p-A251 811 .
| AR /ﬁ;L

s o7 NSWCDD/TR-92/425

NSWC LIBRARY OF MATHEMATICS SUBROUTINES

BY ALFRED H. MORRIS, JR.
STRATEGIC AND SPACE SYSTEMS DEPARTMENT

JANUARY 1993

Appioved for public release; distribution unlimited.

93-03304
NIRRT —

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION
Dahlgren, Virginia 22448-5000

BEERODUCE)
| F OBy
US DEPARTMENT
S DE P/\H/IMENT OF COMp RCH
NATONAL 11 ¢ fyrgico, i
INEQBIAATION Gy
SPHINGUIELD ya oby,)

NSWCDD/TR-92/425

NSWC LIBRARY OF MATHEMATICS SUBROUTINES

BY ALFRED H. MORRIS, JR.
STRATEGIC AND SPACE SYSTEMS DEPARTMENT

JANUARY 1993

Agpproved for public release; distribution unlimited.

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION
Dahlgren, Virginia 22448-5000

FOREWORD

In 1976 development of the NSWC library of general purpose numerical mathematics
subroutines began. Since that time six editions of the library have been released for general
use. This report describes the subroutines in the 1993 edition of the library, the seventh
edition. The report supersedes NSWC TR 90-21 (1990). The development of the library
is funded by the Computing Systems and Networks Division, Strategic and Space Systems

Department, NSWCDD.

Approved by:

R. L. SCHMIDT, Head
Strategic and Spa~e Systems

Department

LAmmgsJon ¥or
T | ?

piso o B
[: -

i

- -

T4
o

i

1

{‘.,

| ,

R

i
Daod

fP*",i

m — ; R

ABSTRACT

The NSWC library is a library of general purpcse Fortran subroutines that provide
a basic co:nputational capability for a variety of mathematical activities. Emphasis has
been placed on the transportability of the codes. Subroutines are available in the following
areas: elementary operations, geometry, special functions, polynomials, vectors, matrices,
large dense systems of linear equations, banded matrices, sparse meztrices, eigenvalues and
eigenvectors, £; solution of linear equations, least-squares solution of linear equations, op-
timization, transforms, approximation of functions, curve fitting, surface fitting, manifold
fitting, numerical integration, integral equations, ordinary differential equations, partial
differential equations, and random number generation.

CONTENTS

Page
IRt rOdUCIOn oo ettt e e e e 1
Elementary Operations
Machine Constants - SPMPAR,DPMPAR,IPMPARccoia. 3
Argument Bounds for the Exponential Function —
EPSLN,EXPARG,DEPSLN,DXPARGc..iiiiiiiiiiiiiii 5
Sorting Lists -~ ISHELL,SHELL,AORD,RISORT ,SHELL2,DSORT,
DAORD,DISORT,DDSORT,QSORTL,QSORTR,QSORTD . JORDER,
RORDER,DORDER ... i s e e s 7
Cube Root — CBRT,DCBRT ..ottt ittt 11
Four Quadrant Arctangent - ARTNQ,DARTNQc it 11
Length of a Two Dimensional Vector - CPABSDCPABS 11
Reciprocal of a Complex Number - CREC,DCREC 13
| Division of Complex Numbers — CDVI,DIVID i, 13
Square Root of a Double Precision Complex Number - DCSQRT 13
Conversion of Polar to Cartesian Coordinates — POCA 15
Conversion of Cartesian to Polar Coordinates ~ CAPO 15
Rotation of Axes — ROTA i e e 15
Planar Givens Rotations — SROTG,DROTG ...ttt 17
Three Dimensional Rotations - ROT3 i, 19
Rotation of a Point on the Unit Sphere to the North Pole - CONSTR 21
Computation of the Angle Between Two Vectors — ANG 23
Trigenometric Functions — SINT,COS1,DSIN1,DCOS1ccoviia... 25
Hyperbolic Sine and Cosine Functions - SNHCSH 27
Exponentials - REXP,DREXP 29
Logarithms - ALNREL,RLOG,RLOG1,DLNREL,DRLOG ,DRLOG1 31
Geometry
Determining if a Point is Inside or Outside a Polygon - LOCPT 33
| Intersection of a Straight Line and Polygonal Path - PFIND 35
The Convex Hull for a Finite Planar Set - HULL 37
Areas of Planar Polygons - PAREA 39
Hamiltonian Circuits - HCo e 11
Special Functions
Errer Function - CERF,CERFC,ERF,ERFC,ERFCI,DCERF ,DCERFC,
DERF DERFC DERFCY e 45
Inverse Error Function - ERFILDERFL 51
Difference of Error Functions -- AERF DAERF ... 0 o 53
Normal Probability Distribution Function - PNDF ... e 55
Inverse Normul Probability Distribution Function - PNLDPND .00 0000000 57
Dawson’s Integral - DAW DPDAW 000 oo by

