ,,,t,, f(x, .

519



for NUM, naniely rnv j max{(k + 1) v,, (•i I) n) }, has been stored

in WK(I). Reset NUM >. WK(I).

Remark. After the coefficients ai. are obtained, then the subroutine BIVAL2 call be used

to evaluate or differentiate the piecewise polynomial f(x, y).

Programming. BSLSQ2 employs the routines BSLSQI, BSPVB, BCIIFAC, and BCIISVI.
13SLSQ2 was written by A. 11. Morris.

5 20



EVALUATION AND DIFFERENTIATION OF BIVARPATE PIECEWISE
POLYNOMIALS FROM THEIR B-SPLINE REPRESENTATIONS

For rn > k > I and n > . > I let s1 < ".. •< sAk and t 1 < . t,+t be sequences
where si < si+k (i =1 ... ,n) and t, < ty+- (j - 1, ... , n). Let B.k, . ., Bimk be the
B-splines for tc knuts s, < ... < km and Bit., ... , B,,t the B-splines for the knots
t < ... ...< t, . if

f (X1 y)ajB x y
itzz1 j=1

then the following subroutine is available for computing f'(x, y) and its partial derivatives.

CALL BVAL2(A,ka, S, m, k,7, n,e, x, y, p,v, ,WK)

A is the rn x n matrix (ai,), S an array containing si, ... , sm+k, and T an array
containing t1, ... , tn-. It is assumed that ka > m, where ka is the number of rows in the
dimension statement for A in the calling program.

The arguments p and v, are nonnegative integers, (x, y) is the point at which f or its
partial derivative aO'U'f/3M13Vy is to be evaluated, and w is a variable. When BVAL2 is
called, then w is assigned the value "ai,B(')(x)B')(y). Here " denotes B)k if = 0

and the it"' derivative of Bsk if A > 1. If X ýk S,4k then by B(')(x) we mean the right
limnit B•)(xd ), and if X S= k then by Bk)(x) we mean the left limit B()(x--). Similar

comments hold for BRv)(y).

WK is an array of dimension e + max{3k,3e} or larger that is a work space for the
routir. e.

Programming. BVAI,2 employs the function INTRVL and subroutine BVAL. I3VAL2 was
written by A. 11. Morris.

_ -r 521



SURFACE INTERPOLATION FOR ARBITRARILY
POSITIONED DATA POINTS

Let { (xi, yY) : i - 1, ... , n } be a set of n > 3 distinct pc:nts which are not collinear and
zi, ... zn a sequence of values. Then the problem is to find a smooth mapping z = F(X, y)
for which z, = F(x,,yj) for i = 1, . . ,n.

.A triangle based procedure for constructing a smooth interpolating mapping z
F(x, y) contains the following components:

"(1) An algorithm for forming a triangular grid for the convex hull of the data points (xi, yi)
and a procedure for locating any point in the grid. If extrapolation is to be permitted,
then the region outside the grid must also be partitioned and a procedure provided for
locating any point in the region.

(2) A procedure for estimating the first (and possibly higher order) partial derivatives of
F(x,y) at the data points (xi,y,).

(3) A smooth interpolating routine for computing F(x,y) on each triangular cell of the
grid. If extrapolation is to be permitted, then a routine must also be provided for
computing F(x, y) on each cell of the partitioned region outside of the grid.

With regard to (2), it should be noted that no derivative estimation procedure is known
that is appropriate for all applications. This is unfortunate, since the derivative values can
significantly affect the results obtained from any interpolating procedure.

The subroutine TRMESLI is available for obtaining a triangular grid, and the sub-
routines GRADO and GRADL are available for derivative estimation (perforiried' in two
different manners). After the grid has been obtained and the derivatives estimated, then
the subroutines SFVAL and SFVAL2 are available for computing a continuously differen-
tiable mapping z = F(x, y) for which zi -: F(xi, y,) for i = I, nn. Extrapolation is
permitted.

CALL TRMESH(n, A, Y,IAI)J,IEND,IERR)

X is an array containing xi, .. .,x, antd Y an array containing yi, , y,,. IAI).J is ai.
array of dimension 6n or larger, IEN 1) an array of diimension n, and IE I':IR a variable. When.
TRM ESII is called, if no input errors are detected then IERRI is set to 0 and a ThijsSCen
tr angulation of the convex hull is obtained, The triangulation is t'ored in IAI)J and IINI).

Error Return IE[IR I if i - 3 and I ltI I 2 if Lhi, data points (1, , y,) art col'line(air.

Remark, FIor efficiency, it, Pi r-ccoiimendJed that the data polints (x, , y,) bo ordcred so that

Programming, THMEI[11 enIloys the rotitints Al)N())I), IMI)YAl)t), INTAI)). S 111," l'l
SWAIN1), TFItNI) and func:tiowq 'SWPT'ST and TINI)X. These r( otitiis wvrvit wit ten by
IHloert J. Htenka (Uniiversity of North T'exas, D)ent on, Tex".a).

5 23



References.
(1) Cline, A. K. and Renka, It. J., "A Storage-Efficient Method for Construction of a

Thiessen Triangulation," Rocky Mountain J. Math 14 (1,J84), pp. 119-139.
(2) Renka, R, J., "Algorithm 624. Triangulation anid Interpolation of Arbitrarily Dis-

tributed Points in the Plane," _ACM Trans. Math Software 10 (1984), pp. 440---442.

CALL GRADG(n,A, Y, Z,IAD-J,IEND,DZ,IERR)
CALL GRADL(n, X, Y, Z,IADJ,IEND,D7.TE'RR)j

X is an array containing x.1 , ... x,,Y an array containing y1 , I . ,y,, arid Z an array
containing z1 , z..,,r. IADJ i's an array of dimension 6n or largcr, and IEND an array of
dimension n. IADJ and TEND conLain the grid information given by the routine TR.MESH1.

DZ is a 2-dimensional array of dimension 2 x ni. When GRADG or GRADI, is called,
if the partial derivatives of fi(x,Y) are computed at the data points then the deriva-
tives D, F(xi, y1 ), ... I D, D1 (X Fjj,y) are stored in the first row of L)Z and the derivatives
D 2 Y(xt, yi), . .. , D2 F(x,,, y,~) in the second~ row of D)Z.

Error Return. IERRZ is a variable that rcports the status of the iesults. When the subroutine
f'erniinates IERR fia, arne nf the following values:

IEiRR 0 The partial dlerivatives of F were evaluated and stored in D)Z.
IF'HR"I I (Input, Eýrror) Yz < 3.
IERR 2 The p~artial derivatives could not be estiriiated by C RADL. Ei1ther

the data points are almost colliinear, or the abscissas arid ordinates
of the data points are too poorly scaled for the derivatives to be
ComiputedI (see renitark (2) below).

Algorithm. C HADl( employs the global de-rivat~ive estimation procedure anid C RADI, tue
local (lerivat ye esti ination p rocedu tre g ivent III reference (

Remarks.

(1) (CII Al )( is faster than ( H Al)!, ljt, Iti freqpiucrly is less arccurate.
(2) The local (criVa~tiVe (StJIIatOI p)1lrocedlirv (.;ill be (1ilite seitsitiVe to the sealing of the

abscissas5 x, and ordriniates y,' of the dait a Itoiits. Frequienitly, re"s alinig the abscissas arid
ON lI II t, tei wAIIIi haVe Vo I fI0 onl t. e acc uracy of theI( resulIts ob ta Iijed by ( I? A I)(', h11 t,
It, mlay if; A rease or (lecrcease t, Ie( acc uirac y of t, ei resulIts o bta Iie~J by (; HA I A, by se!veral
declimal dilgits (or make I,. uImposs;ibic to est iniate the derivatives locally).

Programiminig ( I Al )C amid C H AD1)1 are Interface rolltines, for the so br oitiites (,R A I)(,
and C HAl)IXI, Nvritten by liolbrt J, Iterika (Unjilversit'y of North Texas, D~entton , Texas).
(CHADLIl calls tlie suibroutines C ICTNI', SliD NI, Sl{()lai ;III()T

Refereiices.

(1) lleuika. PI. .1.,) arid ( l1ine, A. K_ "A Triangle Ba-ed C" hit.ýrpulhitioi NitidRocky
Momuntatrn J. Mahth 14 ( 198 ', ) ). '223) 2137.

(2) Ileýirka, It. J., 'Algorithin W21. 'lir'kiai ir md l~ittenp(toli io of Arbit~rarily l)is-

trilotted P oinrts iii the I latir ," 4A1M Traits. (latt Sufiv are 10 (198-1), pp. 1,T) .112.

52.



CALL SFVAL(n, X, Y, Z, m, XI, YI, ZI,IADJ,IEND,DZ,IERR)

X is an array containing x1 , . .. , xY an array containing yi, ... ,y,,, and Z an array
containing zj, ... ,z,,. IADJ is an array of dimension 6n or larger, IEND an array of
dimension n, and DZ an array of dimension 2 x n. It is assumed that IADJ and lEND
contain the triangulation given by the subroutine TRMESH, and that DZ contains the
partial derivatives computed by GRALG or GRADL.

It is assumed that F(x, y) is to be evaluated at (xi,yi),...,(2m,,-). XI is an array
containing x1, ..... t, YI an array containing 91, ... , 9,Y, and ZI an array of dimension m
or larger. IERR is a variable. When SFVAL is called, if no errors are detected then IERR
is set to 0. Also F(51 , 9) is compAted and stored in ZI(i) for i = 1,... rn.

Error Return. IERR =- 1 ifn < 3 or m < 1, and IERR = 2 if the data points (xi,Y,)
(I - i, ... , n) are collinear.

Programming. SFVAL is a driver for the subr %utine INTRC1. INTRCI employs the
subroutines GRADLI, GETNP, SETRM, SROT, ROTG, TRFIND, and TVAL. INTRCI
was written by Robert J. Renka (University of Noi uh Texas, Denton, Texas).

References.

(1) RenKa, R. J., and Cline, A. K., "A Triangle Based C1 Interpolation Method," Rocky
Mountain J. Math 14 (1984), pp. 223-237.

(2) Renka, R. J., "Algorithm 624. Triangulation and Interpolation of Arbitrarily Dis-
tributed Points in the Plane," ACM Trans. Math Software 10 (1984), pp. 440.442.

CALL SFVAL2(n, X, Y, Z, 1, n, kz, X1, YI, ZIIA!)J,ICN),DZ,IERI1)

X is an array containing xi, x,,, Y an array containing yi, • . • ,Y,, and Z anl array
containing zi, ... ,z,. IAD, is an array of (dimension (In or larger, IENI) an array of
dimnensioo n , and I!)Z an array of dimension 2 x n. It is assumed that IA1).J and lEND
contain the triangulation givn by the soubroutine TI' ,IES l, and that l)Z contaillis the
partial derivatives comiput•ted by ( IRAI)(;' or C(RA!)L,.

It, is a- uixmed 1iihat, F(X, Y) is to be evallnattcd at (x,,)y ) for t I, .. , I a j I
AX I is an array containing x.1, .. ,, xt, Y I an array containing Yi , ,Y,,,, and iI a i
dim[nsional array of dimroension k- x im where kz '- F. I[IE H is a variable. Whem '-4'VA 2
is called, if no errors are detecte(I thlen IIERR is .i(,t to ,). AlIso F("x, y)) is co( iplted a4,d
stored in ZI(i,j) for i 1, .. ., f and j I, ... ,v .

Erro; Return. IICHI? I ifit -i 3,1 I, in , r kz - f, mnd 'I1 t if1t1c datai potii

(S.r, y,) (1 I, .. 71i) are, colliuiear.

Programming. SF'VA[,2 is a driv r for the suhbroutine INTI I N'I'INTUI pl,,y~s thi
I ~~~~stbrotitins (;!kADLI,I(1,(; NI'"], SFA'100I'I(M,,T(), SHOtT(;,'l THFlNl),,and TVAI, IN'!IWI'!

wa.s written hy Robert J. Itenka ( ilversity ,,f North '1'xLa•, [)ijior, 'xat)

r? )r



WEIGHTED LEAST SQUARES FITTING WITH POLYNOMIALS
OF N VARIABLES

Le {(n' j ~ ,.,i be a set of f~ distinct, points, ZI . ., Zt be the
corresponding function values to be approximated, and wl, . ~be positive weights.
Then for any nonnegative integer II)EG where (n!1IDEG) < 'l the subroutines MFIT and
DMFIT are available for obtaining the coefficients of the unique polynomial F(xi, ... ,x,~)

of degree IDEG which m-inimizes tv r4 (x ., ,r, z, z1 '. Also, the subroutines

MIEVAL and DMEVAL are available for computing this polynomial. MFIT and MEVAL
yield single precision results, arid [)MIT and DMIEVAL yield double precision results.

CALL MFIT(n, IDEG, m, £, X, kx,Z, W, R, IEI,IWK,XVK,fIWK,LWK,
"oMI W K,1wIK)

CALL DIVFIT(n, IL)ICG, II, f, X, k.' , Z1 WV, 1?, 1lZl,IW&1',WK,LIXK,LAVK,
N1IIw K, m w!h

It is assumed that n > I and f ..X is anl x n rinatrix whose t 'h row contains the

point (li, .. . , x$); I.e., X(I*,j) X,' for ' 1., t'arid 1 I, n ,~. The argument
kx is the number of roiws lit the dinitensior, staternwn t for X lin the calling programi. Z is anl
array containing zi, ... , zt and W an array c ,iit am inrg ivi, w. ; X and Z art! modified

by Ole rout,1ne.

Remark. For IDEG '- 0, (' ,j)Poly r01II iiils 1, .ri I X ,t x, X X I X2 art, needed for

at basis of the Space of polyloinilal )f de-grec I l)E(, '['lie basis polyniomiials are ordered.
Vor k I- , tblý degree k I baitsl polyitonjil k jtrettde t~w de-gree k polyniomijals. '[li
degree k basis jpolyiorinials an x, x,. whetre I it ' k - n.lor anly two such-

polyrioirials X , ... r, arid j-11 1r lt r be tie siiialli,ý;t inh-eger ,iidli thiat 1, / r Iicil
X" . ~ I precedIe-,r ... X whi('i I . 1,j

ll)LG arnd m1 Are v;iril)Ielt-. If IIO(U icitr .ie( roiitiiie ittehllijt.s to obtainl the

jpiolvriiirial 1''(11,*, ()1 dlegrcc l11F( whv Imil s thle le~st le;v~it sqwitre~z lit. Ot~herwise, if
U0 ( the O n It. Is L tri th;th t pit I arid thir~i thle first. ri ko -ftLsS lyiinoiialsd ;tre Itt) t

lpiedt to ohitajit Othe ea~st sinr:~ lit tli:t ( ttiii rt11 , 'rriiiic 1I 4:(; thle drglcc e J

dic polyritminia I,(xrl .1,,) ,thltt alietl tohl Tt llV inimitir of4Lsi jtolyiotiiiiai that aire

actuially usedý

1m Is an aLrrayN (if tliriieiiý1(11 1)~; 1~~.Am r z I

a\~I\ i n airray~ )f tIhiicir'lto 'li . 1\~ ih W %' 111 a t iFr- 'J Wiit-i 'IK1'

jthetlx iittIii Vm W I(j ItC,,) tIVY i k tt AJ~ .1W' k Ow Ah h lw idc (I - cLi;I i ll I~ setII(



Otherwise, if IDEG < 0 then let N m=r and 6 be the smallest nonnegative integer such
that ('-1-) >ý m. Then set

LIWK > 4N A- bn

LWK > 2N + na + I -± fN + - (N - 1)(N - 2).
_ 2

N is the maximum number of basis polynomials that will be used, and S is the degree of
the polynomial F(xi, ... ,x,,) if N basis polynomials are used.

MIWK and MWK are variables. MIWK is set by the routine to the dimension needed
for IWK, and MWK is set to the dimension needed for WK. MIWI( and MWK depend
only on n,f,IDEG, and mn.

If MFIT is called then X, Z, W', R, and WK are single precision real arrays. Otherwise,
if DMFIT is called then X, Z, W, R, and WI( are double precision arrays.

IER is a variable that reports the status of the results. When the routine terminates,
JER has one of the following values:

IER 0 The desired polynomial was obtained.
IER -1 Not all tht., basis poly nomiials could be osed. IDEG is the degree

of the polynomial obtained. This setting occurs when the problem
is not solvable or is too ill-conditioned for the requested degree.

IER I Only f basis pl~oyn~omials were used. A polynomial F(xi ,

was obtained which solves the equations F(X1 , ...... x

fo r I' 11 .
IER xc2 (Input error) II)FX-, 0 and Yn < 0.
IfoRi 3 (Input error) TL I or f.t 1,
IER 4 (Inplit error) IAWI( or LWI( is too sniall. Set, LIWK( -' NIWK

andl IWK -- MWK.

WVhien a..n imptit err-or is (letecte~l], the rout ilie imiiziediiitely tcriiiixate~s.

Remark. WVhen I E -~ I theun NI 12VALI or DIM)ICVA I.n iky Ie lised to corlipute the poly ii"-

iiiial obtailled.

Programmin~lilg. MFIII erply theO routitis ; ALLOT'I BASIZ, N.I'1ABIEUClJ~ N

I)INC('I)( I)S( ,LP t , l)S\I.I, MF. N mll D N1FIT' ;trv uimudifir tiniiý fly A 11. Niurris of
( ONSTR1, written fly Ihiemrd if. hi~rteI¾ (t f~riy 8 V.trl);in.Ih..,Itzrnk

(O)ntario ( Umier hIst it itt)

References.

(I l,~tes kl If i;id Jcz .I,'/ill !ki, A1 J1 , 'T ,-ýres Fifti lý .uuill ( )[010lm'u:~i .\1'uin

iOmm~iks," A( *j~f 7VI'r Matha .'oflJlart I I ( )!li '2()1 . IT.

II it Itxiit > n i' ACA1 l~iruii' Affitla.h ~ t't I (Jjl:l )l[I 21 -- ,



CALL. MEVAL((n, KL)EG, 6i, I, XI, kxi, ZI,IND,IWK,WK,LIWK,LWK,T)
CALL OMEVAt.(n, KDEG, ri, I, XI, kxi, ZI,IND,IWK,WK,LIWK,LWK,T)

MEVAL (DMEVAL) computes the polynomial obtained by MFIT (DMFIT), or a por-
tion thereof. Let iDEG and m be the output values given by MFIT (DMFIT).

The argument M is a variable. I;' KDEG < 0 then it is assumed that 1 < i < rn and
that the polynomial using the first Wia basis polynomials is to be computed. In this case,
the polynomial computed is the best least squares fit for the basis polynomials involved.

If KDEG > 0 then it is assumed that KDEG < IDEG, In this case, when the routine
terminates, ii = the number of basis polynom Is used. If Ii_ < m (which will be the case
when KDEG < IDEG), then the polynomial computed is the polynomial of degree KDEG
which is the best least squares fit.

Usage. If IER ± ±1 when MFIT(DMFIT) terminates, then t1 e sett:ig KDEG = IDEG
normally causes an error to occur since ih > m. Hence, if it is desired that the full
polynomial obtained by MFIT(DMFIT) be computed, no matter whether the value for IER
is 0 or 11, then KDEG should be assigned a negative value and fi = rn.

It is assumed that the polynomial is to be computed at the points (YI(i,.,(

for i 1, ... , . XI is an 1 x n matrix whose ith row contains the point (4-0t),
The argument kxi is the number of rows in the dimension statement for XI in the calling
program. ZI is an array of dimension i or larger. When the routine terminates, ZI(i)

contains the value of the polynomial at the point (Y(1),... , •4'i) for i = 1, ... ,

IWK and WK are the arrays obtained from MFIT or DMFIT. LIWK is the dimensi3n
of IWK and LWK the dimension of WK. T is an array of dimension n or larger that is a
work space for the routine.

If MEVAL is called then XI, ZI, WK and T are single precision arrays. Otherwise, if
DMEVAL is called then XI, ZI, WK and 7' are double precision arrays.

IND is a variable that reports the status of the re3ults. When the routine terminates,
IND has one of the following values:

IND -= 0 The desired computation was performed.
IND D= 1 (Input error) iii < I or ri > m.

IND 2--2 (Input error) n < I or t < 1.