Vil

Complex rresnel Integral - CFRNLI o i it 61

Real Fresnel Integrals — FRNL i 63
Exponential Integral Function - CEXPLLEXPLL,DEIL,DEIL 65
Sine and Cosine Integral Functions — SI,CIN iiiiiiine.n. 89

| Exponential Exponential Integral Function — CEXEXI 71
Dilogarithm Function — CLLALIL e 73
Gamma Function - CGAMMA ,GAMMA ,GAMLN,DCGAMA,

DGAMMA DGAMLN ... 75
Digamma Function — CPSLPSIDCPSI,.DPSI 79
Derivatives of the Digamma Function - PSIDFol 81
Incomplete Gamma Ratio Functions - GRATIO,RCOMP,DGRAT

DROCOMPP . e e e e 83
Inverse Incomplete Gamma Ratio Function — GAMINV,DGINV 85
Logarithm of the Beta Function - BETALN,DBETLN, 87
Incomplete Beta Function - BRATIO,ISUBX,BRCOMP 89
Bessel Function J,(z) - CBSSLI,BSSLJ,BESJc.ciiiiiiiiiiiiiinn, 91
Bessel Function Y, (2) ~ BSSLY i i 93
Modified Bessel Function I,(z) - CBSSLI,BSSLL,LBESI g5
Modified Bessel Function K, (2} - CBESK,CBSSLK,BSSLK 97
Airy functions - CALLCBLALAIEBLBIE 99
Complete Complex Elliptic Integrals of the First and Second Kinds -

CK K E o e e e e e e 103
Real Elliptic Integrals of the First and Second Kinds -

ELLPL,RFVAL RDVAL,DELLPL,.DRFVALDRDVAL 107
Real Elliptic Integrals of the Third Kind - EPLLRJVAL,

DEPILDRIVAL ... i e e e e 114
Jacobian Elliptic Functions - ELLPF,ELPFC1 115
Weierstrass Elliptic Function for the Equianharmonic

and Lemniscatic Cases - PEQ,PEQI,PLEM,PLEM1 119
Integral of the Bivariate Density Function over Arbitrary

Polygons and Semi-infinite Angular Regions - VALR2 123
Circular Coverage Function — CIRCV i 125
Elliptical Coverage Function — PKILLo o i i, 127

Folynomials

Copying Polynomials - PLCOPY,DPCOPY o i, 129
Addition of Polynomials - PADD,DPADD it 131
Subtrastion of Polynomials - PSUBT,DPSUBT 133
Multiplication of Polynomials - PMULT,DPMULT, 135
Division of Polynomials -~ PDIV,DPDIV 137
Real Powers of Poiynomials - PLPWR,DPLPWR 129
Inverses of Power Series - PINMV,DPINV ..o o o o 141
Derivatives and Integrals of Polynomials - MPLNMVo oo 143
FEvaluation of Chebyshev Expansions - CSEVL,DCSEVL 145
Lagrange Polynomials -- LGRNGN,LGRNGV,LGRNGX 147
Orthogonal Polynomizls on Finite Seis - ORTHOS,ORTHOV,

ORTHOX 149

Solutions of Nonlinear Equations

! Zeros of Continuoug Functions - ZEROIN,DZERO 151
Solution of Sysiems of Nonlinear Equations - HBRD 153
Solutions of Quadratic, Cubic, and Quartic Equations -