Programming. MEVAL calls the subroutine MEVALI and DNMEVAL calls the subroutine
DMEVLI . MEVAL and DIMEVAL are modifications by A. It. Morris of EVAL, written
by ricd:hard 1I. Bartels (University of Waterloo) and John J. Jezioranski (Ontario Cancer
Institute).

|V2



EVALUATION OF INTEGRALS OVER FINITE INTERVALS

QAGS, QXGS, QSUBA, I)QAGS, and DQXGS are available for comreputing integrals
fb F(x) dx over finite intervals. The subroutines Q AGS and QXGS and the function QSUBA

yield single precision results. These procedures are adaptive. In such procedures, the
selection of the points at which the integrand is evaluated depends on the nature of the
integrand. DQAGS and DQXGS are double precision versions of the subroutines QAGS
and QXGS.

QSUBA is applicable only when F and its derivatives have no singularities in the closed
interval [a, b]. Otherwise, QAGS or QXGS should be used. These subroutines are appro-
priate when F(x) is continuous except possibly for a finite number of singularities. QAGS
and QXGS generally yield accurate results when any singularities which exist are 'ocated
at the endpoints of the interval [a, bj. However, if F has an exceedingly narrow spiku which
contributes significantly to the value of the integrai, then the subroutines may overlook the
spike and produce incorrect results. QAGS and QXGS normally have approximately the
same accuracy. QAGS uses less storage than QXGS, but it frequcntly requires considerably
more function evaluations than QXGS. Consequently, QXGS is recommended when the
integ;and F(x) is expensive to compute.

CALL QAGS(F, a, b,AERR,RERR,z,ERROR,NUI4,IERR,e,n, n,IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be real

numbers. The purpose of QAGS is to compute the integral f, F(x) dx. F need not be
defined at a and b, and it is not required that a < b. F must be declared in the calling
program to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used, and z is a
variable. When QAGS is called, z is assigned the value obiairied for I f, F(x) dx. The
subroutine attempts to obtain a value z which satisfies I1-- zI < max{AERR, RERR. j11}.
It is assumed that AERR > 0 and RERR > 0. If one wants accuracy to k significant digits
then set !.ERR =10-. If RERR 0 then it is assumed that machine accuracy is desired.

ERROR and NUM are variables. When QAGS terminates, ERROR is the estimated
absolute error of z and NUM the number of points at which F was evaluated.

IWK is an array of dimension e and WI( an array of dimension fml. IWK and WK are
work spaces for the routine. The input argument P is the maximum number of subintervals
in which the interval of integration may be partition -d, It is assumed that f > 1 and rn > 4f.
The argument n is a variable. When QAC S terminated, n -- the numrber of subintervals
that appe'ared in the partition. Norn ally n - 100.

IF, R is a variable that reports the status of the resli ts. When the routtine teriniiates,
IEIII lhaws one of the following values:

I l{l{ ..l. -- 0 The routine is satisfied that the integral h-as beeni conmputed to the

desired acc:nracy.

531



IER~R I 1he interval oif integration was partitioned into f stibintervals.
More su bintervals are nieedled to c~omnpute the integral to the de-.
.sirod accuracy.

IERR a;2 The integral has bee~n cornput~d, but because of rouiidoff error
Q.AGS is not, certain, of the wx;uracy of the re'ait. Th'e error may
he greater than tha4, reported. by E~RROR.

IERR caa3 Extremiely bad] iritegranol behavior occurs in the interval of inte-
gration. The routine is riot certain of the accuracy obtained.

IERR 4 The algorithmr does niot fonverge. It, is assurned that. the requested
accuracy cannot be achieved anid that the result is the hest which
can be obtained.

IERR cc5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR 6 (Input Error) Either f < 1, m < U~, AERR < 0, or R.ERR < 0.
In this case, the variables z, ERROR, NUM, and n2 are set, to 0.

Remark. NUM < 42(f -. 1) -+ 21

Algorithm. The 21 point Kronrod rule and E-algorithrf of P'. Wynn are used.

Programming. QAGS employs the subroutines QAGSE, QK2lF, QPSRT, and QELG.
These routines were developed by Robert IPiessens a~nd Elise de Doncker-Kapenga (Katholiek
Universiteit Leuven, Belgium), and modified by A. If. Morris and Los Alamos National Lab-
oratory. The function SPMPAR is also used.

Reference. Piessens, R., de Doricker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Vfrlag, 1983.

CALL QXGS(F, a, b,AERZII,REIRR,z,ERROR,IERiR,e,pi,m, n,IWK,WK)

F is a user &~fined function whose argurrerits arid values are assumed to be real

number:4. The purpose of QXGS is to compute the integral f,, F(x) dx. F inust be defined
at a and b, but. it is not required that a < b. F must be declared in the calling program to
be of type EXTERNAL.

AFERR and RERR are the absolute and relative error tolerances to be used, and z is a
variable. When QXGS is called, z is assigned the value obtained for .1 =~ f.' F(x) dx. The
subroutine attempts to obtain a valua z which, satisfies 1' -- zI < mnax{AERR, RE'RH I11}.
It is assumed ihat A~lti .> 0 and] RERR > 0. If onie wants accuracy to k significant digits
then set HERR =10- '. If RERR --- 0 then it, is assuti ed that inachinc. accuracy is desired.

E'RROR is a variable, When QXGS terminates, ERROR is thle estimated absolute
error of z.

IWK is an array of dimension iL and WK an array of dimensioni r. IWI( and W K are
work spaces for the routine. The inp~ut argument f is tiit maxinium minirber of su bin~terv'als

532



in which the interval of integration may be partitioned. It is assumed that f .> 1, p > 3f,
and rn > 46t The argument Yz is a variable. When QXGS terminates, n the number of
subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that rei"-rts the status of the results. When the routine terminates,
IERR h.,, one of the followir) cs;

IERR 0 The routine. ied that the integral has been computed to the
desired accu(

IERR 1 The interval iý ýgration was partitioned into f subintervals.
More subint( -v ý. re needed to compute tihe integral to the de-
sired accuracs,.

IERR 2 The integral hwi ýen computed, but because of roundoff eiror
QXGS is not ,wr of the accuracy of the result. The error may
be greater than reported by ERROR.

IERR 3 Extremely bad g grand behavior occurs in the interval of inte-
gration. The r is not certain of the accuracy obtained.

IERR = 4 The algorithii ,iot converge. It is assumed that the requested
accuracy canii achieved and that the result is the best %hich
can be obtain,

IERR = 5 The integral ma b! divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IIERR =:6 (Input Error). Either t < 1, ji < 3V, m < 46t, AERR < 0, or
RERR < 0. In this case, the variables z, ERROR, and n are set
to O.

Remarks.

(1) If F is unbounded at a or b, then set F(a) or F(b) to a dummy val:]e, say 0.
(2) The first 4V locations of WK serve the same purpose for QXGS is for QAGS. Filictional

values are stored in the remaining 42f locations of WK.

Algorithm. The recursive monotone quadrature formulas of P. Favati, (. Lotti, and F.
Rornani, and the c-algorithm of P. Wynn are used.

Programming. QXGS employs the subroutines QXGSE, QXCPY, QXLQM, QXRUL,
QXRRD, QPSf{T, and QELG. QXt_-S is an adaptation of QAGS where the Gauss--Kronlrod
formulae have been replaced with the recursive monotone fornulae. QXGS was designed by
Paola Favati (Instituto di Elaborazione dJell' Informazione, CNR, Pisa), Grazia Lotti, and
Francesco Romaii (Universita di Pisa, Ital)), ard modified by A. 11. Morris. The function
SPMPAR is also used.

Reference. Favati, P., Lotti, G., and Romani, F., "Algorithm 691. Improving QUAI)PACIK
Automatic Integration IRoutines," ACM Traran.. Math Software 17 (1991), pp. 218 232

•' ~~QSU BA( F, a, b,ItEI~tl ,MCO) U N'l',lH{RdO tR,IlElRt)

fit(x) is a user defined fmi ctiom wihose arguments and values are assumed to be real

533



numb~ers. The purpose of QSUI3A is to compute the integral f~F(x) dx. F need riot be
defined at the points as and b. However, it is assumed that a < b. F must be declared in
the calling programn to be of type EXTERNAL.

RER Is the re!laluive eirror tolerance to be ziatisfied. It is assumed that RERR > 0. If
,.e wants a~ccuracy to k significant digits then set RLRR =-10-k.

The input argumrri!t MCOO lNT is the roaximunt number of points at which F may be
evaluated. It is recommended that MGOIJNT > 1000.

ERROR is a variabl~e that is set b, QSUBA. If the value of QSUI3A is not 0 then
ERROR is ar, estimate of the relative error of the computed result. Otherwise, if the value
of 9SUB A is 0 then ERROR is an estimate of the absolute error.

IERR is a variable that reports the status of the re-sults. When QSUBA terminates,
IERR has one of the following values:

IERR =0 The function QSUI3A is satisfied that the integral has been corn-
puted to the desired accuracy.

IEPR, 1 The integral has been computed, but QSIJBA is not certain of the
accuracy of the result.

IERR =2 F(x) was evaluated at MCOUNT points. More evaluations are
needed to complete tie computation of the int-gral.

IERR =3 The function QSUI3A cannot compute the Integral to the desired
accuracy.

If IERR 0 or 1 then the function QSUBA is 'assigned the value obtained for the integral.
If IERR 2 then QSUI3A has for its value the most recent acceptable partial estimate made
of the integral. Otherwise, if IiERIZ= 3, then QSUBA has for its value the best estimate of
the value of the integral that it can make.

Remark. QSUI3A assumies that F arid :Its derivatives have no singularities in~ the closed
interval la, bi. If this is not, the case then QAGS or QXGS should be used.

Algorithm. Gaussian (piad ratuir is employed.

Programming, QSUIAA calls the su brou. tine JJALD. QSUBA and QUAD ",ere written by
T'. N. L. Patterson (Queen's University, Belfast, Northern Ireland), an~d QSUI3A Nwas itiod-
ified by A. if. Morris. The function SPMPAR is uised.

Reference. Patterson , T.> N. L. ,"A Igori tbim for Nutomatic Numneric:al Integration Over aI
Finite Interval," Corn AC(VV1.16 (1973), pp. 6941 09.

CALL DASIa ,lRu1iZI.uolNMl~~j s ,WK

F(x ) is a user define~d fu niction whose argu ments wid1( valuecs are assuinned to be don ble
precision n unil)ers. IThe purpose of )Q A ( S is. to con pn ite th e Integral 1)dxTh
,.rguyir:.nnts a and 1) are doible precisioni ninninekr~s. F' need not, be (lefi:!ed at a and( b) and1



it is not required that a < 1, F must be declared in the calling program to be of types
DOUBLE PRECISION and EXTERNAL.

AERR and RERR are double precision numbers and z a double precision variable.
AERR and RERR are the absolute and relative error tolerances to be used. When DQAGS
is called, z is assigned the value obtained for I f' F(r) dx. The subroutine attempts
to obtain a value z which satisfies 1I - z[ < max{AERR, AERR. -II}. It is assumed that
AERR > 0 and RERR > 0. If one wants accuracy to k significant digits then set RERR -

10-'. If RERR = 0 then it is assumed that machine accuracy is desired.

ERROR is a double precision variable and NUM an integer variable. When DQAGS
terminates, ERROR is the estimated absolute error of z and NUM the number of points at
which F was evaluated.

IWK is an integer array of dimension f and WK a double precision array of dimension
rn. IWK and WK are work spaces for the routine. The argument t is the maximum number
of subintervals in which the interval of integration may be partitioned. It is assumed that
t > 1 and m > 4V. the argument n is a variable. Whern DQAGS terminates, n = the
number of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR 0 The routine is satisfied that the integral has been computed to the

desired accuracy.
IERR 1 The interval of integration was partitioned into t subintervals.

More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR 2 The integral has been computed, but because of roundoff error
DQAGS is not certain of the accuracy of the result. The error
may be greater than that reported by ERROR.

IERR 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR -= 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IIERR = 5 The integral may be divewgerit or it, nay converge extremely slowly.
In this case, the value for z may be meaningless.

I IERR - 6 (Input Error) Either t < 1, rn < 4V, AERR < 0, or HIERR < 0.
In this case, the variables z, ERROR, NUM, and n are set to 0.

Remark. NUM < 42(f -- 1) 1 21.

Algorithm. The 21 point Kronrod rule and (-allnjrithmi of 1'. Wy in are use(.

Programming. I)QAGS emlo)oys the routines DQA(;SE, [)QK21, i)Q• S'T, andl)QIK(G
These subroutines are double prrc:isiom versions ty A. If. Morris of the rotitm cs QA(; S 1
QK121 F, Q PS IVI, and Q E W . Tlhe funmc tion ) PM PAR is also used.

S•535



Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,

QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

CALL DQXGS(F, a, b,AERR,RERR,z,ERROR,IERR,t, p, m,nWKWK)

F is a user defined function whose arguments and values are assumed to be double
precision numbers. The purpose of DQXGS is to compute the integral f' F(x) dx. The
arguments a arid b are double precision numbers. F must be defined at a and b, but it is
rnot required that a < b. F must be declared in the calling program to be of types DOUBLE
PRECISION and EXTERNAL.

AERR and RERR are double precision numbers and z a double precision variable.
AERR and RERR are the absolute and relative error tolerances to be used. When DQXGS
is called, z is assigned the value ob&adined for I f: F(x) dx. The subroutine attempts
to 3btain a value z which satisfies II - zj < max{AERR, RERR. Ij}. It is assumed that
AERR > 0 and RERR > 0. If RERR = 0 then it is assumed that machine accuracy is
desired.

ERROR is a double precision variable. When DXQGS terminates, ERROR is the
estimated absolute error of z.

iWK is an integer array of dimension p and WK a double precision array of dimension
-m. IWK and WK are work spaces for the routine. The argument f is the maximum number
of subintervals in which the interval of integration may be partitioned. It is assumed that
f > 1, p >. 3, and m > 46f. The argument n is a variable. When DQXGS terminates, n -

the number of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR-= 1 The interval of integration was partitioned into f subintervals.
More subintervals are needed to compute the integral to the de-
sired accurac-y.

IERR = 2 The integral has been computed, but because of roundofF error
LDQXGS is not certain of 1,he accuracy of the result. The error
may be greater than that reported by ERROR.

IERR - 3 Extremely bad int grand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

I'.RR 4 The algorithm does riot converge. It is assurned that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

HIRA - 5 "Tlhe integral may be (livcrgent or it may converge extremely slowly.
In this case, the value for z may be imeaum irgless.

IE'R It 6 (Input Error). Either f , 1, p, . 3f, t - 46"' AEIRR <I 0, or
HEIM It 0. In this case, the variabihs z, EMIO( )It, and n are set
to 0.

-- 53G



Remarks.
(1) If F is unbounded at a or b, theo, set F(a) or F(b) to a dummy value, say 0.
(2) The first 4V locations of WK serve the same purpose for DQXGS as for DQAGS.

Functional values are stored in the remaining 42t locations of WK.

Algorithm. The recursive monotone quadrature formulas of P. Favati, G. Lotti, and F.
Romani, and the E-algorithm of P. Wynn are used.

Programming. DQXGS employs the routines DQXGSE, DQXCPY, DQXLQM, DQXRUL,
DQXRRD, DQPSRT, and DQELG. DQXGS is an adaptation of DQAGS where the Gauss-
Kronrod formulae have been replaced with the recursive monotone formulae. DQXGS was
designed by Paola Favati (Instituto di Elaborazione dell'Informazione, CNR, Pisa), Grazia
Lotti, and Francesco Romani (Universita di Pisa, Italy) and modified by A. H. Morris. The
function DPMPAR is also used.

Reference. Favati, P., Lotti, G., and Romani, F., "Algorithm 691. Improving QUADPACK
Automatic Integration Routines," ACM Trans. Math Software 17 (1991), pp. 218-232.

537



EVALUATION OF INTEGRALS OVER INFINITE INTERVALS

The subroutines QAGI and DQAGI are available for computing integrals over infinite
intervals. QAGI yields single precision results and DQAGI yields double precision results.
QAGI and DQAGI are adaptive routines.

CALL QAGI(Fa,MO,AERR,RERR,zFRROP, ,NUM,IERR,f,rn,n,IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be real
numbers. The argument a is a real number, z is a variable, and MO may be 1, -1, or
2. When QAGI is called, z is assigned the value fo F(x) dx if MO = 1 and the value
f -oo F(x) dx if MO - -1. Otherwise, if MO = 2 then z is assigned the value f 00 F(x) dx.
If MO 1 ±-I then F need not be defined at a. Otherwise, if MO = 2 then a is not used. F
must be declared in the calling program to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used. The
subroutine attempts to obta:n a value z which satisfies I f F(x) dx-zl •. max{AERR,RERR.
If F(x) dxj}. It is assumed that AERR > 0 and RERR > 0. If one wants accuracy to k
significant digits then set RERR = 10--k. If RERR = 0 then it is assumed that machine
accuracy is desired.

ERROR and NUM are variables, When QAGI terminates, ERROR is the estimated
absolute error of z and NUM the number of points at which F was evaluated.

IWK is an array of dimension t and WK is an array of dimension m. IWK and WK are
work spaces for the routine. The input argument t is the maximum number of subintervals
in which the interval of integration may be partitioned. It is assurned that f > I and m > 4£.
The argument n is a variable. When QAGI terminates, n = the number of subinterva!s
that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR I The interval of integration was partitioned into i subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR 2 The integral has been computed, but because of roundoff error
9QAGI is not certain of the accuracy of the result. The error may
be greater than that reported by ERROR.

IERR 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR It I 4 The algorithm does not converge. It i. assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

539



IERR = 6 (Input Error: Either f < 1, tn < 4, AERR < 0, or RERR < 0. In
this case, the variables z, ERROR, NUM, and n are set to 0.

Note. F may have a singularity at a when MO = ±1. However, it is recommrinded that no
singularities appear in the interior of the interval of integration.

Algorithm. The integrals are transformed as follows:

roo 1 dt

Ia F(x) dx= 0 F(a- I+/t)-2
SF ' i dt'

J F(x)dx = F(a 41- 1 0t

F(x) dx = [.F(-1 -t l1t) 4 F(1 - 1/t)]h

The transformed integrals are computed by the 15 point Kronrod rule and the f-algorithm
of P. Wynn.

Programming. QAGI employs the subroutines QAGIE, QK15I, QPSRT, and QELG. These
routines were developed by Robert Piessen3 and Elise de Doncker-Kapenga (Katholieke
Universiteit Leuven, fleverlee, Belgium), and modified by A. H. Morris and Los Alamos
National Laboratory. The function SPMFAR is al~o used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,

QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlkg, 1983.

CALL DQAGI(F,a,MO,AERR,RERR,z,ERROR,NUM,IERR,e,m,n,IWK,WK)

F(x) is a user defined function whose arguments and values are assumed to be double
precision numbers. The argument a is a double precision number, z is a double precision
variable, and MO may be 1, -- 1, or 2. When DQAGI is called, z is assigned the value
f ''F(x) dx if MCI 1 and the value f a F(x) dx if MO = -1. Otherwise, if MO =: 2
then z is assigned the value f F(x) dx. If MO ±I then F need not be defined at a.
Othexwise, if MO = 2 then a is not used. F must be declared in the calling program to 1e
of types DOUBLE PRECISION and EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used. The sub-
routine attempts to obtain a value z which satisfies If F(x) dx - zj < rnax{AERR,IzERR.
I j F(x) dxI}. It is assumed that AERR anid RERR are nonnegative double precisiOn nuni-
bers. If one wants accairacy to k significant digits then set RERR ....- 10 k. If itEpI 0
then it is assumed that machine accuracy is desired.

ERROR is a double precision variable and NUM an integer variable. When I)QAG(I
terminates, EIIRROR is the estimated absolute error of z and N UJM the numble)r of points at
which F was evaluated.

IWK is an integer array of dimnension f and WK a double precision array of diiinei.,isiP i
nm. IWK and WK are work spaces for the routine. The argument f is the inax niiiiui nitmbner

5'10



of subintervalc in which th,ý interval of integration may be partitioned. It is assumed that
t '-> 1 and m > 4V. The argument n is a variable. When DQAGI terminates, n= the number
of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into f subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error
DQAGI is not certain of the accuracy of the result. The error
may be greater than that reported by ERROR.

IERR 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR 6 (Input Error) Either t < 1, m < 4f, AERR < 0, or RERR < 0. In
this case, the variables z, ERROR, NUM, and n are set to 0.

Remarks. F may have a singularity at a when MO ± ±1. However, it is recommended
that no singularities appear in the interior of the interval of integraLion. DQAGI is a double
precision version of the routine QAG!.

Programming. DQAGI employs the routines IQAGIE, DQK151, DQIPSR'i, and DQELG.
These subroutines are double precision versions by A. II. Morris of the subroutines QAG(IE,
QK15I, QIPSRT, and QELG. The function DUIMPAR is also used.

Reference. Piessens, It., de l)Doncker-Kapeniga, K, Uberhulber, C. W., and Kahaner, 1). K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

---- *i



EVALUATION OF DOUBLE INTEGRALS OVER TRIANGLES

Let f(x, y) l)C a real-valued function definred on a triangle T. Then the subroutine
CUi3TRl is available for computing the integral IfTl f (X, Y) dx dy. CUBTRI is an adaptive
routine.

CALL CUBTRI( FT, E,MAX,A,ERR,Ti,W ,e,IDATA,RJ)ATA,IERR)

T is a 2-dirneren3ionaJ real array of dimiension 2 x 3 where T(l1j) and T(2,j) are the x
and y coordinates, of the jt" vertex of the given triangle (j =1, 2,3).

IDATA and RDATA are arrays provided by the user containing any integer or real data
needed for computing the integrand f (x, y). The arrays may be of any size. F is a user
defined real-valued function having the arguments T., yIDATA,RDATA. It is assumed that
F(x, y,lDATA,RDATA) =f (x, y) for any point (x, y) in the triangle of integration T'. F
must be declared in the calling program to be of type EXTERNAL.

The input argument c is the error tolerance to be satisfied, and A is a variable. When
CUBTRI is called, A is assigned the value obtained for ffT f(X,y) dx dy. The routine
attempts to obtain a value A whicli satisfies I ff f (X1y) dx dy - Al < maxte, ElAJ}. Thus
if JAI < 1 then c is an absolute tolerance, whereas if JAI > I then c is a relative tolerance.
If one wants k digit accuracy then set c = 0 -k. ERR is a variable. When CUI3TRL
terminates, ERR is the estimated error Iff f (x, tj) dx dy -Al of the result.

The input, argument MAX is the miaximumn number of points (X, Y) at which F may
be evaluated, and n is a variable. On an mnit,1al call to CUI3TRI, the user roiust set n 0.
When the routine terminates, ni will have for its value the number of points at which F wasý

evaluated. (For subsequent calls concerning the sanie integral, see below.)

W is an array of dimienrsion e for internal uise by the routine. Thle input argunireit i

specifies the ru1axinrurnll irrirriher rif srrht~riarrgles tin which tihe triangle of jIntegrat ion 'I' may
be partitioned, Tlhe subtriarrgle-s are stored )ii IV, each sublt riangle requiring 6 st~orage
locations. Thus f/6 is anl etM,1ate of thel( Ilaxinrurllin urriner of srtriarragles, that, finiglir hatve

to be0 storedl (f max{ 1,3r 3 I)} where tit (NIAX//H1 1)/4).

IICIR Is art integer vairiable that, reports i th statris of the resutlt-s. Wh~en Hthe ;-wit r(

terininates, 12(?lLSi one of tHie following vailues,:

]ER ICt ( 'I'he( integral wiL-vs riiie to thej( deiredl~( ;wcuiracy.

lIEHI I M1AX Vi toio sinall. F 1r111.t he e1valiatcd at, more Imiirts.

IlEi(I 2? le storage ,,paceI ~1' hisfll Its dlmivirskon f rinw't he iinl',LS

llElII, 31 Furtherr surhdivsiorlm of, tire su't riaglepls iroshi.This 1rorirlalY
ý)currs whewn f (r, vjj hiv;s ai -iryirlritv oY hit , rcrit)I . 'I'lie s-'d l o~ltml

urnfri oil te ,hiiiitd 1h' luIg thle slilgirloi it y ait a V'r 1te.

()h t It- t rliaigh't oif i W egr;kt oni I.

I E H ( P - i No u rrt It r iri iiprai rýit nit i it ; ii rr it 1)lcb I ll, (0, li (I If I lii I(ff

tirrir tii thu oinpi- ii f V )n Ow~ moi'iiLar hulrOhiAii (d V



IERR = 5 No further improvement in accuracy is possible because 4iubdivi-
sion does not change the estimated integral value A. Machine
accuracy has probably been reached.

After an initial call to CUBTRI, the routine may be recalled to continue the compu-
tation of ffT f(x, Y) dx dy. When the routine is recalled, the value of n obtained on the
previous call to CUBTRI is used for the next call. This value for n tells the routine where
computation should be resumed (using the information previously stored in W). At least
one of the values c, MAX, or t must be modified before CUBTRI is recalled. F, T, n, W,
IDATA, and RDATA may not be changed when the routine is recalled.

Remark. F may have a singularity at one of the vertices of T (such as in the case when we
are computing f X fo(X2 +3y 2) -'/ 2 dy dx). However. it is recommended that no singularities
appear in the interior of the triangle of integration.

Algorithm. The 7-point degree 5 rule of Radon and a new 19 -point degree 8 rule are used.

Programming. CUBTRI calls the function RNDERR and subroutine CUBRUL. Informa-
tion is saved in labeled common blocks. The block names are CUBSTA and CUBATB. The
routines were written by D. P. Laurie (National Research Institute for the Mathematical
Sciences, Pretoria, South Africa).

Reference. Laurie, D. P., "Algorithm 584, CUBTRI: Automatic Cubature over a Triangle,"
ACM Trans. Mfath Software 8 (1982), pp. 210--218.

-=ji I



SOLUTION OF FREDHOLM INTEGRAL EQUATIONS
OF THE SECOND KIND

If k(s,t) and f(s) are continuous real-valued functions for a < s < b and a < t < b,
then the equation to be solved is

x(s) - k s, t)x(t) dt f(s)

for a < s < b. Let K be the operator defined by (Kx)(s) f.' k(s, t)x(t)dt for any real-
valued function x continuous on [a,b]. Then (Kx)(s) is continuous for a < s < b, and
k is called the kernel of K. Also the above integral equation can be written in the form
(I - K)x = f where I is the identity operator. This equation has a unique solution if and
only if I - K is 1 - 1, in which case x = (I -- K)- 1 f. The subroutine IESLV is available
for computing this solution.

Remark. If Cea, b] is the normed space of real-valued functions x continuous on [a, bj
and having the norm jlx[j =- maxr{ zx(t)j : a < t < b }, then K is a compact mapping
C[a,b] --* Cfa,b] having the norm flKII --- ,ax f,' Ik(s,t)l dt.

S~a<m<b

CALL IESL%'(k, f, a, b,EI'S,IFLAG,S, X, f, N, M,NF,MF.N()RMK,WK,IERR)

It is assunied that a -. b, and that k(s, t) and f(s) are user defined real-valued friictioris
for a <- s, t < b. It is reconiniended that k and f Le several tinivrs continuously differentiable,.
The fijnctions k and f niust be dweclared in the cdli inig prograzii to bc of type E XTE'RNAL.

I'PS is a variable and IFI,A(G air iniipt argiiment w hose va' ocs are 0 anid 1. On inputl
El'S is the error tolerAi(ec that tlw solution milst satisfy. If II"LA( () their El'-s is ani
iabsolute tolerance. Ottherwise, if II"IA(; I then E',S is a relativye toleranc(. If lESIN
s-oI(s t, hc e(piatiohr, the(ir i (onotput EP)', i4 the est iniratel error of the re sult..

Before the remnraining argumiirer s .,x, f, c, . (al b' dbe lts-eri),,, it. i Ms ir'':,:kry 1) gix
b brief ourtlir,' of the algo)rithr i.'d Wh1eirIS,, iN ,alled th, integral C'qratoiii iH

;ltp)rn)xMiit' d by

i'()r a , - it). lhcre iw' ,, 41llt t,, , a tr 0• i ,,t, ilrlo tiil hiodcs ()if (;:tils . h •lM geildrte (. . i,
-'l'huis 1.t4iiiiiii is IVrest t :., ts ,il ,ijil • foir r , i tru•i s of the xd ,,. .ht( ,, '
',thiws ;Ir(e ( tiih ille l I i Silvi th!' tu'i tll.0 li

1h, 

(



for i = 1, ... ,n. This system of equations can be solved directly or iteratively. The following
algorithm is used:

(1) Set n -- 2 and go to (2).
(2) The n equations are solved directly. Then set n = 2n and solve the m equations (**)

iteratively. It the rate of convergence is sufficiently rapid or n cannot be increased,
then go to (3). Otherwise, set n = m, and go to (2).

(3) Here n remains fixed. Repeatedly double the value of m and solve the m equations (**)
iteratively until convergence occurs, vn cannot be increased, or the iterations diverge.

When the algorithm terminates, values xm(tt,n) will have been computed for the nodes
ti4,(i-- 1, ... ,m). Then from (*), x(s) r -,,,(s) can be irnterpolated for a < S < b.

N and M are input arguments, and WK is an array that is a work space for the
routine. N and M are upper limits for n and m in the algorithm, and WK is of dimension
5N 2 + 9(N + M) or larger. It is assumed that M > N > 2. Since n and m are always
powers of 2, N and M need only be set to powers of 2. However, this is not required.

S and X are arrays, and t is a variable. On input it is assumed that t > 0. If e > 0 then
S is assumed to contain f points si, .. . ,st at which the solution x(s) is to be evaluated.
Also X is assumed to be an array of dimension e or larger. When IESLV terminates, X
contains the valucs obtained for x(sj), .. ., x(st). (This is true irregardless of whether or
not the desired accuracy has been achieved.) Otherwise, if e = 0 then S and X are assumed
to be arrays of dimension M or larger. When iESLV terminates e = the final value obtained
for m, S contains the Gaussian nodes tit (i = 1, ... tf), and X contains the values obtained
for x(tt).

NF and MF are variables, When the routine terminates, NF is the final value for n
and NF the final value for rn.

NORMK is a real variable. If t > 0 on input, then when IESLV terminates, NORMK
is an approximation for iIKII. Otherwise, if t = 0 then NORMK =- 0.

IERR is a variable that reports the status of the results. When the routine terminates,
IERi has on3 of the following values:

IEIR 2-C 0 The solution was obtained to the desired accuracy. EPS is the
estiniate(d error of the resultL.

ILER . 1 The sclution was not obtained to the desired accurac). EPS is the
estimated error of the result.

IlRR.. 2 The solution was not obtained to the desired accurac•y. It is not
clear what accura-y (if any) hasi be,•n achieved. ElPS has b)eer, set
to 0.

IERR : 3 Th'le input value for EPS Nw;L too small. This may be due to ill-
conditloning of the intvgral equat io•,. The value of II'S was rc:iet
to a more realistic tole rance, w1i, i0 the solitio! satisfied.

I it;RR 4 ' lt s d utir(,.i x(.i) Wa.s o,btulled at the (Vaussian node' :.',( the de-
sireVd )r cis .llmow vur, the iottrpoiatýuij YrProcess may not, pre-

serve 0liis aceurany for the evaliuatiur rf X(S) for •ahler piuts :.

I'; S is the est iriit. usd error (4f the ,oluatiton at the ( aos:,iari rrilirs.

5, -}



IERR 5 The solution x(s) was not obtained to the desired accuracy at
the Gaussian nodes. EPS is the estimated error at these nodes.
The interpolation process may not preserve this accuracy for the
evaluation of x(a) for other points s.

IEUR 6 The input value for EPS was too small. This may be due to ill-
conditioning of the integral equation. The value of EPS was reset
to a more realistic tolerance, which the solution x(e) satisfied at
the Gaussian nodes. The interpoiation process may not preserve
this accuracy for the evaluation of x(s) for other points s.

Difficulties can arise, causing IERR > 1, when the integral equation is ill-conditioned or
the kernel k(s, t) is not appropriate for standard Gaussian quadrature. Ill-conditioning can
occur whe the operator I - K is near singular or the norm iJKil is exceedingly large.
Inappropriate kernels k(8, t) include those which are highly oscillatory or not continuously
differentiable for s and t in the open interval (a,b).

Programming. IESLV employs the subroutines lEGS, NSTERP, WANDT,LEAVE, ITERT,
LNSYS and functions RMIN,RNRM,CONEW. The routines save and exchange information
in labled common blocks. The bWock names are XXINFO and XXLIN. The routines were
written by Kendall E. Atkinson (University of Iowa), ard modified by A H. Morris. The
function SPMPAR is also used.

Reference. Atkinson, K. E.,"Ar_ Automatic Program for Linear Fredholm Integral Equa-
tions of the Second Kind," ACM Trans. Math Software 2 (1976), pp. 154-171.

517



"THE INITIAL VALUE SOLVERS - INTRODUCTORY COMMENTS

Let y'(t) f(t, y(t)) denote a system of n ordinary first order difFerential equations

where f(t, y) (fl (t,y), ... , f,(t, y)). Assume that y(a) is known. Then for b -A a the sub-
routines ODE, BRKF45, RKF45, GERK, SFODE, and SFODEl are available for computing
y(b). These routines are adaptive variable step, multistep differential equations sohei's. The
remaining subroutines (RK and RK8) are one step procedures. Given the values y(t) and
h, the one step solvers compute a value for y(t + h). The problem of selecting a suitable
value for h is left to the user. Given y(a) and b, the one step solvers must be repeatedly
called to step along the interval from a to b. In contrast, given y(a), b, and error tolerances
that are to be satisfied, the adaptive solvers continually adjust, their step size (and possibly
order) as they automatically step along the interval from a to b.

The adaptive subroutines differ in their capabilities. ODE, BRKF45, RKF45, and
GERK are recommended for nonstiff equations, and SFODE and SFODE! for stiff equa-
tions. If one does not know whether the equations are stiff, then ODE should be tried.
ODE maintains greater accuracy than the other subroutines, and it notifies the user if the
equations appear to be stiff. ODE, BRKF45, RKF45, and GERK are able to handle mildly
stiff problems satisfactorily, but SFODE and SFODE1 are the only subroutines that can be
used for solving extremely stiff problems.

If the equations are nonstiff, then ODE and BRKF45 should first bt. considered for
solving the equations. If accuracy to 10 or more digits is needed then GDE should be used.
Otherwise, if accuracy to 8 or fewer digits is desired and the derivative evaluations are
inexpensive, tbea BRKF45 may be the most efficient subroutine for solving the problem.
BRKF45 normally requires more derivative evaluatioas than ODE, but its overhead is less
than that for ODE. The nonstiff solvers RKF45 and GERK may also be used if accuracy to 8
or fewer digits is desired. However, these routines are not recommended since interpolation
is not employed (see the output comments below).

When the user specifies error tolerances to be satisfied, normally he is inter,!sted only in
the global error (the error of y(b)). However, the adaptive subro.utines employ the tolerLnces
for controlling local error (the error generated at each step in the interval from a to b). No
attempt is made to control the pr( ressive erosion of accuracy that can occur when the steps
accumulate. GERK is the only su oroutine that estimates the global error. This subroutine
employs the sanie Runge-Ktiita-Fehilberg formulae used by RKF45. t ERh is 2-3 timels
slower than RKF45, but it is more accurate. RKF"45 and BR!3KFI,5 take roughly the same
aniounit of time, and have approximately the sam'ie arccuracy.

Output Considerations. Generally, when the equa Ions y'(1) - f(ty(t)) are to he solved
and y(ao) is known, then sola tionis will he needed at a sequenice of poiit, a, , a,,ý If
OD)F, BhRKF45, SF()I)E, or SFD l)lEI is used, theO the closeitss of the output point.s (1,
should be of oo concern. The subroutines partially Ignore a, j I i the seh(c.i-Wn of the stiep

size w',ou going from a, to a, 1 l t. th.h:. d' Oey step ahI;g the int( ;vtl c , v. (, largea;:,
steps that are appropii jat (ac("cura'y and (,lhicieny ;re the priue concerns). Noriuially a, I
will be pAssed iII the pro'cess If (, •it tht!n a qluick i werpol;a n y'iey Is the(h. doir(ld

S~5,19



result for y(ai+1). Thus, the process of solving the equations at a,- I when y(a,) is known
may require that no steps be taken (ai*. may have been passed on a previous cail to the

routine), or it may requ1ire that one or more steps be taken.

The situation is considerably different when RKF45 or GERK is used. Since these
subroutines do not have an interpolatioa procedure, they must select a step size so as not
to bypass ai+i when going from ai to ai+l. Thus, the output points a, may be so close to one
another that inordinately small step sizes are required. If this occurs then the performance
of RKF45 and GERK may deterioicate dramatically. The subroutines notify the user when
this occurs.

4•



ADAPTIVE ADAMS SOLUTION OF
NONSrIFF DIFFERENTIAL EQUATIONS

Let y'(t) f (t, y(t)) donote a system of n ordinary first order differential equaLions

where f(t, y)= (fi(t, y),., f,(t, y)) and y(t) = (y (t), . ,,(t)). Assume that y(a) is
known. Then for b - a the subroutine ODE is available for computing y(b). ODE is
recommended for nonstiff equations. The algorithm used is a variable order, variable step
Adams pr.dictor-correct,:r procedure.

CALL ODE(F, nm, Y, T, IOUT,i(tERR,AERR,IND,WK,IWK)

The argument F is tho name of a user defined subroutine that has the format:
CALL F(t, Y, DY)

Y and DY are arrays of dimension n. On input Y contains the values y1 (t),... ,y, (t) for the
argument t. F computes the derivatives yi(t), . y,' [(t) using y'(t) = f(t, y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

WK is ap array of dimension 100 + 21n or larger, and IWK is an array of dimension
5 or iarger. WK and IWK contain information needed for subsequent calls to ODE.

't is assumed that a :bL 6. The argumnent V of ODE is an array of dimension n, and

the arguments 7T,RI2..,:RR,ARR,1ND are variables. (TOUT need not be a variab!e.) When
ODE is initially called, it is assumed that:

7• :-: a

TOUT 22 b
Y(1), ... Y(n) contain the values yj (a), ... ,,(a)
RERR the relative error tolerance to be satisfied
AERR the absolu.e error tolerance to be satisfied
IND .. -_±1

It is preferable, both for efficiency and accuracy, that O[F, be perraitted to step along the
axis from a to b using the largest steps that are appropriate. This is what is done when
IND is set to 1. If NI) =7 1 then ODE will step along the axis, possibly pa-sairg b and
going ns far as the point a t- 10(b - a). If b is passed, then the solution for the equations

at b is obtained by interpo!ation. However, INI) 1 cannot b)e used if the ecoiations are
not defined 1,t all poincs between b and a --- 10(b a). In a situation such iýs this, when
iniegration cannot be permitted to step internally past TOUT, IND) nmst be set, to - t. If
IND -- --i then .t Ai required that the subroutine F be defined at 1 U)T. flowever, F need
not be deiired at points t pJt TO UT. If the equations y'(t) :- f(1, y(t)) are nit. defined at

t - TOUT, th(rm it should suffice to !et F" set each I)Y(i) 0: wi(-ni t .. IO)U. A solution
(if one exists) will be obtained by extrapoiatimo.

If INl t is positive (nigativc,), then when OE)) terininates IN1) will have been reset by
ODE) to one of the values 2,3,1,5,C,7(2, 3, 4, -5, 6, 7). Tlihes val ,es have the followingSlmeaniitgs:

IND) . 2 The equati2ions have been smlved al. T(lOUT. T' nflw h!-s 6he value
"T") I( f' I i0 d Y cont•lf-'s th ut.i(.)' ii0 T(OWI ,l.

IND) -:i 3Th er.t'o, tleraIce! Fl'M( and At IMI are ti, smiiall., T is set. tL

the point, choscst t, 1O"O ' for wLich the equatiflJ'i were solved

i 5 5



and Y contains the solution at the point. RERR and AERR have
been reset to larger acceptable values.

IND = ±4 MAXNUM steps were performed.1 More steps are needed to reach
TOUT. T is set to the point closest to TOUT for which the equa-
tions were solved and Y contains the solution at the point.

IND = ±5 MAXNUM steps were performed. More steps are needed to reach
TOUT. T is set to the point closest to TOUT for which the equa-
tions were solved and Y contains the solution at the point. The
equations appear to be stiff.