QDCRT,CBCRT,QTCRT,DQDCRT,DCBCRT,DQTCRT 155
Double Precision Roots of Polynomials - DRPOLY,DCPOLY 157

| Accuracy of the Roots of Polynomials - RBND,CBND 159

Vectors
Copying Vectors - SCOPY,DCOPY,CCOPY i 161
Interchanging Vectors - SSWAP,DSWAP,CSWAPcoiiiiiiiiininn, 163
Planar Rotation of Vectors - SROT,DROT,CSROTcoiat, 165

| Modified Givens Rotations - SROTMG,DROTMG,SROTM,DROTM 167
Dot Products of Vectors — SDOT,DDOT,CDOTC,CDOTU 171
Scaling Vectors — SSCAL,DSCAL,CSCAL,CSSCALcoivniiiin 173
Vector Addition — SAXPY,DAXPY,CAXPY i 175
L; Norm of a Vector - SASUM,DASUM,SCASUM e 177
L, Norm of a Vector - SNRM2,DNRM?2,SCNRM2, 179
L Norm of a Vector - ISAMAX,IDAMAXICAMAX, 181

Matrices
Packing and Unpacking Symmetric Matrices - MCVFS, DMCVEFS,

MOV SE MOV S e e e e 183
Conversion of Real Matrices to and from Double Precision Form —

MCVRD MOV DR i e e e 185
Storage of Real Matrices in the Complex Matrix Format - MCVRC 187
The Real and Imaginary Parts of a Complex Matrix —

CMREAL,CMIMAG ... i e e 189
Copying Matrices - MCOPY SMCOPY,DMCOPY,CMCOPY 191
Computation of the Conjugate of a Complex Matrix - CMCONJ 193
Transposing Matrices -- TPOSE,DTPOSE,CTPOSE, TIP,DTIP,CTIP 195
Cormputing Adjoints of Complex Matrices ~ CMADJ,CTRANS 197
Matrix Addition - MADD,SMADD DMADD,CMADD 199
Matrix Subtraction - MSUBT SMSUBT,DMSUBT,CMSUBT 201
Matrix Multiplication - MTMS DMTMS CMTMS MPROD ,DMPROD,

CM P RO D . 203
Product of a Packed Symmetric Matrix and a Vector -

SVPRD,CSVPRD e 205
Transpose Matrix Products - TMPROD e 207
Symmetric Matrix Products - SMPROD e e 209
Kronecker Product of Matrices - KPROD DKPROD, 'KI'IROL 211
Rank of a Reail Matrix - RNK,DRNK 213
Inverting Generai Real Matrices and Solving General

Systems of Real Linear Equations - CROUT KROUT,

NPIVOT,MSLV. DMSLV MSLVI,DMSLV! . 215
Soluticu of Real Equations with Iterative linprovement - SLVMP ... 0. . 22

Solution of Almost Block Diagonal Systems of Linear

Equaticns ~ ARCECO,ARCESL, 223
Solution of Almost Block Tridiagonal Systems of Linear

Equations - BTSLV i 225
Inverting Symmetric Real Matrices and Solving Symmetric

Systems of Real Linear Equations - SMSLV,DSMSLV 227
Inverting Positive Definite Symmetric Matrices and

Solving Positive Definite Symmetric Systems of

Linear Equations ~ PCHOL,DPCHOLcovviviivin. ... 231
Solution of Toeplitz Systems of Linear Equations —

TOPLX, DT OP X i e 233
Inverting General Complex Matrices and Solving Genera! Systems

of Complex Linear Equations - CMSLV,CMSLV1,

DM LY L 235
Solution of Complex Equations with Iterative Improvement —

GOV M L e 239
Singular Value Decomposition of a2 Matrix -- SSVDC,DSVDC,

COV D e 241
Evaluation of the Characteristic Polynomial of a Matrix —

DET, DPDET,CDET ... i i 243
Solution of the Matrix Equation AX + X8 = C - ABSLV,DABSLV 245
Solution of the Matrix Equation A*X + XA = C when C is

Symmetric - TASLV.DTASLV i 247
Solution of the Matrix Equation AX? + BX 4 C =0-- SQUINT 249
Exponential of a Real Matrix - MEXP,DMEXP 251

lLarge Dense Systems of Linear Equations
Solving systemy of 200~400 Linezr Equations - LE,DPLE,CLE 253

Banded Matrices
Band Matrix Storage ...ttt o 255

Conversion of Banded Matrices to and from the Standard Format -

CVBR,CVBD,CVBC,CVRB,CVDB,CVCB,CVRBI,

CVD B, OV OB L i e e 257
Conversion of Banded Matrices to and from Sparse Form -

MCVBS,DMCVBS,CMCVBS MCVSB,DMCV3B,CMCVSS 259
Conversion of Banded Real Matrices to and from Double