IND = ±6 ODE did not reach TOUT because AERR = 0. T is set to the
point closest to TOUT for which the equations were solved and Y
"contains the solution at the point.

"IND= 7 No computation was performed. An input error was detected. The
user must correct the error and call ODE again.

If IND = ±3,±4,±5 then to continue the integration just call ODE again. Similarly, if
IND = ±6 then reset AERR to be positive and call ODE again. In these cases do not modify
T, YIND. The output values for these parameters are the appropriate input values for the
next call to ODE. However, AERR and RERR may always be modifed when continuing an
integration.

If the equations appear to be stiff (i.e., if IND = ±5) then ODE may not be suitable
for solving the equations. In this case it is recommended that a routine designed specifically
for stiff equations be used.

Whenever IND = 2 occurs, then the equations have been solved at TOUT = b. WK
and IWK contain information that can often be reused in continuing along the axis and
solving the equations at a new point c. To continue the integration, normally one need only
"reset TOUT to the new value c and call ODE again. Do riot modify T, Y,IND. The output
values for these parameters are norinally the appropriate input values for the next call to
ODE. The one exception is when the equations are not defined at points past c. If this
occurs, then one should also reset the output value IND = 2 (from the last call to ODE) to
the input value IND = -2 for the next call to ODE. If IND is reset to -- 2, then integration
will not proceed internally past the new TOUT when ODE is recalled. In this case, the
subroutine F need not be defined for points past TOUT. However, it is required that F be
defined at TOUT.

If after going from a to b, ODE is recalled to continue the integration and solve the
equations at a new point c, then it is important that IND be set to ±2 for the next
call to ODE. Setting IND to -- I causes the integration procedure to be restarted, thereby
eliminating the information being saved in WK and IWK. Restarting not only can take more
time, but also can lead to less accurate results. If IND) is set to ý! 2, then the integration
procedure restarts itself only if the direction of integration is being reversed or IND) wa,
negative when OD)E was last recalled. T'I direction of integration is reversed whein b does
riot lie between a and c.

IFl'ich step normiIlly re(Iuires two cau Is to the mu brut Ie F. (C rrenttIy the internW pit rameter MAXNIIM

is Not at 500.

552



If one has a choice between setting IND to be positive or negative, then always set IND
to be positive. Extrapolation is normally involved when IND is negative. The extrapolation
can require more time and be less accurate than the procedures employed when IND is
positive.

Input Error*. IND - 7 when one of the following conditions is violated:

(1) n > 1
(2) T j TOUT
(3) RERR > 0 and AERR > 0
(4) RERR and AERR are not both 0
(5) 1 _< INDI < 5, or IND= ±6 and AERR > 0
(6) When continuing an integration, the input value for T is the output value of TOUT

from the previous call to ODE.
The last condition is automatically satisfied if the user has not inadvertently modified T.

Error Control. Assuming that ODE has obtained the correct value for y(t), let e, denote the
error generated in the computation Y(i) of yj(t+h) for i = 1, . .. n when ODE steps from t
to t + h. The routine attempts at each step to maintain the accuracy Ei(e 1 /w,) 2 < 1 where
wi =RERR IY(i)j+AERR. When this criterion is satisfied, then leil !5 wi for i= 1,... ,n.
This criterion includes as special cases relative error (AERR = 0) and absolute error (RERR
- 0). However, if AERK = 0 and Y(i) = 0 for some i, then wi = 0 and IND = ±6.

When going from T to TOUT, ODE continually adjusts its order and step size so as
to maintain accuracy at each step. However, no attempt is made to control the progressive
erosion of accuracy that can occur when the steps accumulate. Since the erosion of accu-
racy can be significant, at times one may wish to double-check the results by rerunning the
problem. If this is done, then in the second run ask for greater accuracy.

Programming. ODE employs the subroutines DE1, STEPI, and INTRP. These routines
were written by L. F. Shampine and M. K. Gordon (Sandia Laboratories). The function
SPMPAR is also used.

Reference. Shampine, L. F., and Gordon, M. K., Computer Solution of Ordinary Dif-
ferential Equations, W. II. Freeman and Company, San Francisco, 1975.

553



ADAPTIVE BLOCK RKF SOLUTION OF NONSTIFF
DIFFERENTIAL EQUATIONS

Let y'(t)z= f (t, y(t)) denotc a system cf it ordinary first order differential equations

where f(t,y) - (f,(t,y), ... ,f,,(t,y)) and y~t) = (y(t),.,Assume that y(a) is
known, and that f is defined and continuous on the interval from a to TEND. Then for any
b in this interval the subroutine BRKF45 is available for computing y(b) and its derivative
y '(b). BRKF45 was designed for solving ncnstiff differential equations when derivative
evaluations are inexpensive and the accuracy requirements are low (8 or fewer significant
digits). The subroutine employs the Cash block Runge-Kutta-Fehlberg procedure.

CALL BRKF45(F, n, Y, 7T,TOUT,,TE•ND,DY,RERI.R,AERR,IND,WK,IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Y,DY)

Y and DY are arrays of dimension n. On input Y contains the values yi(t), ... ,y, (t) for the
argument t. F computes the derivatives y',(t), . .. , y'.(t) using y'(t) = f(t, y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

WK is an array of dimension 6 + 9n or larger, and IWK an array of dimension 5 or
larger. WK and IWK contain information needed by subsequent calls to BRKF45.

The arguments Y and DY of 13RKF45 are arrays of dimension n, and the arguments T,
RERR, and IND are variables. (TOUT, TEND, and AERR need not be variables.) When
BRKF45 is initially called, it is assumed that:

T:=a

TOUT= b
TEND = end of the interval of integration (TEND V- a)
Y(1), ... ,Y(n) contain the values yi(a), ... ,y,,(a)
RERR = the relative error tolerance to be satisfied (RERR > 0)
AERR = the absolute error tolerance to be satisfied (AERR > 0)
IND =- ±1

For efficiency, B1RKF45 will step along the interval (in 2-step blocks) from a to b, using the
largest steps that are appropriate. IF INI) --- 1 then only a single 2-step block will be
taken. Otherwise, if IND - 1 then BRKF45 will step along the interval, possibly passing
b (but never passing TENI)). Uf b is passed then the solution for the equations at b will be
obtained by interpolation.

On output 7T is set to the point closest to TOUT for which the equations were solved,
Y contains the solution y(7') at T, anrd DY contains the derivative y(T) at 7'. Also, IND
reports the status of the results. BRKF45 sets IND to one ef the following values:

IN1) 2 Either the equations were solved at TOUT (in which case, T :tow
has the value TOI.)UT), or TO 1'lUT was beyond TE'IN D) and the equa-
tions were solvedt at 'TEtNI) (iII which case, 7' n ow has the value
'IE N )),

INI) 2 A single 2 step block in thie direc tion of 'TUJ'IT was takel.u

S5r55



INI) 3 The error tolerance iERIII wvas too small, REiC!,RR h LS been reset
to a larger acceptable value.

IN 1) 4 18000 derivative evaluations (involving approximately 2000 2 stop
blocks) were performed. More derivative evaluations are needed
to reach TOUT1.

INT) : 5 BRKF45 did not; reach TOUT because AERR .. 0, AERR must
be made positive.

INI) 6 Too much accur.cy was requested. RERR or AERIR must be
increased in value.

IND 7 An input error was detected (see below).

If IND 2 and T now has the value rOUT, then the equations have been solved at
TOUT = b. The arrays WK and IWK contain information that can be reused in continuing
along the interval from b to TENI) and solving the equation at a new point c. To continue
the integration the user need only reset TOUT to the new point c and call BRKF45 again.

If IND =: -2 then to continue the integration another 2-step block just call BRKF45
again. In the single 2-step block mode (IND = -1, -2) the user must keep in mind that
each step taken is in the direction of the current TOUT. Upon reaching TOUT (which is
indicated by IND = 2 and T = TOUT), the user may define a new TOUT and set IND =
±2 for further integration.

If IND - 3 or 4 then to continue the integration just call BRKF45 again. However if
IND = 5 then the user must first reset AERR to be positive before BRKF45 can be recalled.
If this is not (lone then the run will be terminated by a STOP instruction! If IND = 6 then
it is required that IND be reset to ±2 and that AERR or RERR be increased in value, If
this is not done then the run will be terminated by a STOP instruction.

If after going from a to b, BRKF45 is recalled to continue the integration and solve
the equations at a new point c, then it is important that IND be set to ±2 instead of
±1. Setting IND = ±1 causes the integration process to be restarted, thereby eliminating
the information being saved in WK and IWK. Restarting wastes time and is norn.aliy not
needed. The only exceptions are when the direction of integration is reversed or TEND
is modified. Then the integration must be restarted. (TEND must be modified when the
direction of integration is reversed.)

The purpose for the argument TEND is to ensure that no integration is performed p)ast
this point. This is important since F may not be continuous at TEND, or F may not be
defined beyond TEND. When thc equations are solved at TEND (which is indicated by IND
=- 2 and T - TEND), then rio 'urther integration can be performed. It is always assurned
that T -# TEND on input.

Notes.

(1) T, n, WK, IWK must never be modified on a continmation call to IIRKF45. I lhwever,
AERR and RERtZ may be modified at, any time.

(2) When continuing an integration, on" may switch from the standard miultisti'p riode
(IND) 2) to the sligle 2 step block mode (INI) 2) when It is ,omIvenicIt to (1o so.

556



Input Errors. IND -. 7 when one of the following errors is detected:

(1) ,, < 0
(2) T = TEND
(3) Either AERR or RERR is negative.
(4) TOUT and TEND are in opposite directions from T.
(5) IND= 0 or lINDJ > 7.

If (2) occurs then integration cannot be continued. Otherwise, the error must be corrected
and IND reset to ±1 (or ±2 when the previous call was a continuation call). If this is not
done then the run will be terminated by a STOP instruction when BRKF45 is recalted.

Error Control. When going from T to TOUT, BRKF45 continually adjusts its step size
so as to maintain accuracy at each 2-step block. However, no attempt is made to control
the progressive erosion of accuracy that, can occur when the steps accumulate. Since the
erosion of accuracy can be significant, at times one may wish to double-check the results
by rerunning the problem with BRKF45 or ODE. If this is done then in the second run ask
for greater accuracy.

Programming. BRKF45 employs the subroutines RKFC and EXTRA. These routines wcre
written by J. R. Cash (Imperial College, London), and modified by Desmond J. Ifigham
and A. H. Morris. The function SPMPAR is also used.

References.

(1) Cash, J.R.,"A Block 6(4) Runge-Kutta Formula for Nor,nstiff Initial Vadue Problems,"
ACM Trans. Math Software 15 (1989), pp. 15-28.

(2) Higham, D.J., "Remark on Algorithm 669,"ACM Trans. Math Software 17 (1991),
pp. 424-426.

-) 7



ADAPTIVE RKF SOLUTiON OF NONSTIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f, (t,y), . . ,f,, (t, y)) and y(t) = (y, (t), .. ., y (t)). Assume that y(a) is
known. Then for b $ a the subroutine RKF45 is available for computing y(b). RKF45 was
designed for solving nonstiff differential equations when derivative evaluations are inexpen-
sive and the accuracy requirements are low (less than 8 significant digits). The routine
employs the fourth-fifth order Runge-Kutta-Fehlberg formulae.

CALL RKF45(F,n,Y,T,TOUT,RERR,AERR,IND,WK,IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Y,DY)

Y and DY are arrays of dimension n. On input Y contains the values yl(t), ... , y,"(t) for the
argument t. F computes the derivatives yi(t), ... , y'(t) using y'(t) f(t, y(t)) and stores
the results in DY. F must be declared ip the calling program to be of type EXTERNAL.

WK is an array of dimension 3 + 6n or larger, and IWK is an array of dimension 5 or
larger. WK and IWK contain information needed for subsequent calls to RKF45.

The argument 1Y of RKF45 is an array of dimension n, and the arguments T, RERR,
IND are variables. (TOUT and AERR need not be variables.) When RKF45 is initially
called, it is assumed that:

7'= a

TOUT = b
Y(1),...,Y(n) contain the values y1(a), ... ,y,,(a)
RERR the relative error tolerance to be satisfied (REI{R 0)
AERR the absolute error tolerance to be satisfied (AFRR > 0)
IND = 1 1

Normally INI) - 1. However, if only a single step in the direction of TOUT is to be taken,
then set IND =.-- 1.

OilOn outpUt T is set to the point closest to TO'UT for which ihe equations wery solved,
and Y contains the sollution at T'. Al.,,)I NI) rel)orts the stat, us of the results t14 ts

IND) to one of the followimi values:

IND) 2 flh. eq nationis wvere successfiifly solved at, T()iT. 7' ,,)w i as the
value TO VT.

INI) 2 A single step in the direction of TO')U1T'1' waiv taken
IN[) 3 The error tolhranc, BEIM l was too small. HE lIi{ asLi beel reset,

to a lhtrger .c(:eltathle value.
IND) 4i :3O(X) drivative evahilation),s wvre jirformctt. i!M)re deriv;ivei vv;ye -I !l~~~tat.low)l.; atre ncededt to( rv,;t ii To'(IT•'.

INI) 5 Vh K( ".V did not r(,ach 'l()i T I)est.,, A 1J k AIM;lit nvýt, hie

INI) 6 Too IIInh I I(1 rac; i has hoe rt(lU d(St .l Ah-IMh I)- HFIl mkiit It,
iw 8rt'.5111 il l III

S5 ¶



IND 7 The closeness of the output points is restricting the natural step
size choice.

IND 8 An input error was detected (see below).

If IND = 2 then the equations have neen solved at TOUT = b. The arrays WK a:id
IWK contain information that can often be reused in continuing along the axis and solving
the equations at a new point c. To continue the integration the user need only reset TOUT
to the new point c and call RKF45 again.

If IND = -2 then to continue the integration another single step just call RKF45
again. In the single step mode (IND = -- 1, -2) the user must keep in mind that each step
taken is in the direction of the current TOUT. Upon reaching TOUT (which is indicated by
IND being set to 2), the user may then define a new TOUT and set IND to ±2 for further
integration.

If IND = 3 or 4 then to continue the integration just call RKF45 again. However, if
IND = 5 then the user must first reset AERR to be positive before RKF45 can be recalled.
If this is not done then the run will be terminated by a STOP instruction! If IND = 6 then
it is required that IND be reset to ±2 and that AERR or RERR be increased in value. If
this is not done then the run will be terminated by a STOP instruction.

If IND = 7 then the user should switch to a routine (such as ODE or BRKF45) which
performs interpolation. If the user insists on continuing the integration with RKF45 then
it is required that IND be reset to ±-2 before RKF45 is recalled. If this is not done then the
run will be terminated by a STOP instruction.

If after Voing froii a to b, RKF45 is recalled to continue the integration and solve
the equations at a new point c, then it is important that IND) be set to ±12 i ,stead of
-1- 1. Setting IND -1 1 1 causes the integration process to be restarted, thereby eliminating
the information being saved it, WK and IWK. Restarting wastes time and is normally riot
needed. The one exception is when the direction of integration is to be reversed. Then thie
integration rmust be restarted.

Notes.

(1) A ERIl and REIRM canl beo moddified each time that RbK.F45 is called.
(2) Wihen i(otinling an integrrti•)l, oile may switch fronii the. statilard inlmltistvp mod0(e

(INI) 2) to the nt, st,1ep modet1 (IND) 2) whenevr it. is ,o- oiviient to (i, so.

Input Errors. INI) 8 occulrs willl (wit, of the follow il c('o1(iititol•l is Vi•lkttd:
(I) ,, I
(2) 7'T OU''(tT whie, INID/ I
(3) VI1 RRl . 0) r, ,,\,;{1 .RI?
(.4) IMI) 1 1, i 2, 3, 1, .. ,

If 1 INI) 8 H n I1i ( u nit r• t -l h i, i(or ctud i(i10 INiD reset wto Io ! ,I (o)r i 2 ittth i ) tin ire ,'I".s
.111 \W"Li I cont 1 1i i t'llatiun ll). If I hI1it Ii I it )I Il ti it, I tI t I ti c ri t A I;I iet t r i i i i ;tt , t \ I I)T( )hP

ttIt.-fl I t IIt) I I NS ItI I, I." is- re ;l, It



Error Control. When going from T to TOUT, RKF45 continually adjusts its step size so as
to maintain accuracy at each step. Assuming that RKF45 ha3 obtained the correct value
for y(t), let ej denote the error generated in the computation of yi(t + h) for i = 1, ... , n
when RKF45 steps from t to t + h. Then at each step the error is contro!led so that

leI < lyi(t)l + ly,(t + h)I RERR + AERR
2

for i = 1, ... , n. However, no attempt is made to control the progressive erosion of accuracy
that can occur when the steps accumulate. Since the erosion of accuracy can be significant,
at times one may wish to double-check the results. This can best be done by comparing the
results obtained by RKF45 with those obtained by ODE or GERK. If ODE is used then
ask for greater accuracy. However, if GERK is used then the current error tolerances can
be used. GERK is more accurate than RKF45, and it estimates the global error generated.

Programming. RKF45 employs the subroutines RKFS and FEHL. These routines wer9-.
written by H. A. Watts and L. F. Shampine (Sandia Laboratories). The function SPMPAR
is also used.

References. Shampine, L. F.,and Allen, R. C., Numerical Computing: An Introduction,
W. B. Sanders, Philadelphia, 1973.

mkt



ADAPTIVE RKF SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS
WITH GLOBAL ERROR ESTIMATION

Let y' (t) f(t, y(t)) denote a system of n ordinary first order differential equations
where f(t,y) (f]i (t,y), .. ,f,- (t,y)) and y(t) = (yj (t), ... ,yy, (t)). Assume that y(a) is
known. Then for b =/ a the subroutine GERK is available for computing y(b). GERK was
designed for solving nonstiff differential equations when derivative evaluations are inexpen-
sive and the accuracy requirements are low (less than 8 significant digits). The routine
employs the fourth-fifth order Rringe-Kutta-Fchlberg formulae. GERK estimates the accu-
racy of the solution y(b).

CALL GERK(F, n, Y, T, TOUT,RERR,AERR,IND,GERROR,WK,IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t, Y, DY)

Y and DY are arrays of dimension n. On input Y contains the values yi (t), ... ,y(t)

for the argument t. F computes the derivatives y' (t), . - . , y'(t) using y'(t) = f(t, y(t))
and stores the results in DY. F must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension 3 + 8n or larger, and IWK is+ an array of dimension 5 or
larger. WK and IWK contain information needed for subsequent calls to GEltK.

The argument Y of GERK is an array of (dimension n or larger, and the arguments 7'
and INI) are variables. (Tl O(T, RElIR, AEIM need not be variables.) When ( ERK is
initially called, it is a.suimed that:

TOUT b
Y (I),... Y(n) contaiI! the values y, (a), .. ,y, (a)
RE•RI{ the relative error thrance to be sati•sfied (vdI';I{: 0)
AER 1I the al)sol)1te erro)r tLolerTan'e to be satistied (AERI 0 €))
INI) I 1

Normlaly INI) I. Hlowever, if ()nly a.single stft) in the dirt (ti• T o Tfl'tI is to he t)aken
tlit'h l s• t, I NI) .

(,E;lPl()lt is anr array f(If( rlk' r II i n 1 )11 largerI (' I )- II I 'I is set t, t tnflint, c .s 4 to
'T'()tJ'l' for which the e iationw() ere is olv ed, V it]in the VsoIlut, ioni at '', ;c.iid (1h 1 1( ;I()l(rI

is an vst, i iia.,v (,f the error ()f 1'i( ) f,)r i I, Yi. A :) IN I) ritj rts the ., t I ,,f Hit

resiult.s. ( l .l( ets IND) to oro' (of the follkw),ng vatlus':.

INI) 2 'lThe v(s latwwi((n were siiitssfll' siolved at 'l'()tM 1T T nitw h;La lhe

INI) ? A single ,st('p ii th, kirti( l , of l()tOUT' WL ,
IN D) :1 9()(x)1 d,.ri.',.Ltivc c,%a •;th Llit -iw t .,•r, jwrfc~rr d ~ %1h)r(- durivtitlivc e.v;•

r1toils a 1r t ' hCu ,l tO) filh I( )t T
IN D) .t (;1':lýt\ (15 i 1( 11 10' ()t ' A ] H [11111 I . w



IND -- 5 Too much accuracy has been requcsiled. AERR or RERR nnust be
i-icreased in value.

IND - 6 The closeness of t0.3 output points is restricting the natural step
size choi:e.

IND = 7 An input error was detected (see below)

If IND : 2 then the equations have been solved at TOUT = b. The' arrays WK and
IWK contain information that can often be reused in contihiing along the axis and solving
the equations at a new point c. To continue the integr,3tion the user need only reset TOUT
to the new point c and call GEP.K again.

If IND -2 then to continue the integra'Iicn another single step just call GERK again.
In the singlh, step mode (IND = -1, -2) the user must keep 'n mind that each step taken
is in the dii'ection of the current TOUT. Upon reaching TOUT (which is indicated by IND
being set to 2), the user may the-n define a new TOUT and ?et IND to ±2 for further
integration.

If IND - 3 then to continue the integration just call GERK again, However, if IN)
-i then the user must first reset AERR to be positive before GERh caa be recalled. If this
is not done then the run will be terminated by a STOP instruction! If IND - 5 then it is
required that IND be reset to .±2 and that AERR or, iRERR be increased ii, value. If tt1 s
is not done then the run will be terminated, by a STOP instr, ,tion.

If IND -= 6 then the user should switch to a routine (such as ODE or BRKF45) which
performs interpolation. If the user insists -n cor'zinuing the integration with GERK then
it is required that IND be reset to ±-2 before GERK is recalled. Fr this is iuot dcnre then the
run will be terminated by a STOP instruction.

If after going from a to b, GERK is recalled to continuc the integiatioln and solve
the equations at a new point c, then it is important that IND be set to ±2 instead of
±1. Setting IND - ±1 causes the ,itegration process to be restarted, thereby eliminating
the information being saved in WK and IWK. Restarting wastes time aud is normally not
needed. The one exception is when the direction of integration is to be> , eversed. Then the
integration must be restarted.

Notes.

(1) AElýIR ari:t Rlllt can be modified each time that G(EIK is called.
(2) When continuing an integration, one may switch frorn the stindari niltistep mode

(INI) 2) to the one step mode (INI) 2) whenever it is ,verueitt. to,( do4 so.

Input Errors. IND' 7 occurs when one of the following c(1d(tiotis is v ioý;t'd:

(I) n > I
(2) 7 / TOT W whn, INi. I N 1
(3) R EIM H 0 aid AERI ?>
(1) INI) f 1, 1.2,3,4. 7

If INI) 7 then the error mnust ibme, rrectl, awid INI) rr(. t to i i k)r t'2 Ih(. YW ti trc V ,IS,
ce'll was.• a C ntil .,•I<dn 'xll). If trhi. Is 1i()|, d{i- then( hie run A ill e teltniltiate.J hy . "!

5Fi.1



instruction when GERK is recalled.

Accuracy Considerations. Error control in GERK is almost identical t' that in RKF45.
One minor difference is that GERK never employs relative error tolerances less than 3.10-11,
Swhereas RKF45 never employs relative error tolerances less than 10-12.

The only significant difference between GERK and RKF45 is that GERK generates
two solutions for the differential equations, whereas RKF45 generates only one. Let y(t)
and 5(t) denote the solutions generated by GERK at point t. One of these solutions, say
y(t), will frequently be identical to the sotution computed by RKF45. When going from t
to t + h, the step size h is selected so that. y(t + h,) satisfies the local error criterion. After
a suitable h is found then GERK takes two steps, ew-h of length h/2, to generate 5(t + h)
frorr. y(t). When GERK terminates, say at point T, then the g(T) solution is stored in the
Y array and GERK estimates the error of ý,(T) to be (yi(T) - 9,(T))/31 for i = 1,...,n.

Progx•'mmiu'g. GERK employs the subroutines <JxERKS and FEHL. These routines were
written by H. A. Watts and L. F. Sharnpine (Sandia Laboratories). The function SPMPAR
is also used

Reference. Shampine, L. F., and Allen, R. C., Numerical Computing: An Introduction,
W. B. Saunders, Philadelphia, 1973.

56



ADAPTfIE SOLUTION OF STIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f(t, y(t)) denote a system of n ordinary first order differential equations where
f(t,y) = (f,(t,y)! .,.. ,f,(t,y)) and y(t) = (y,(t), ... ,y,,(t)). Assume that y(a) is known.
Then for b 4 a the foilowing subroutiaes are available for computing y(b). These routines
are designed for stiff differential equations. The algorithm used is a variable order, variable
step backward differentiation procedure.

CALL SFODE(F, n,Y,',TOUT ,INFO,RERR,AERR,IER,
WK,t,IWK,mRD,ID)

RD and ID are arrays lefined by the user containinrg any real and integer data that is
needed for computing J. These arrays may contain any information that the user desires.
The argument F is the name of a user defined subroutme that has the format:

CALL F(t, Y,DY,RD,ID)
-Y and DY are arrays of dimension n. On input Y contains the values yi(t), ... y,(t) for the
argument t. F computes the derivativle y'(t), .. , y' (t) using y'(t) f(t, y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

INFO is an array of dimension 4, WK an array of dimension t, and IWK an array of
dimension m. WK and IWK are work spaces for the routine, and INFO is an array defined
by the user containing information on how the equations are to be treated.

,NFO(1): Set INFO(I) = 0 on an initial call to the routine. On a continua-

tion call INFO(1) = 1.
INFO(2): Normally INFO(2) = 0. However, INFO(2) =1 when the inter-

mediate output mode is desired (see below).
INFO(3): When INFO(3) - 0, :3FODE proceeds from a to b using the largest

st=:ps that are appropriate. If b is passed then y(b) is obtained by
interpolation. However, for some problems the routine cannot be
permitted to step past a point TSTOP because y'(t) = f(t,y(t))
is discontinu,. is or not defined beyond TSTOP. When this is the
Scase set INFO(3) = 1 and WK(l) = TSTOP.

INFO(4): When proceediig from a to b, the n x n Jacobian matrix Jf(t) ---
(f3i/dy,) is computed and stored in WK. Normally it is assumed
tha'

INFO(4) -0
I > 250' 10n-+ n2

rn > 55 f- n.
11lowever, if Jf(t) is baaded for all t, having the lower and upper
1,aal widths it, and r,, where 2rn, I in, < it, then the following
sei', p call he used:

INWKO(1) in,

lW K() ri,,

5,1;7



T, TOUT, RERR, and AERR are variables, and the argument Y of SFODE is an
array of dirnensiorn n. On an initial call to the routine it is assumed that

INFO(1) = 0

TOUT =b
Y(1),...,Y(n) contain the values yi(a), ... ,y,,(a)
RERR the relative error tolerance to be satisfied (RERR > 0)
AERR the absolute error tolerance to be satisfied (AERR > 0).

IER is a variable. When SFODE terminates T is the final point where the equatioru
were solved, Y contains the solution at T, and IER reports the status of tho results. IE4
is assigned one of the following values:

IER = I A step was taken in the intermediate output mode. TOUT was
not reached. To continue, call the routine again.

IER = 2 The solution at TOUT was obtained by stepping exactly to TOUT.
IER = 3 The solution at TOUT was obtained by stepping past TOUT and

then interpolating. On output T = TOUT.
IER = -- 1 500 steps have been taken. TOUT has not been reached. To

continue, call the routine again.
IER = -2 The tolerances RERR and AERR were too stringent. RERR and

AERR have beea modified by the routine. The tolerances may be
further modified by the user if he desires. To continue, call the
routine again.

IER = -3 In this case AERR = 0. SFODE stopped when yj became 0.
INFO(1) was set to --i. To continue set AERR to be positive,
INFO(1) = 1, and call the routine again.

IER .--- 6 Convergence failed on the last attempted step. An inaccurate
Jacobian matrix may be the problem. To continue, restart the
routine by setting INFO(1) = 0 and call the routine again.

IER =- -7 Repeated error test failures occurred on the last attempted step.

The problem should be reexamined. A singularity may be present
in the solutian. To continue, restart by setting INFO(1) = 0 and
call the routine again.

IER < -- 33 An input error was detected (see below).

When IER > -2, then INFO(]) -- I on output.

When the equatiois are solved at TOUT (IER lt 2 or 3), intcgration can be continued

along the axis to solve the equetions at. a new point c beyond TOUT. To continue, one
need only set TOUT to the new value c and call the routine again. When continuing an
integration where INFO(I) 1, never modify T, Y, WK, IWK, INFO(3), and INFO(4).
However, INI'(.)(2), RERRl;. APEII.R., Ri), and l1) may be ji.odified at, aiqy time.

Intermediate Output Mode If' ome w"shles to ,tudy the behavI mr o., the ssolution y(t) as
the routine Acteps fromi 7' to ')'( )U, then sci, INl"O(2) T. Then Sl ODE)I wili stop after
each successful .itep (yiliding IERit 1) umi til TO(WIT i,• rIchc(. O)ne maiy switch from tie
,stA(dard miodeý of ofperatin (IN"( )(2) ()) to time iiaermiediate output mnode (INtF()(2)

o or visa vers, at arny time
it;*



Remark. The diagnostic IER .-- --1 does not state that 500 steps have been taken on
the current call to SFODE. On an initial call to the routine the step counter is set to 0.
On continuation calls, the counter continues to increwse until 500 steps have accumulated.
When IER .---I is reported, the counter is reset to 0, and only then does the step counting
begin again.

inpat Errors. IER is set to one of the following values when an input error is detected.

IER .33 n < 1
IER -34 RERR < 0
IER = -35 AERR < 0
-ER -36 The routine has been called with TOUT, but it has also been told

not to step past the point TSTOP.
IER -37 T = TOUT. This is not per.mitted on continuation calls.
IER -38 The user haim modified T.
TER -39 TOUT is riot beyond 7'. An attempt is being made to change the

direction cf integration without restarting.
IER . 40 Thi Jacobian mtrix is banded. However, m/ and mrn do not

satisfy 0 < mt < a• and 0 < rnu < n.
LER -41 i < 250 + I0n +n 2

TER = -42 f < 250 + I0n -- (2rnm + n,, + 1)n
I IER = -43 m < 55 - n
IER = -44 INFO(1) is incorrect.

After the error is corrected, set INFO(1) = 0 and call the routine again,

Error Control. Assuming that SFODE has the correct value for y(t), let e1 denote the
error generated in computing yi(t + h) for i = 1, ... , n when SFODE steps from t to t -- h.
rThe routine atternpts at each step to maintain the accuracy !Ej(ei/wj)2 < 1 where wi
RERR Jyj(t) -+ AERR. When this cribierion is satisfied, leil < /iw- for i z, .. .,n. This
criterion includes as special cases relative error (AERR : 0) and absolute error (RERR --
0). However, if AERR = 0 and yi(t) - 0 for some , then this criterion cannot be applied
and JER - -3 occurs.

When proceeding from T to TOUT, the routin-.ý continually readjusts its order and step
size so as to maintain accuracy at each step. However, no attempt is made to control the
progressive erosion of accui'acy that can occur when the steps accumulate. Since the erosion
of accuracy can be signifi,.ant, at times one may wish to double-check the results. If the
problem is nonstiff or mildly stiff fur an interval, then the best procedure is to compare the
results obtained by SFODE with those obtained by ODE for the interval. ODE normally
maintains greater accuracy than SFODE. hlovever, if the problem is extremely siff then
rerun the problem with SFO)1E. On the second rut), request greater accuracy.

Programming. SFOI)F, calls the s.,ibroutincs STFODE and ZZZJAC. SI •OI)L ermploys
the subroutines LSOI) , HSTI ARI, NTY D, S'l 01), CF'I), PAC, SINS, SGlAVA, S 1,GBSI,1
S(EFA. SGESL, SAX PY, and SSCAI, arnd the fun"oiis VNORM, VNWIMS, ISAMAX)
Si )OTP, and SPM IPA!R. The ronti~Nes Save adid excliange inform ahtiI iII it la nbled common
block having the bHock n am,•! 1) l lA)F I. I'PFO() I),; a moedification by A. 11 Morris of the

5f ;[J



subr-outine DEBDF, designed by L. F. Shampine and 1I. A. Watts (Sandia Laboratories).
DEBDF appears in the SLATE,. library. STFODE is a driver for a modification of the
code LSODE, written by A. C. flindmarsh (Lawrence Livermore Laboratory).

CALL SFODE1(F, ,, 1, T,TOUT,INFO,RERR,AERR,IEh,

WK ,,IWK Vm ,RD ,ID)

SFODE1 differs from SFODE only in the treatment of RERR and AERR. In SFODE1,
RERR and AERR are arrays of dimension n. RERR(i) and AERR(i) are relative and
absolute error tolerances to control the accuracy of the it solution component yi(t) for
i = 1I, ... ,n. Let e, denote the error generated in the computation of y,(t + h) from y (t)
when SFOI)E1 steps from t to t + h. Then SFODEI attempts at each step to maintain the
accuracy !-,i(e,/w,) 2 < 1 where w, = RERR(i)Iy,(t)j + AERR(i). When this criterion is
satisfied lei < V/iwt, for i = 1, .. ,n. However, if AERR(i) = 0 and yi(t) = 0 for some i,
then the criterion cannot be applied and IER = -- 3 occurs.

When IER references RERR and AERR, the settings for IER provide the following
information:

IER -2 The accuracy required by RERR and AERR is too stringent.
RERR and AERR have been modified by the routine. RERR
and AERR may be further modified by the user if he desires.
To continue, call SFODE1 again.

IER -- 3 SFODE1 stopped when yg became 0 and .A.ERR(0) = 0. INFO(1)
was set to -i. To continue set AERR(i) to be positive, INFO(1)
= 1, and call the routine again.

IER -- 34 (Input error) RERR(i) < 0 for some i.
IER -35 (Input error) AERR(i) < 0 for some i.

RERR and AERR may Lj modified on any continuation call to SFODE1.

Programming. SFODE1 calls the subroutines STFODE and ZZZJAC.

S570



FOURTH-ORDER RUNGE-KUTTA

Let y'(t) = f(t,y(t)) denote a system of n ordinary fir9t order nonstiff differential
equations where f(t, y) =. (f 1(t, y), ... , f,(t, y)) and y(t) = (yj (t), ... ,y, (t)). Assume
that y(to) is known. Then for a small real number h, the subroutine RK is available for
computing y(to + h). RK employs the standard fourth-order Runge-Kutta procedure.

CALL RK(n,T,h,A,F)

The argument F is the name of a user defined subroutine that has the format:
CALL 1'(t, Z)

Z is an array of dimensitn n containing the values yi(t), ... ,yn(t) for the ,rgument t. F
computes the derivatives y' (t), . . ,y' (t) using y'(t) f(t, y(t)) and stores the results in Z,
thereby destroying the original data in Z. F must be declared in the calling program to be
of typn EXTERNAL.

T is a variable having the value to and A an array of dimension 3n or larger. It
is assumed that A(!), . . . , A(n) contain the values yi(to), . . y , YI (to). If h 0 then RK
computes the derivatives y'(to), ... ,y'(to) and stores them in A(n + 1), ... ,A(2n). If
h :-4 0 then it is assumed that the derivatives yi(to), ... , y•(to) have aiready been computed
and stored in A(n + 1), .. ., A(2n). In this case, when RK is called, the values y1 (to +
h) ,y,.(to +- h) and derivatives y',(to + h), ... ,y'(to + h) are computed and stored in
A(1), ... A(2n). Also 7' is reset to the value to + h.

Note. The area A(2n + 1), ... , A(3n) serves as work space for the routine.

Example. Consider the equations
Sx'(t)- y(t)

---- y '( t) = -x (1 )
where x(0) 0 and y(0) =: 1. The following code may be used for solving these equations
at the points .01, .02, ... ,1.00, and storing the results in the arrays X and Y.

DIMENSION A(6), X(100), Y(100)
EXTERNAL FUN
T- 0.0
[1 .01
A(1) - 0.0
A(2) .0
A(3) 1.0
A(4)- 0.0
')O 10 I 1 1, 1oo

(CALIL RK(2,T,ll,A,F'JN)
X(1) A(I)

!0 Y(1) A(2)

"571



Here FUN may be defined by:

SUBROUTINE FUN(T,Z)
DIMENSION Z(2)
X = Z(1)
Y = Z(2)
Z(1) Y
Z(2) -X
RETURN
END

Note that the statements A(3) = 1.0 and A(4) = 0.0, which store the derivatives x'(0) and
y'(0) in A(3) and A(4), can be replaced with CALL RK(2,T,0.0,A,FUN).

Programmer. A.H. Morris.

572



EIGHTH-ORDER RUNGE-KUTTA

Let y'(t) f(t, y(t)) denote a system of n ordinary first. order nonstiff differential
equations where f(t, y) = (fI(t, y), . . , f,,(t, y)) and y(t) = (y,(t),. , y,(t)). Assume
that y(to) is known. Then for a small real number h, the subroutine RK8 is available for
computing y(to + h).

CALL RK8(n,T,h,YDY,WK,F)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t, Z)

Z is an array of dimension n containing the values yi(t),... ,y,(t) for the argument t. F
computes the derivatives y'(t), . . ,y'(t) using y'(t) f(t, y(,)) and stores the results in Z,
thereby destroying the original data in Z. F must be declared in the calling program to be
of type EXTERNAL.

T is a variable having the value to, and Y and DY are arrays of dimension n. It is
assumed that Y contains the values yl(to), ... ,yj(t 0 ). If h 7 0 then RK8 computes the
derivatives yi(to), ... I ,yn(to) and stores them in DY. If h 7/- 0 then it is assumed that the
derivatives V'(to), y' y(to) have already been computed and stored in DY. In this case,
when RK8 is called, the values yi(to + h), . . . ,y.(to + h) and derivatives y' (to + h), .

nYn '(to + h) are computed and stored in Y and DY, thereby destroying the original data in
Y and DY. Also T is reset to the value t o + h.

WK is an array of dimension 8n or larger that is used for a work space by the routine.

Algorithm. The routine employs formulae (8-12) given on p. 34 of the reference.

Remarks. RK8 is used in the same manner as the routine RK. RK8 takes more time and
storage than RK, but may be more accurate.

Reference. Shanks, E. B., "Solutions of Differential Equations by Evaluations of Functions,"
Math. Comp. 20 (1966), pp. 21-38.

Prograimmer'. A. II. Morris.

573



SEPARABLE SECOND-ORDER ELLIPTIC EQUATIONS
ON RECTANGULAR DOMAINS

Given a separable elliptic equation

a(x)u.,. + b(x)u,, + c(x)ti + d(i,)u,, +i e(y)u~, + f (y)u =g(x, y)

on the rectangle a, !• x < a2 ,b, <' y <b, where u is periodic in x or y, or u or its normal
derivative au/ein is given on each of the edges. For in, n > 1 let xi a, + (i - 1)h and

yj=bi + (j - J)k where h =(a 2 - a,),/(m -- 1), k =-(b2 - bi)/(na - i) == 1, ... , ,m,and
j =1, . , n. Then the subroutine SEPDE is available for computing u at the points (x,, Yj,)

CALL SEPDE(COFX,GOFY,g,ITYPE,BVAL,IORD,al, a2, m, b, 62, n,
U,ku,W, t,IND)

It is assumned that mn > 7 and n > 6. U is an m x n matrix. The argument ku is the
number of rows in the dimension statement for U in the calling programi. When SEPDE
i3 called, if the elliptic equation is solved then U (i, j) =u(x1 , yj) for i =1, . ,rn and

.71, .. ,n

The input argument LORD is the order of the approximation procedure to be used.
IORD may have the values 2 or 4.

The argument COFX is the name of a uiser defined subroutine that hia i the format:
CALL COFX(x, A, B, C)

A, B, and C are variables. COFX sets A = a(x), B -- b(x), and C - c(x) for the argument
x. COFX must be declared in the calling program to be of type EXTERNAL.

The argument COFY is the name of a user defined subroutine that has the format:
GALL COFY(y, D, E, F)

D, E, and F are variables. COFY sets B d(y), E =e(y), and F = f (y) for the argument
y. COFY must be declared in the calling program to be of type EXTERNAL.

The argument g is the name of a user defined function, where g(z, Y) gives the right
hand side of the elII1ptic equation for all a, < a2 ,bi < y < b2 . The argument g muit be
declared in the calling program to be of type EXTERNAL.

Btiindary Conditions. The edges of the rectang'ular dorriairt are labeled in a clockwise
manner as follows:

1edge I { (x,bi) a, < x < a2 }
i -: 2 4 edge 2 {(a 1,,y) lb1 < y <6b2}

Jedge 3 {(x, b2 ) ja, < x < a2 }
g= edgel- {(a2, y) bi Ky< b2 }

ITY P is an array of dirniensionl '. For edge i (t- 1, , 4), IY Ei)specifies the type Jf
boundary k-ondition on the edge. VITYPlE(i) mi ust be set by Lthe user to orie of the following
valuesi:

I I Y l1E() 1" it Is wassuified that u Is givenl on the edg(

.1,75



ITYPE(i) = 1 If i= 1 or i = 3 then uy is given on the edge. Otherwise, if i - 2
or i = 4 then u, is given on the edge.

ITYPE(i)=-I If i 1 or i = 3 then it is assumed that u is periodic in y; i.e.,

u(x,y.+.b2 -b 1 )= u(z, y) for all z,y. In this case ITYPE(i) must
be -i for both i = land i =3. Ifi = 2 or i= 4 then it is assumned
that u is periodic in x; i.e., u(x + a2 - a,, y) u(x, y) for all x, y.
In this case ITYPE(i) must be -I for both i = 2 and i = 4.

The argument BVAL is the name of a user defined function. BVAL(i, z, y) is defined for
any point (x, y) on edge i when ITYPE(i) = 0 or 1, where

Su(x, y) if ITYPE(i) = 0

BVAL(i, x, y) u.(x,,y) if ITYPE(i) = 1 (i = 1 or i = 3)

'u., u(x,y) if ITYPE(i) = 1 (i= 2 or i= 4)

The function BVAL(i, x, y) is ignored when ITYPE(i) -1. BVAL must be declared in
the calling program to be of type EXTERNAL.

W is an array of dimension t that is a work space. The argument £ is a variable whose
value depends on lORD, rn,n, and the types of boundary conditions used. Let V be the
largest integer < log 2 n and t= (v - 1)2v+2 + V + 14mr + 12n + 6. Then

t > eŽ if IORD 2.
i_> i1 + ,n if IORD =4.

When the routine terminates, t will have been reset to the actual amount of storage
needed.

IND is a variable that reports the status of the results. When SEPDE terminates, IND
has one of the following values:

IND = 0 The solution U was obtained.
INDi = -1 A constant (which is stored in W(1)) was subtracted from the

right hand side of the equation in order to obtain a solution U.
The solution is a weighted minimal least squares solution of the
original problem.

IND 1 (Input error) a, > a2 or b1 _> 52

IND 2 (Input error) ITYPE(i) $ 0,-_il for some edge i.
IND 4 The approximating linear system of equations is not diagonally

dominant. This cannot occur when 17 and n are sufficiently large.
Increase rn and n, and reset t.

IND 5 (Input error) ku < rn.
INI 6 (Input error) rn < 7.
IND- 7 (Input error) n < 6.
IND 8 (Ir:put error) lORD -/ 2,4.
INDI) 10 (Input error) a(x)d(y) _ 0 fof somne interior point (z, y) of the

rectaigle. This violates the assluiLl)ion that the equ ati(on im ellip-
tic.

IND I) I (Input error) F wa•s too sinall. F has been reset to the inii umnIMnn
ainonit of storage ii ,ede(d for W.

57W6



IND 12 (Input error) ITYPE(i) = -1 for edge I or 3, but riot for both
edges.

IND = 13 (Input error) ITYPE(i) = -1 for edge 2 or 4, but not for both
edges.

Precision. If lORD = 2 then the elliptic equation is approximated by a set of linear equa-
tions using finite differences. Otherwise, if IORD = 4 then the approximating equations
are obtained by deferred corrections. The most accuracy i3 achieved when ITYPE(i) = I
boundary conditions are not involved. For m, n > 100, 3-4 digit accuracy may be attained
when IORD = 2 and 7-8 digit accuracy when lORD = 4. When ITYPE(i) = I boundary
conditions are used, then for m, n > 100, 2-3 digits may be attained when IORD = 2 and
5-6 digits when IORD = 4.

Programming. SEPDE is an interface by A. H. MorriS for SEPELL, a modification of the
routine SEPELI described in the reference. SEPELI was developed by John C. Adams, being
supported (in part) by codes written by Paul Swarztrauber and Roland Sweet (National
(Center for Atmospheric Research, Boulder, Colorado). SEPDE employs the subroutines
PDEDGE, SEPELL, SEPEL1, CHKPRM, CHIKSNG, ORTHtG, MINSOL, TRISP, DEFER,
DXFN, DYFN, BLKTRI, BLKTR1, COMPB, PRODO, PRODP, CPRODO, CPRODP, IN-
DXA, INDXB, INDXC, PPADD, TQLRT0 and functions PSGF, BSRII, PPSGF, PPSPF,
SPMPAR. The routines exchange information in the labeled common blocks having block
names CBLKT and SPLP.

Example. Consider (l+x)2u,,--2(1+x)u +uYY 3(1-+x) 4 siny for 0< x < land IYj <- 7r

where u(0,y) - 4sin y Ij -< 7
u(1,y) = 16sin y

and u is periodic in y. This problem has the solution u -- (1 (I+ x)4 sin y. Let

ITYPE(1) 1
ITYPE(2) I
ITYPE(3) I
ITYPE(4) 0.

Then the following routines and functions may be used for describing the problem. (Il,.,re
g GVAL.)

SUHROUTINE COFX (X,A,B,C)
T = 1.0 f X
A T*T
B . 2.0*T'
C 0.0

RFYFURN
END

SU BRO.UTIMN ()FY (Y, I), ,F)

577



D=1.O
E = 0.0
F =0.0
RET"URN
END

REAL FUNCTION GVAL (X,Y)
GVAL = 3.0*(1.0 + X)** 4*SIN(Y)
RETURN
END

REAL FUNCTION BVAL (I,X,Y)
BVAL = 4.0*SIN(Y)
IF (I .EQ. 4)BVAL = 4.0*BVAL
RETURN
END

COFX, COFY, GVAL, and BVAL must be declared in the calling program to be of type
EXTERNAL.

Reference. Adams, J., Swarztrauber, P., and Sweet, R., FISHPAK: Efficient FORTRAN

Subprograms for the Solution of Separable Elliptic Partial Differentidl Equations,
Version 3. National Center for Atmospheric Research, Boulder, Colorado, 1978.

5 78



UNIFORM RANDOM S2LECTION OF VALUES FROM
A FINITE SET OF INTEGERS

Given the integers i3 and ib wh3re i0 < ib. Then the following subroutine is available
for selecting integers i where i. < i < ib. The selection is performed so that any integer i
is equally likely to occur w' 'I probability i/!m where m -: ib - i,, + i. Any integer i ma-
be selected more than onc When the number of selected values become large, then th,
mean and variance of the values approximate the mean and variance of the discrete uniform
distribution where

mean -- ia + (ic - /

variance i(m2 
- 1) /12.

CALL U RGET(n, a, ib, ix, L,IERR)

The argument n is the number of values to be selected, L is an array of dimension n
or larger, and ix and IERR are variables. On input, ix is an integer (called a seed) for
initializing the sequence of values. It is assumed that I < ix < 231 - 1. When URGET is
called, if no input errors are detected then IERR is set to 0 and n values -ire stored in L.
On output, ix is a neiv seed for selecting more values.

Errnr Return. IERR --- 1 ifn < 0, IERR - 2 ifti, > 4b or rn > 23 -- 1, and IERR =- 3 if ix
is not a proper seed.

Usage. A given seed alwavs iitiates the same sequence of values. Thus, the following two
sets of instructiois

(1) IX --- 7
(AILL 1JI{( I, I (3,o(,, I ,IX,lI,,ltIRR)

(2) IX 7
C'A L LI tUl (; ET (20,() I1,IX ,LI,,II ?I1I )

vinetate the sinic 3() vahiue, (0() ;lidl Y

Remarks.

(I) The Y 'i'le.t-q selected rI(ed bei diti r (t only when tni 2 2 1id 2 -e Ill.

(2) It, I. m wo-lInr I I ed that. I lie' 1 it t(,tr at c r i, et Iu c ii lcing i i.,i hi - d hlI All Hit Ieged rI , ig theI llIIer i ir

Prograrviii ii ig. ()r-igirialhy !crliiltoll l V .luhIi P/. ( righer \it.!i(ii 1) ) \ A I 1 ,i iils



UNIFORM RANDOM NUMBER GENERATOR

TIhe following subroutine~s are'available for generating a sequence of uniform variates in
the open interval (0, 1).

CALL URNG(ix,A,ri,IERR)
CALL DURNG(.ix,A, n,IEI{R)

A is an array of dirnensiion n or larger where n > 1. URNG is used if A is a real array
and DURNG is uwed if A is a double precision array.

The argument n is the number of variates to be generated, and ix and IERR are vani
ables. On input, ix is an integer (called a 8eed) for initializing the sequence of variates. It
is assamed that 1 < ixr < 2 31 - 1. When URNG or DURNG, is called, if no input errors are
detected then IERR is set to 0 and n uniform variates are stcred in A. On output, ix is a
new seed for generating more variates.

Error Return. IERR =1 if ni < 0 and IERR =2 if ix is not a proper seed.

Uaagc. A given seed always initiates the same set of variates. Thus, the followinig two sets
of instructions

(1) IX ::=103
CALL URNG(IX,A,30,jERR)

(2) IX = 103
CALL UR.NG(IX,A,20.IERR)
CALL URNG(IX,A(21),l0,ERR)

generate the same 30 variates.

Remark. ft is assumed that the integer arithmetic being used hanidles ai.1 inteers 1, in the
interval jij < 2ý"' 1.

Programming. Written by Linus Sclirage (University of Chicago). Adapted by A.lI. Morris.

Reference. Schrage, Linus, "A More Portable Fort-fan Randorn Numrber Generator,' A4CA
Trans. MathI Software 5 (1979), pp. 1,32-I138.



GENERATING POINTrS UNIFORMLY IN A SQUARE

Tr4e followiing subroutines are available for generating point.9 (XI, yi), ... ,(7n~, Yti) uni-
formly where0 ,'xi < Iand0< yi< Ifor each i.

CALL URNG2(ix,XY,n,IERRt*
CALL 0URNG2(ix,X, Y, n,IEhR)

X and Y are arrays of dimnension n or larger where n > 1. URNG2 is used if X and Y
are real ar.-ays, and DURNG2 is used if X and Y are doubie precision arrays.

The a\'ulnent n -iF t'e numnber of points to be generated, and ix and IERR are vani-
able-s. On Input, it is an iateger (called a seed) for initializing the sequence of points. It
is assumed 1hAt 1 < ix < - 1. When TURNG2 or DURNG2 is called, if no input errors
are detected then IERR is set; to 0 and n points are generated. The abscissas x1 , . .. I X," Of
the points are stored in X and t'he ordinates yi, y ,,y are stored in Y. On output, ix is a
new seed for gererating more poi.~s,

Error Return. -IT!R = 1, if n < 0 and IERR =2 if ix is not a proper seed.

Usage. A given seed always initiates the samne set of points. Thus, the following two sets
of instructions

(1) IX -4
CALL. URINC ~XXY3,E

(2) IX 4
CALL UjRNG2(IX ,X , Y ,20 ,IERR)
CALL URNG2(IX,X(21),Y(21)j,1OIERR)

g,,ýnerate the same 0"0 points.

Remark. It is assumed that the integer arithmetic being used handles all integers i' in the
viterval 11'1< 231 - 1.

Prograrnmirng. Written by Linus Scbrage (University of Chicago). Adapted by A.11. Morris.

Refercrilie. Schrage, Linus,"A More Portable Fortran Randlom Number Generator," ACM
Trans, Mfath Software 5 (1979), pp. 132- 138.

583



GENERATING POINTS UNIFORMLY IN A CIRCLE

The following subroutines are available for generating points (xi, 91), ... (x, y.) uni.-
fc,rrnly where xý -F y? < 1 for eachl i.

CALL RCIR(n,ix,X,Y,IERR)
CALL DRCIR(n,ix,X,Y,jERR)

X and Y are arrays of din-nsion n o' Xirg6' ýVLIrt i > RCIr used if X and Y
re real arrays, and DRCIR is used if X a!,ýd Y ate double p:ý,c'siori arrays.

The argument n is the n-imier of points to be generated, a' d ix and IERR are vari.-
ables. On input, ix is an integer (called a seed) for initializing the sequence of points. It
is assumed that 1 < ix < 2"1 -- 1, When RCIR or DRCIR is callcd, if no input errors are
detected then IERR is set to 0 and n points are generated. The absciss3 xl ... , z,• of the
points are siored in X and the oidinates yl, .. , y, are stored in Y. On outpot, ix is a new

seed for generating more points.

Eervm' Return. IERR z I if n -" 9 and IERR = 2 if ix is not a proper seed.

Usage. A given seel alvwys initiates the same set of points. Thus, the following two sets
of instructions

(1) IX = 7
CALL RCJR(30,IX,X,Y,IERR)

(2) IX ---7
CALL RCIR(20,IX,XZ,Y,!ERR)
CALL RCIR(10,IX,X(21),Y(21),IERR)

generate the same 30 points.

Remarks.

(1) RCIR and DRCIR never geneiate the point (9,0)
(2) It is assumed that thc ,t, ger arithx:net'c being usted handles all iptegers i in th,.: intervaj

SIll< 23 -- 1.

Algorithm Poirwý- are ., ed ijuforniti in th,! square { (x,y/) 1 and ',; <
The procedure termnlnat,:., A, .w'i n po•,nts have been obtained wvhich lie in ttic unit chicle

Progr'•mming. (L c.,I (he ,'.Jb"out;ne ItCI jlt 1and I)lRClR c:.ls • subrnu.ii; ' 0...

C IR I TIhese rou'kiiies I v~ y A. Hi. Mw11iis,



NORMAL RANDOM NUMBER GENERATOR

Consider the normal distribution having the distribution f'Inction

F1X - [" e-0•/2 dt

for all real x. This distribution has mean 0 and standard deviation 1. The following
subroutines are available for generating normal va;iates from this distribution.

CALL RNOR(ix,A, n,IERR)
CALL DRNOR(ixA, n,IER1)

A is an array of dimension n or la::ger where n > 1. A is a real array if RNOR is used,
and A is a double precision array if DRNOR is used.

The argument n is the number of variates to be generated, and ix and IERR are vari-
ables. On input, ix is an integer (called a seed) for initializing the sequence of variat•es. It
is assumed that 1 < ix < 231 -- 1. When RNOR or DRNOR is called, if no input errors are
detected then IERR is set to 0 and n variates are stored in A. On output, ix is a new seed
for generating more variates.

Error Return. IERI = I if n < 0 and !E RR = 2 if ix is not a proper seed.

Algorkthm. The pola-r algorithm is used.

Usage. Normal variates ar- generated in pairs. If n is odd then the last, variate c,.,+,!
generated is not stored. Also, a given seed always initiates the same sequence of variates.
Thus, if we consider the following three sets of instructions

(1) IX: 5
CALL RNOR(1X,A,30,1ERR)

(2) iX ýý5
CALI ItNO R(IX.A, 10,IEIZ.•)
C(ALL, RNOR(IXA(ii),)20,IEl1)

(3~) 1 --
CALL !INOR(IX,A,9,lE R)
CALL RINOR.(|X,A(10),2,),1ERlm)

thel we note that (i) and (2) generate Lhe s'am 30 norinal variates. A Lo (3) generates 29
of, the ,vI x'a 30 iatc,, skipping the 1(' variate, The rlasoii for th i i L; 0iat,. request it(I )

for 9 ve, riates i 1e0s o0 vhriat, :.t o he ,•ecrated, )tly 9 of whhjhi arc uosed

587

•'•."•'rb, I••"• W ''•1::• •.'||t"r •r •t •"* • • •t":V•'l•>•• •'•'•-'•'a



Remarks.

(1) If a,,, .. a,, are variates from RNOR and vi x0 + uai for i -1 .,n and a -> 0,
then vi,..., vn are variates 'fromn a normal distribution with mean x0 and standard
dleviation tr.

(2) It is assumfed that the integer arithmetic being used handles all integers i in the interval
'il 5 231 - 1.

Programming. RNOR calls the subroutine RCIR1, and DRNOR calls the subroutine
DRGIRI. These routines are written by A. 1H. Morris.

Reference. Marsaglia, G. and Bray, T.A.,"A Convenient Method for Generating Normal
Variables," SI'AM Review 6 (1964), pp. 260-264.

CALL NRNG(ix,A,n,IERR)
CALL DNRNG(ix,A,n,IERR)

A is an array of dimension n or larger where n > 1, A is a real array if NRNG is used
and A is a double precision~ array if DNRNG is used.

The argument n is the number of variates to be generated, and I~x and IERR are
variablks. On input, ix is an int'eger (called a teed) for initialki~ng the sequence of variates.
It is e.ý-surned that 1 < ix < 23' - 1. When NP.NG i' DNRNG is called, :f no input errOrS
are detected then IERR is set to 0 and n variates are storei 1i~ A. On output, ix is a new
seed for generating more variates,

Error Return, T'ERfR z1- ii'YL <C. and IERR =2 if ix is net a proper seed.

Algorithm~. The Box--Mnl'r algori~hnl is used.

Usage, Normal variaucis are generated in pairs. The usage o6 NRNG and DNRNG is
identiral to the usage of IiNOI arid DRNOR.

Remnarks

(1) NRN(. and DNiIN(I requirc 15-25% mrore tirine than RNOR and L)RNOR.
(2) Rt is a:ssuoned that the intcger arithme~t1c. bding used handlcs all integers i in the interval

2j 231 -

P rog n mmiag. NRNG calls the subrooline UIRNG, an(d DN HNG calls the subroutine
'DURZNC( NRNG( anid 1)NIUNG were written by A, if. Mlorris.

tRefcmeaice. Box, ( P.arid Muller, %I. F>"A No,,e on the (Aeineratiori of R{andomi Norihal
l~ciac-,"Annal(Sh of MifitIh St.adi1tic,5 29 (19530), pp, 610-G 611

5 88



MULTIVARIATE NORMAL RANDOM VECTOR GENERATOR

Let A be a real symmetric positive definite matrix of order mn, det(A) be the deter-
minant of A (which must be positive), and pj= (pi, p.,m). C"onsider the multivariate
normal distribution having the density function

f__----_ _ _ 11 (- - A A _ (--)

for x =(xi, x.., ) where all xi are real. This distribut~ion has the covariance matrix
A and mean vector p. The subroutines NRVG and DNRVG are available for generating
variates x from this distribution when A is an arbitrary positive definite matrix. If A is a
diagonal matrix then the subroutines NRVG1 and DNRVG1 are also available for generating
"variates from the distribution.

CALL NRVG(MlO,ix,n, m, A, p, X~kx,IERR)
CALL DNRVG(MOixnin, A, ,XkxIERR)

It is assumed that m > 2. A is an array of dimension mn(m +- 1)/2 or larger containing
the positive definite matrix A in packed forf,' and p is an array of length m containing
the meian vector of the distribution.

The argument n is the number of vectors to be generated, and X is a 2-dimensional
array of dimension kx x n. It is assumed that kx > in.

N RVG is used if A, ji, and X are real arrays, and DNRIVG is used if A, p. and X are
double precision arrays.

MO is an argument which specifies if NRVG or DNRVG is being called for the first
time. On an initial call, MO = e0 and we have the following setup:

The arguments ix and IERR are variables. Oi input, ix is an integer (called a seed)
for initializing the sequence of vectors. It is assumed that 1 <' ix < 23, - 1. When NIZVG
or DNL{VG is called, if no input errors are detected then IE'VIR is set to 0 and n vectors x
are stored in X. The dist vector is stored in the j ocolumn Of X. On output, x is a new
,iced for generating more vectors.

Error Return. IDR 1-I if n < 0, IERR 2 if tn -< I or in > kx, RI = 3 If A is niot a
positive definite matrix, and WRII -= 4 if ix is riot a proper seed.

Oil an iveitial call to NheV or DNRVG, the lower triangular mratrix In the Clolesky
decomposition or A replaces the original datoa in A. if g It 0 then the routiene inay
be recalled with MO / 0 to generate riore vectors. If MO / 0 then. It is assumed that A
and Mn have not been modified by tie user. owever, rn, y, X, aid k may be d ifFere t.

See the sgenttsz Idl pmieand syniEietrR iwarri able s anI the .Oninrutiies r.n(S' VinteSg , DM( ca [s, al ed

OW i i s c t t sa< -

SorI)t•VGiscale, f o npu eros redeecedthn I'••Risse t 0an nvetos9



The routine employs the lower triangular matrix obtained on the initial call to NRVG or
DNRVG to generate n new vectors. As before, if no input errors are detected then IERR
is set to 0 and the new vectors are stored in X.

Usage. A given seed always initiates the same set of vectors. Thus, the following two sets
of instructions

(1) IX = 3
CALL NRVG (o,IX,30,M,A,Xo,X,KX,IERR)
IF (IERR .NE. 0) STOP

(2) IX = 3
CALL NRVG (0,IX,20,M,A,X0,X,KX,IERR)
IF (IERR .NE. 0) STOP
CALL NRVG (1,IX,10,M,A,Xo,X(1,21),KX,IERR)

generate the same 30 vectors.

Remark. It is assumed that the integer arithmetic being used handles all integers i in the
interval jil _• 2"' - 1.

Algorithm. The lower triangular matrix L in the Cholesky decomposition of A is computed,
"and n vectors z = (Zl, .. - ,Zm) are generated where the values zi are independent variates
from the normal di.•tribution with mean 0 and variance 1. The n variates x = Lz + A of the
multivariate normal distribution are then computed.

Programming. NRVG employs the subroutines RNOR, RCIR1, SPPFA, and function
SDOT, aad DNRVG employs the subroutines DRNOR, DRC1RJ, DPPFA, and function
DDOT. NRVG and DNRVG were written by A. H. Morris.

Reference. Anderson, T.W., An Introduction to Multivariate Statistical Analysis, John
Wiley and Sons, New York, 1958, pp. 5--27.

CALL NRVGI(MO,ix,n, n,A,j•,X,kx,IERR)
CALL DNRVG1(MO,ix,n,rn, A,p,X,kx,IERR)

It is assumed that rn > 2, and that A is a diagonal rnatrix whose diagonal elements are
positive numbers. A is an array of dimension rn or larger containing the diagonal elements.
and M is an array of dimension mn containing the mean vector of the distribution.

The argument n is the number of vectors to be generated, and X is a 2-dirnensional
array of dirnension kx x nt. It is assurned that kx -> in.

N I{VG I is used if A, p, and X are real arrays, wid I)NI{VG I is used if A, p, and X are
double precision arrays.

MO is an arguiuent which sipecifies if NRVCGI or l)NRVG I is being called for the firt

590



time. On an initial call, MO = 0 and we have the following setup:

The argument ix and IERR are variables. On input, ix is an integer (called a 8eed)
for initializing the sequence of vectors. It is aqsumed that 1 < ix < 23' - 1. When NRVG1
or DNRVG1 is called, if no input errors are detected then IERR is set to 0 and n vectors x
are stored in X. The jth vector is stored in the jth column of X. On output, ix is a new
seed for generating more vectors.

Error Return. IERR = 1 if n < 0, IERR = 2 if m < I or rn > kx, IERR = 3 if A(i) !_ 0 for
some i, and IERR = 4 if ix is not a proper seed.

On an initial call to NRVG1 or DNRVG1, the square roots of the diagonal elements of
the matrix are stored in A. If IERR = 0 then the routine may be recalled with MO 0 0 to
generate more vectors. If MO, i 0 then it is assumed that A and m have not been modified
by the user. However, n, p, X, and kx may be different. The routine employs the roots
obtained on the initial call to NRVG1 or DNRVG1 to generate n new vectors. As before, if
no input errors are detected then IERR is set to 0 and the new vectors are stored in X.

Usage. The usage of NRVG1 and DNRVGI is identical to the usage of NRVG and DNRVG.

Remarks.

(1) NRVG and NRVG1 generate the same vectors when A is a diagonal matrix.
(2) It is assumed that the integer arithmetic beiag used handles all integers i in the interval

l < 231 _- 1.

Programming. NRVG1 employs the subroutines RNOR and RCIRI, and DNRVGI employs
the subroutines DRNOR and DRCIR1. NRVG1 and DNRVG1 were written by A. H.
Morris.

591



EXPONENTIAL RANDOM NUMBER GENERATOR

For a > 0 consider the exponential distribution having the distribution function

-- =t
F(X)=-- xe- /dt- =l- e-x/G ( 0O).

a 0 k0

This distribution has the mean a and variance a'. The following subroutines are available
for generating variates from this distribution.

CALL RANEXP(n,a,ix,XIERR)
CALL DRNEXP(n,a,ix,X,IERR)

X is an array of dimension n or larger where n > 1. The argument a is a real number
and X a real array if RANEXP is used, Otherwise, a is a double precision number and X
a double precision array if DRNEXP is used.

The argument n is the number of variates to be generated. and ix and IERR are vari-
ables. On input, ix is an integer (called a seed) for initializing the sequence of variates. It
is assumed that 1 < ix < 231 - 1. When RANEXP or DRNEXP is called, if no input errors
are detected then IERR is set to 0 and n exponential variates are stored in X. On output,
ix is a new seed for generating more variates.

Error Return. IERR = I if n < 0, IERR = 2 if a < 0, and IERR =- 3 if ix is not a proper
seed.

Usage. A given seed always initiates the same set of variates. Thus, the following two sets
of instructions

(1) IX - 3
CALL RANEXP (30,A,IX,X,IERR)

(2) IX -= 3
CALL RANEXP(20,A,IX,X,IERR)
CALL RANEXP(10,AiX,X(2l),IERR)

generate the same 30 variates.

Remark. It is assumed that the integer arithmetic being used hl.ad!es all integers i in the
interval 1il < 21 - 1.

Poogramming. RANEXP calls the subroutine URNG, and DRNEXP calls the subroutine
IDURNG. RANEXI' and DRNlXXi were written by John R. Crigglcr. RANEXIlF has been
obtained from the STATLII. library.

593



Reference. Thomas, M.A., Gemmill,G.W., and Crigler,•.R., STATLIB: NSWC Library of
Statistical Programs and Subroutinea, Report NSWC TR 89--97, Naval Surface Warfare
Center, Dahigren, Va., 198q.

594

=_U



GAMMA RANDOM NUMBER GENERATOR AND
THE CHI-SQUARE DISTRIBUTION

For a > 0 con~ider the gamma distribution having the distribution function

c'x

P(a, x) = i e-tt'- dt (x > 0),
Fra) jo

and for v > 0 consider the chi-square distribution having the distribution function

2-t/2 e_ t/2tv/2_1
F. (x) = - e-/) dt (x > 0).

r(v/2) JI

Then F,,(x) = P(v/2, x/2), so that only fthe gamma distribution need be computed. The
following subroutines are available fo; geierating variates from the gamma distribution
when a > 10--1.

CALL RGAM(ix, a, n, X, IERR)
CALL DRGAM(ix, a, n, X, IERR)

X is an array of drnension n or iarger where nt > 1. The argument a is a real number
and X a real array if RGAM is used. Otherwise, a is a double precision number and X a
double precision array if DRGAM is used.

It is as:sumed that a > 0,1 and that, n is the number of variates to be generated. IERR
and iz are variables. On input, ix is an i.nt..gr (called a seed) for initializing the sequence
of variates. it is assumed that I < ix < 231 -- 1. When RGAM or DRGAM is called, if no
input errors arg detected th4-n IERR is set to 0 and n gamma variates are stored in X. On
output, iZx is a new seed for generating more variates.

Error Return. 17M I if n K 0, IEMR - 2 if a < 0.1, and IERR i 3 if ix is not a proper
S'ed.

Usage. A given seed alw:tys initiates the samne set, of variates. Thus, the following two sets
of~ Uis-tj aictions

(1) IX 3
(',ALL RGAM(IX,A,30, (,lICIR)

(2) IX- 3
CA I '_1'(,! l AM(IX; A,20,X,1t R)S(;~~~~ALL It(; AM(l ýIX, ,,,j 2II,'H



generate the same 30 variates.

Warning. The double precision subroutine DRGAM can be quite slow. It is recommended
that its speed be checked if thousands of variates are to be generated.

Remarks.

(1) If a = v/2 and xj, ... ,x, are variates for the gamma distribution given by P(a,x)
then 2xj, .. . 2x,, are variates for the chi-square distribution given) by F•,(x).

(2) It is assumed that the integer arithmetic being used handles all integers i in the interval
jil <2 31 -- 1.

Programming. RGAM calls the subroutines URNGO and GAMINV, and DRGAM calls the
subroutines DURNGO and DGINV. RGAM and DRGAM were written by A. H. Morris.

; j(



BETA RANDOM NUMBER GENERATOR

For a, b > 0 consider the beta distribution having the distribution function

1 (a,b) -B(a, t -1(1 - t)bdt (0 < x <

where B(a, b) is the beta function. The following subroutines are available for generating
variates from this distribution when a, b > 1/4

CALL RBETA(n, a, b, ix, X, IERR)
CALL DRBETA(n,a,b,ix,X,IERR)

X is an array of dimension n or larger vihere n > 1. The arguments a and b are real
inumbers and X a real array if RBETA is .!sed. Otherwise, a and b are double precision
numbers and X a double precision array if ')RBETA is used.

It is assumed that a, b > 1/4 and that n is the number of variates to be generated.
IERR and ix are variables. On input, ix is an integer (called a seed) for initializing the
sequence of variates. It is assumed that ' < ix < 231 - 1. When RBETA or DRBETA is
called, if no input errors are detected then IEUR is set to 0 and n beta variates are stored
in X. On output, ix is a new seed for general Ing more variates.

Error Return. IERR= 1 if n < 0, IiRR- 2 if a < 1/4 or b < 1/4, and IERR= 3 if ix is
not a proper seed.

Usage. A given seed always initiaces tfie samne set of variates. Thus, the following two sets
of instructions

(1) IX 7
CAIL RIETA (-0, A, B, IX, X, IEIIR)

(2) IX - 7
(CALL IM1,ETA (20, A, 11, F', X, IEI'Ri)
CALL RIrETA (10, A, 11, ;X, X(21), IEI{R)

g(.generate the ý,arinv 3( variiate-.

Warning The (hd,.i preci.,m subirwith )le DRI3ICTA can be quite slow. I1t is rccoi•in)lhidd
that its speed be checked if 0,ousanrds of variates are to be generated

Remark. It is assinied thatI hie integer a.rithnetic be~ing used hantlh:s all itcgers I in t he
intterva Il , 22'" 1.

Programming. PI",XTA calls the i osuhrmitiri.i (Bl•N(OI) ati (A\IIN\', a•uo I)IjlIKI'l( ,Iil!s
the stbr, ithws I)! l t r( l j)(0 I)(;!N%. IllET'I'A .\ l l)Itld lI"I'A xc'rc wvrittel b' A. II.

rris

5) 7



F-DISTRIBUTION RANDOM NUMBER GENERATOR

For a, b > 0 consider the F-distribution having the distribution function

aQ/ 2 bh/ 2  F F - (b +at)-(a+b)i2 dt (F > 0)

P. b(F) ~ ~ t(./ 2 ) 1 ( t(~) 2 d FŽ0Po,() =B(a/2, b/2) .

where B(a/2,b/2) is the beta function. The values a and b are called the numerator
and denominator degr'ýee of freedom of this distribution. The value F == (bs)/(at) is
a variate from this distribution when s and t are independent variates from the gamma
distributions with parameters a/2 and b/2 respectively. The following subroutines are
available for generating variates from the F-distribution when a, b > 1/2.

CALL FRAN(n,a,b,ix,X,IERR)
CALL DFRAN(n,a,b,ix,X,IERR)

X is an array of dimension n or larger where n > 1. The arguments a and b are real
numbers and X a real array if FRAN is used. Otherwise, a and b are double precision
numbers and X a double precision array if DFRAN is used.

It is assumed that a, b ý-1,/2 and that n is the number of variates to be generated.
IERR and ix are variables. On input, ix is an integer (called a seed) for initializing the
sequence of variates. It is assumed that I < ix < 231 -- 1. When FRAN or DFRAN is
called, if no input errors are detccted then IE R is set t,, 0 and n variates are stored in X.
On output, ix is a new seed for generating more variates.

Error Return. IEI - I if ni < 0, IERR -- 2 if a < 1/2 or b < 1/2, IERR 3 if b is
too small for the floating arithmetic being used, and fEI•J{fl. 4 if ix is not a proper see(d.
I ICIt 3 (an occur only if the floating arithmetic ha-s a exceedingly liniited range (say, its
largest value ss 1., h;n 10,7).

Usage. A given seel always initiates the saime s•A of variates. Thus, the following two sets
of il;st 1c ti, ns

(') Ix 3

C:A1,I1, !1?A N (30), A, I i, I X, X, I1FI? 1?)
(2) 1IX 3

C:ALL, , VAN (H(}, A, HI, IX, X(211), 11.I¢1)

W a n n T it.•,lllc, prc iim tj rtm tltitw ; I"IA N I.w 1w h, w. It 1ýý rc,(,01 III ' tl't

(tii! its s Iot'(d I 1 , • 't•'i t if t h1tts;II1(:. )f v Itr i s ;s art I t Io g 'I Ir;t t If

10.



Remark. It is assumed that the integer arithmet;ic being used handles all integers ý in the
interval jil K 2"1 -- 1.

Programming. FRAN calls the subroutines. URNGO and GAMINV, and DFRAN calls the
subroutines DURNGO and DGINV. FRAN an6. DFRAN were w ;>tep by A. I1. Morris.

(!



STUDENT t-DISTRIBUTION RANDOM NUMBER GENERATOR

For a > 0 consider the student t-distribution having the distribution function

Po(t) =,[VB(1/2,a/2)V1 ] (1 + x 2 /a)-(a+l)/ 2 dx

where B(1/2,a/2) is the beta function. The value t z/fw/a is a variate from this
distribution when z is a variate from the normal distribution with mean 0 and variance
1, and w is an independent variate from the chi-square distribution with a degrees of
freedom. The following subroutines are available for generating variates from the student
t-distribution when a > 1/2.

CALL TRAN(n, a, ix, X, IERR)
CALL DTRAN(n, a, ix, X, IERR)

X is an array of dimension n or larger where n > 1, The argument a is a real number
and X a real array if TRAN is used. Otherwise, a is a double precision number and X a
double precision array if DTRAN is used.

It is assumed that a > 1/2 and that n is the number of variates to be generated. IERR
and ,x are variables. On input, ix is an integer (cat!ed a seed) for initializing the sequence
of variates. It is assumed that 1 < ix < 231 . /hen TIN or DTRAN is called, if no

input errors are detected then IERR is set to 0 and n variates are stored in X. On output,
ix is a new seed for generating more variates.

Error Return. IERR = 1 if n < 0, IERR = 2 if a < 1/2, IERR = 3 if a is too small for
the floating arithmetic being used, and IEPR = 4 if ix is not a proper seed. IERR = 3
C {1m cc-ur only if the floating arithmetic has a exceedingly limited range (say, its smallest
positive value is greater than 10-37).

Ucage A given seed always initiates the same set of variates. Thus, the following two sets
of instrictions

(1) I X--3
CALL TRAN (30, A, IX, X, IERR)

(2) IX = 3
CALL 'I'RAN (2,0, A, IX, X, IEtRI?)
CALL TRAN (!0, A, IX, X(21), 1EIZR)

genev,'ate the saine 30 vai"t ates.

"Warni~ig 'The doubile preci131-n subroutine I)TRAN c:an be quite s!ow. It is r IcuII l d{ud
. it its s-jed k! :.hecked if thoutsands of variates are to .)c generated

"601



Remark. It is assurned that the i,;teger arithrrket.ic being usý) handle5j all integers i in tile
interval jil 2"' - 1.

Programminig, TRA.N calls the subroutines URNGO, UORNG1, PNI, and GkMJNV, and
DT11AN calls the rout-aes DURNGO, I3Ul',NG1, DPNJ, and DGINV. TRAN and TrAzNN
we-e written by A. If. Morris.

602



FIRST ORDER MARKOV RANDOM NUMBER G.TE`NERA'!`0R

Given a sequence of independent variates zl,.. ,z, (n > 2) fzom a norina rlistributi.:a
with mean 0 aand standard deviation a > 0. for any real To and It'd < I wet

N* a, xu -+___ = + a aj-I--:z0) + (z = 2, n. ).

Then a1 , a,, are variates From a normal distribution ,'th mean zo and ariac.- a2 /(i -

(12). Since zj, ... , z,, are independent variates, aj (j > 2) is considered to oepend only on
a,'_1 for information from the past. Hence, a,, ... a, forms a first order Mark)v ',.e, first
order autoregressive) process. Since the process is covariance stationary, the correlation
between terms a, and ak of the seauence becomes progressively weaker when Ik--jl increases.

For any x0 , a, at, and n the following subroutines are available for obtainig sequences
u a,, of variates from (*).

CALL RMK1(n,xo, a,,a, ix, A, IERR)
CAL.L DRMK1(n, xc,,, a, ix, A, IERR)

The arguments xo,a, and or are real numbers andc2 A a real an., if RMK1 is used.
Otherwise, z 0 ,a, and a are double precision numbers and A a double precision array when
DRMK1 is used.

A is an array of dimension n or !arger when n > 2, and ix and IERR are variaHles. It
is assumed that a > 0 and lai < 1. On input, ix is an integer (called a see'd) for initisalizing
the sequence of variates z,, .-. . ,z,,. It is assu med that I < ix < 2-1 - 1. Wten jIMNI
or DRMK1 is called, if no input errors are detected then IERR is set to 0 and a sequence
a,, .. .,a, is obtained and stored in A. On output, ix is a new seed for generating other
seqiiences a 1 , . .•an.

Error Return. ii'IR is set to one of the following values if an input error is det(ctcd.

IE1ZR 1 if n < 2
IERKF 2 if r < 0
IERR 3 if lJa > 1
IERR 4 if ix is not a proper seed.

Remark. It is assumied that the in"eger aithrntic being iused ha dles ali g i in tlilý
interval 1i1 < 231 -

Programming. HMKI employti the sibrowines INO)It ard IiiJ CII, and ;) kvAl cuiae' ys
the subroutines I)lNOt and I)'CIMll. RNIK was written by John it. Criglh, anrd modified
b~y A Ii. Morris. RMK I is a •ndioi, attion of thesi.,)roatine HANNIK I, wlck i .desi i]n h
STATLIB library. I)[iMK I was ;dapnted frort RMK I by A. 1l. Morris

-.-- - - - - * - - --. ---



Reference. Thoma.9, M.A., Gernrnill, GW., and C'rigler, J.R., STATI ID: NS,,WC Library of
Statistical Pr.)qvuni and Sutoroutr'*nep, Repurt NSWC TR 3-7,Naval Surface Warfare
,"enter, Dahl,"-ren, V~irgitiia, '~989.



APPENDIX

Installation Of The NSWC Library And Conversion
Of Codes From Single To Double Precision Form

Code for the library can be obtained on 9-track tape and on 51 inch disks that can
be read by the IBM PC. Two copies of the code are given on a tape.

The first function in the library, namely IPMPAR, must be modified for the particular
Fortran being used. IPMPAR provides the integer constants which characterize the integer,
single precision, and double precision arithmetics being used (see pp. 3-4).

Instructions are given in the in-line documentation of IPMPAR for defining the
constants that are needed. If constants are not provided for the compiler being
used, then the Fortran manual for the compiler normally gives the constants for
the integer arithmetic. However, help may be needed in obtaining the constants for
the single and double precision arithmetics. The subroutines MACHI and RADIX
are provicied for this purpose.

MACH and RADIX, and their subroutines MACHI, STORE2, MACH2, DSTOR2
are the next subprograms after IPMPAR. Instructions for the use of MACH and
RADIX are given in MACH. These subroutines ar2 experimental. They are pro-
vided only as an aid for obtaining the constants for the single and double precision
arithmetics. They are not used by any of the functions and subroutines in the
NSWC library, and they are not considered to be part of the library. MACtIl
and MACH2 perform some writing. None of the functions and subroutines in the
NSWC library perform I/O.

After IPMPAR has been defined, the remainder of the library can be installed. None of
the remaining code needs any modification. Codes for the functions and subroutines appear
approximately in the order that they appear in the manual.

Single/Double Precision Conversion. The following modifications must be made when a
subroutine is converted from single to doub!e precision form.

(I) Replace the functions SPMPAR, EPSLN, and EXPARG with DPMPAR, DEPSLN,
and DXPARG. Do not modify ihe arguments of these functions. DPMPAR, DEPSLN,
and DXPARG must be declared to be of type DOUBLE PRECISION when they are
employed.

(2) If the function IPMPAR appears in the subroutine then replace IPMPAR(5) with
IPMPAR(8), IPMPAR(6) with IIMPAII(9), and IPMPAR(7) with IPMI)AR(10).

605



INDEX

ABSLV ... 245 CBFSK 97 CPOSEI ... 313 DARTNQ ... 11
ADAPT ... 435 CBI 99 CPSC ... 439 DASUM ... 177
AERF ... 53 CBND ... 159 CPST ... 79 DAW ... 59
AI ... 100 CBPOSF 267 CREC ... 13 DAXPY ... 175
AIE . . 1 100 -,BPRC)() 27 3 CROUT . . 215 DBADD - . 269
ALI ... 74 CBRT 11 CSADD ... 315 DBETLN ... 87
ALNREL ... 31 CSSLV 293 CSCAL ... 173 DBNRM ... 283
ANG .. , 23 CBSLV1 293 CSCOPY - 305 DBPOSE ... 267
AORD ... 7 clispi CSEVL ... 145 DEPROD ... 273
ARCECO ... 223 CBSS(ý CSIMAG ... 301 DBSLV ... 289
ARCESL ... 224 C 13 S S L, i ... 91 CSINT . . . 465 D B S - V 1 ... 289
ARTNQ .. , 11 CBSSLK - 9B CSINTI ... 465 DBSUBT .. , 271
ASSGN ... 417 CBSUBT ... 271 CSINT2 465 DBTPD ... 277
BADD ... 269 CBTPD 279 CSLOOP 473 DBTPD1 ... 278
BCVOR ... 261 CBTPD1 ... 280 CLV 145 DBVPD ... 277
BCVRC ... 265 CBVPD 279 CSI.Vmp 239 DBVPD1 277
BCVRD ... 261 CBVPD1 279 CSPFIT ... 459 DBICND 291
BESI ... 95 ccopy ... 161 CSPROD ... 319 DBINRM 281
BESJ ... 92 CDE', ... 243 CSPSLV ... 347 D(-,B(',RT 155
BETALN 87 ('DIV ... 13 CSr,7AI- 301 DCBRT 11
BFIT 503 CDIVID ... 13 CSP[7 510 DCEIG J71
81 ... 101 CDOTC ... 171 CSRF2 ... 510 DCEIGV ... 373
BIE - 101 CDOTLJ ... 171 CSROT ... 165 DCERF 47
BIMAG ... 263 CET(' 367 CSSCAL. ... 173 DCERFC 48
BLKORD ... 333 CJ--Iýiv 369 CSSUSI ... 317 DCGAMA ... /6
BLSQ ... 403 C f-, R F ... 4ý) CSURF 509 1) C M S L V . . . 237
BNRM ... 283 ,EiýFC ... 46 CSURF1 509 OCOPY ... 161
BPOSE ... 267 CEXýXI ... 71 CSVDC 241 DCOSI 25
BPROD 273 CEXP11 C35 CSWAP 1W3 DCPAB,-, 11
BRATIO 89 (7FRIN ý (l 1 CTIP 195 DC PO L Y 157
BRCOMP ... 90 ýAi MI\ ... / 1) CTPOSE 195 DCPSC 440
BREAL . . . 263 11-1ý r 433 CTPRD 325 DC PS I ... 80
BRKF45 ... 555 1 rl G9 GTPRD 1 32b DCREC . . . 13
SSLSQ 50' CIRCV 125 CIRANS 197 DCSEVL ... 145
BSLS02 519 CK 103 GISI-V 348 DCSORT ... 13
BSLV ... 285 C K f- 104 CUB rR I ... 543 DDOT j'71
BSLV1 285 CKPP(O 211 CURVD ... 479 DDSORT 8
BSPP 495 CLE ... 253 CURVI ... 479 DEI 66
BSSLI ... 95 CLI 7:1 CURVI ... 475 DFIG ... 355
RSSL.J 91 C, L 1 375 CLJRVý' 477 DF IGV ... 357
BSSLK 98 (IMADD '2 0 0 cvac --l ýi 7 D E I I . . . 6*7
BSSL f ... 93 CMADJ ... 197 CVBL) 257 DELLP[ ... 10'.)
BSTRP 499 CMCUNJ ... 193 CVRR 2 57 DEPI ... 1 1 )
BSTRP2 ý)17 CMC()PY ... 191 CVCB -257 DFPSLN ... ýJ
BSLJBT 27 1 CMC VBS 259 CV(IR I ... 258 DE RF ... 48
B IPRD ... 2 75 CM( VýFR 259 c v (ý S ... 297 () E R FC ... 118
BTPRDI ... 2, 7 6 (ýM I MAQi ... 1 W) CVDH ... :2 5 7 DERf-C I ... 49
PTSLV ... 225 CMPROD ... 2 O'j CVDH 1 298 L-) E R F 1 1

B VA L 491 CMPEAL ... 189 Cv,!),, 2 97 DF T 24 3
BVAL 1 493 C, M) LV 235 C V F1 R D :3 2 5 W RAN 599
2VAi-11 5 2 1 C.MSL V I ... 236 CVPRD 1 3 2 5 DGAMLN -77
BVF1YU ... 217 5 '-ý M S 0 13 F ý, u 2 CVPB ... ý) 5 7 DGAMMA 7 7
LI VpRL) 1 2 7 5 CMTMS ý.03 CVRB 1 258 DG I NV 86
RICND 287 CON',TR ... 21 CVRS 297 DGRAF '14
H I NRM jH I CCS(ýB 4 -'Y vs(, 2 9 1 UHF T I AH 7
C A 1 J9 0 F 430 V IA) 29 DW T 1:2 AH7
C A Flo [),,()1 4,) 1) 1, R 2,ý D I -, 0 R T H
C A ý,P 01, 1 ý, 1) i", S - V 24' ') K F, P () f)

1-1 A U', I ý)A[ Rf DI L 1")
DAý)N)L, 1) L N P1 L 3

607



DLSOR .. 386 DSACO 315 Hic 41 NPIVOT .. 216
DMACO . 199 DSCAL .173 HEM . 379 NRNG .. 3588
CMCOPY .. 191 DSCCPY . .. 305 H8712 .379 NRVG .. 589
DMCVBS ... 259 OSEIG .. 363 HTRP 447 NRVG1 .. 590
DMCVFS .183 DSEIGV ... 365 HULL .. 37 NSURF2 .. 515
CMCVSB .259 DSINI 25 ICAMAX .. 181 ODE .. 551
DMCVSF ... 183 DSLV .342 ICAMAX -. 181 CPTF . .. 409
DMEVAL ... 529 DSMSLV .227 .IESLV ... 545 ORTHCS .. 149
DMEXP ... 251 CSNRM ... 329 INTRVL .. 489 ORFHOV .. 149
DMFIT 527 DSORJ . . -7 IORCER ... 8 oRTrHOX ... 149

DMPRCD .. 203 DSPROD . .. 319 IPMPAR ... 4 PADO ... 131
DMSLV .. 217 DSPSLV ... 341 ISAMAX .. 181 PAREA ... 39
DMSLV1 2 . 18 DSSUBT .3 17 1SHE..U ... P1JHOL I , 231
DMSUBT .201 DSVDC . 241 ISJBX .. 90 PCCEFF . .. 449
CMTMS .. 203 CSVPRC . .. 205 KPROC . .. 211 PDFIY ... 469
CNRM2 179 DSWAP ... 163 KROUT ... 210 PDIV ... 137
CNRNG . .. 588 DSI1CND . .. 345 KURVP 1 4. 434 P DS PL ... 467
CNRVG .589 CSiNRM - 327 KURVP2 191 PE0 ... 119
CNRVGI .590 CTASLV . .. 247 KURV1 I PEQ1 . .. 120
DCRDER a . DTIP 195 KURV2 W2 . r8ND ... 35
DCý AC DD . 131 DTCPLX .233 LP, INIV 42SPF 1 . ... 451
DPCHCL ... 231 DTPOSE .. 195 LE . .. 2 PINV ... 141
CPCCPY .129 DTPRC ... 323 LGRNGN .. 14' PKILL .1. 127
DPCAW .59 IDYiPRD 1 ... 323ý LGRNGV 14. 1 F T-OPY . .. 129

DPCET ... 243 D TRA N 601 [-(RNGX .. 147 PLEM .. 120
DPDIV .137 F)TSL V . 342 LI .S0 ... 37', PLEYI .. 121
DPINV 141.iq DUPNG .. 581 A1 ,QMP .. 383 PLPWR . .. 139
DPLE .. 253 11.JRNG2. '583 . Mi) IT F F 4 11 PVU L T . .. 135
CPLPWR ... 139 0V9 P .ý D 323 LOCPr ... 33 PNDF ... 55
CPMPAR .. 4 LjVPRCI . .. 3-3 LCPCMP . .. 474 PNlt ... 57
DPMULT .. 135 DX.PARG . .. 5 LOPDF . .. 474 ý,UCA ... 1s
DPNI . 57 CZERC . 151 LSEI . .. 391 PPVAL........497

D P 0SE . .. 31 1 E1IG . 351 LSOR.......78 PSE(MP . . . 471
DPOSEI 1 31 1 F11 I .... 353 1 TPP . 445 PSL 11... ..... 471
CPU, so .8 EIGV I . . . 353 L. S LV .. ~. PSI . .. 79
CP ff3 .. 1 33 E IGi 1 ... 351 MAIDS 99 PSIEF ... 31

SOAGI 5 4 C4 E LLP F . .. 1 15 MOOPY ... 191 F)SLJB T . .. 133
DOAGS .. 534 E LLP I . .. 107 MCVBS 259 oA(1 I ... 539
CODCR2' 1, 5 71 L ELP FC I.. 110 MCVCR 185 )DAL,. . . 531
D QC-1 C R T 155 85 .. 1 11 MCVFS . 18 3 Q0DCM ...-- 155
.Dox CS . 3 3 .36 ý ' IN .. 5 MCVRC .181 3' ~ Sup IFP . . 8
ORBETA ... 597 ERI . .. 46 MCVRC 185 o509' 1 ... 8
[ORCI R .. 585 ERFC 4G Mc 46 ICS8 . .9 050919 . 8
DR(,OMP 84 E R F 1 46 M(' VSF 13B3 Gi"JiBA 5 3 . 32
DRCVA L 110 ERF I 1 MEVA........ 2l 9 ,RF I b514

ORE XP -1' I I PARG ME'ý )l .. J11 L V I 483i
DRF VA t 31 ý'Pl 1 GO MlFF 1 . 41)7 U 0KV') .1

0R,JVA L 1 i2 (F F 1 .. 4, MF I) W .7 IA N P .)ý

D9L.1 '3 2 I MIN . 4 07 MKi . 411 rý'f I A ',
OR[0 1I I1'l2 FRAN "'J MPINMV . 11 401 Rf l I '1,1

U0RMýK iý PNL t 13 MPRit) . 3 RC1 8215
CRNF , (,AMI NV a 5 .1 11 ML VR .ý () 9 1 I H 31
1) RNK 2,13J GAMI N "I) 12 V p 1 '~) VA 1y3 "'

URNOR 587 GýA MM A .'U T .') 61 P .. V 9
[)RO T 4(i5K . I Ml MF. V' IvA.

PCF) f1 CPA i P 11 1V 1 P P.' 1



REPORT DOCUMENTATION PAGE /or t77 ,,-ove,
OA4R No 0104-0 l188

)) ]h •ay S, , , ' ,2 . A V 'A 22202 4 10 ., •. t, ~ I t, 0,,tk "'dRed ,, ir ,,ut (0104 0T18), W, lt Ito , [D( 2(0503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

___________________ I January 199:3

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

- SWC library of Mathematics- Subrou tines

6. AUTHOR(S)

Alfre.i 1. Morris, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) F. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Surface Warfare Center (Code B 10) NSWCDD/TR.92/425
Dahlgren Division
Dahlgre'o, Virginia 22448-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AN[" 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION CODE

Approved for public release; distrib ution unlimited.

13. ABSTRACT (Maxim, ,n 200 wo-ds)

rhe NSWTC ibriary is a libir; y of genei al purpose I"ortran Sub rout i1(1, tlhaIt provide I bisiC ColIipLItat iofml
capability foc a v:uriety ofnatlwouat.ical ictivit'ies. l'>mphasis has been mIl il the ItrarnspLoability ojf'the
codes. Subroutines are availablh, in the following areas: e!ementary opt•ritioi.., geomletry, wpe(;ial functions,

polynomiials, vectw-s, matrices, large dense systoni t' f lnvir equat ion,, bandeld mli ices, >parse uni; rc'•;,

eigenvglues and eigvilve'tors, '1 soluthoil of lilnear , 1uati no,, let >.qu;trms s;olution ol ]menar jqualthriOx,

optimization, trj.nlis-orlws. ipproxinlat .n of fancI(tifli,, Cu ' tt IfIg, .,t11fAC fittin1 i, mnanirfOld fittingr,
tiiiO1tiiUnl intetriatiOll, int1 ri ra (lqulations, otlitntary df ftir(eftis >(It . partial di fT'er l I i, u'it ion-,, mini

14 SUBIJ[(.T TiE M• 15. NtMi3iý W PAGItl

16 PRI[ (0)D

18 [(IJIHIIIY(IAV t,.H( )HIN 20 I MlI•.,,Jx I 0 •Y rt
C f REFOI it 01 Il PAidf t All.1 H, I

I N t t,- " . I ) %(. - I ) I N' , H " \

l,, ',

• -.: f n " .,!I rI •" I I ,:,•: ! • : :L:' li'•• il il " :I•il I I' Im .I I "1iLii,



GENEAL NSTUCTONSFOR COMPLETING SF 29)8

The Report Documentation Page (R')P) is used in announcing and cataloqing reports. It is im~poriant that
this informatik,ý be consistent with the rest of the report, particularly the cover and its title page.
Instructions for fil~ing in each biocl( of the form follow. It is important to stay within the lines to meet.
optical scanning requirements.

Block 1. AgencýyUseLq Only. .(Leae-blank). diock 12a. D~istribution!Availabili~ty atement.
Denotes public availability or limitations. Cite any

Block 2. Rýeport Date. Full publiration date including availability to the public. Enter additional limitations
day, month, and year, if available (e.g. I Jan 88). Must or special markings in all capitals (e.g. NCFORN, REL,
cite at least the year. ITA R).

Block 3. Type of RepoLrt and Dates Covered. State
whether report is interim, f inal, etc. If applicable, enter DOD -See DoDD 5230.24, 'Distribution
Inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88). Statements on TIechnical Documents."

DOE -See authorities.
Block 4. Title and-Subtitle. A title is taken from the NASA -See Handbook NHB 2200.2
part of the report hat provides the. most meaningful NTIS -Leave blank
and complete infor mation. When u report is prepared
in more than one volume, repeat thr. primary title, add
volume number, and include subtitle for the specific Block 12b. Distribution Code.
volumne. On classified documents enter the title
classification in parentheses.

DOD -Leasve blank.
Block 5. FundinqNu m be rs. To include contract and DOE -Enter DOE d4istribution categories from
grant numbers; ma~y include prociram element the Standard Distribution for
number(s), project oumnber(s), task number(s), and Unclassified Scientific and Technical
work unit number(-). Use the 'ollowing labels: Reoorts.

NASA -Leai,? blank.
C -Contract PR -Project INTIS -Leave blank.
G -Grant TA -Task

PE -Program WU -Work Unit Block 13. Abstract. include a brief (M~aximum 200
Elei 'ert Accession No. words) factual summnary of the nmost significant

information contained in the report.
BLOCK 6. Author(s). Name(%) person(s) responsible
for writing the report, performning the research, or- Block 14. Subjent Terms. Keyword~s or- phrase,,
credited with the content of the report.. If editor or identifying major subiec:ts in the report.
compiler, this should foilow~ thE name(,).

Block 15. Number of Paqes. [inter tht total number
Block 7. Performing 0 rqan~zation Nanl e(s) and of p~ages.
adqdre(.s(es). Self -explanatory.

Block 16. Price Code r' 'er appropnri)tc pticE' (od
Block 8. Performing Or,1amiiitiol-i Repoi t Nu;)iher. (NITIS 9 -dy)
Enter the unique alpranrruneric report riumbeý
assignied by the orgar rration periorming th- Oport. E9lock 17..i 9. orr(ir. ty C assifeitAions Self-

Bl c . pq so m / on t rnexplanatory -Y L ter U .J SC i j C a , fr o Ini

Blck9.Spnsrig/oo t _iq Aq~en y Nir mrz(s) ai~d icord,)nre wit h U S. SOnU Lit!y R'gUlkit iLunT (i.e
Addre.,sl(,s) Self explanatory. ýJNCI ASSIFIIID) H fr.:rv uin, ti' rassifreI

iTTfornration), st.11111) Io,,li tn r ir tht top '1ii

Block 1G. Spmiorrsnqni.Morrtor Tig iiqeriu, H(:fL bcttnnr on thirs pant

N umber. (If Kf)(,'n7)
Bloci 20. LtTTTrT of %Tim 'iT!,, biri k inwt Tiw

iYoc A, ur , tý,r rliforI i,,t~iio not ,IW

rt'n)h rTvr s''J.of.. i )I , .u h !, ,d rr III tl t, Wiri aiiiii~ m 0w I II) tIT k it. 'II. ri i' ti, i b~itn i t , l)1

tne T t ý ',( vi~)t' i''T i I T ý %N h ) ii t I I, lri, VV ! C tI K I I I t I" ii I I). t



RKF45 559 SCVDR ... 299 SMCOPY ... 191 SSVDC ... 241
7RK . 573 SCVRC ... 303 SMPLX ... 413 SSWAP ... 163

R LOG . . 31 SCVRD 299 SMPRJD ... 209 STL.SQ ... 405
RLOG ..... 31 SDOT 171 SMSV . . . 227 SURF ... 513
-MKM .K . 603 SEIG 359 SMSUBT ... 201 SLJRF2 ... 515
RNK ... 213 SE!GV 361 SNH7SH ... 27 SVPRD ... 205
RNOR - 587 SEIGV1 .I . 361 SNkM ... 329 SICND ... 339
RORDER . 8 SEIGI . 359 SNRM2 ... 179 SiNRM ... 327
ROTA 15 S PDF .. 575 SPFIT ... 4,7 TASLV ... 247
ROT3 19 SEVAL ... 463 SPFIT2 ... 507 TIP ... 195
RPGGE 309 SEVALi ... 464 SPLIFT ... 456 TMPROD ... 207
RPOSEI 309 SEVAL2 . 464 SPLSQ ... 405 TOPLX ... 233
- SCOPY 305 SFODE ... 567 SPMPAR ... 3 TPOSE - 195
RSLV 336 SFODE1 . 570 SPORD - 331 TRAN ... 601
SADD 315 SFR AI. .... 525 SPROD ... 319 TRMESH ... 523
SASLJM 17.7 SFVAL2 ... 525 SPSLV ... 335 TRP ... 443
SAXPY ... 1'75 SHELL ... 7 SQUINT ... 249 TSLV ... 336
SCASUM 177 SHELL2 . 7 SR "T ... 165 URGET ... 579
SCNkM2 179 SI .. 69 SROTG ... 17 URNG ... 581
SCOMP 461 SINQB ... 430 SROT . 169 URNG2 .. 583
SCOMPI . . . 462 SINOF - 430 SROTMG 168 VALR2 ... 123
SCOMP2 .-. 462 SINI . 25 SSCAL ... 173 WNNLS ... 395
SCONJ . . . 307 SLVMP ... 221 SSPLX ... 413 WPFIT ... 453
SCOPY . . 161 SMADD . .. 199 :SUBT ... 317 ZEROIN . 151

_A 1i