Precision Form - BCVRD,BCVDR 261
The Real and Imaginary Parts of a Banded Complex Matrix -

BREAL,BIMAG . 263
Computing A + Bt for Banded Real Matrices A and B - BCVRC 265
Transposing Banded Matrices - BPOSE ,DBPOSE,CBPOSE 267
Addition of Banded Matrices ~ BADD,DBADD CBADD 269
Subtraction of Banded Matrices - BSUBT DBSUBT,CBSURT ..., 271
Multiplication of Banded Matrices ~ BPROD,DBPROD ,CBPROL 273
Product of a Real Banded Matrix and Vector - BVPRD BVPRDI,

BTPRD BTPRDL .. 275

Product of a Double Precision Banded Matrix and Vector —

DBVPD,DBVIPDLDBTPD,DBTPDL ... 277
Product of a Complex Banded Matrix and Vector — CBV]PD,

CBVPDIL,CBTPD,CBTPDI ... i e 279

I L; Norm of a Real Banded Matrix - BINRM,DBINRM 281
Lo Norm of a Real Banded Matrix - BNRM,DBNRM 283
Solution of Banded Systems of Real Linear Equations —

BSOS LV BSOS LV L e e 285
Computation of the Cendition Number of a Real Banded

Matrix - BICND e 287
Double Precision Solution of Banded Systems of Real Linear

Equations - DBSLV,DBSLVIL 289
Computation of the Condition Number of a Double Precision

Banded Matrix — DBICND o 291
Sclution of Banded Systems of Complex Linear Equations -

CB OV C B LV L o i 203

Sparse Matrices
Storage of Sparse Matrices i e 295
Conversinn of Sparse Matrices to and from the Standard

Format - CVRS,CVDS CVCS,CVSR,CVSD,CVSC 297
Conversion of Sparse Real Matrices to and from Double

Precision Form - SCVRD,SCVDR i il 299
The Real and Imaginary Parts of a Sparse Complex Matrix -

COREAL,CSIMAG . e e 301
Computing A + Br for Sparse Real Matrices 4 and B-SCVRC 303
Copying Sparse Matrices -~ RSCOPY,DSCOPY,CSCOPY 305
Computing Conjugates of Sparse Complex Matrices - SCONJ 307
Transposing Sparse Real Matrices - RPOSE,RPOSEL 309
Trangposing Sparse Double Precision Matrices - DPOSE,DPOSEL 311
Transposing Sparse Complex Matrices - CPOSE,CPOSEL 313
Addition of Sparse Matrices - SADD,DSADD,CSADD 315
Subtraction of Sparse Matrices - SSUBT,DSSUBT,CSSUBT 317
Multiplication of Sparse Matrices - SPROD,DSPROD,CSPROD 319
Product of a Real Sparse Matrix and Vector - MVPRD MVPRDI,

MTPRDMTPRDL o 321
Product of a Double Precision Sparse Matrix and Vector -

DVEPRD,DVPRDLDTPRD,DTPRDL .o o 0 328
Product of a Complex Sparse Matrix and Vector - CVPRD,

CVPRDILCTPRD,TPRDL oo o 32D
Ly Norm of & Sparse Real Matrix - SINRMDSINRM .00 0000 000 320
L., Norm of a Sparse Real Matrix - SNRM DSNRM .00 000000000820
Ordering the Rows of a Sparse Matrix by Increasing

Fength SPORIDY © o0 33
Reordering Sparse Matrices into Block Triangular Form

BLKORIY o o O 0% 3¢

Solution of Sparse Systems of Real Linear Equations -

SPSLV RS LV, TS LV i e e et 335
IComputation of the Condition Number of a Real Sparse

Matrix — SICND ... i i e it e e 339
Double Precision Solution of Sparse Systeins of Real Linear

Equations - DSPSLV,DSLV.DTSLVt 341
IComputation of the Condition Number of a Double Precision

Sparse Matrix — DSICND e 345
Solution of Sparse Systems of Complex Linear Equations —

CSOPSLY, CSLV G S LY i i ettt et 347

Eigenvalues and Eigenvectors
Computation of Eigenvalues of General Real Matrices —

EIG EIGL i e e e 351
Computation of Eigenvalues and Eigenvectors of General

Real Mairices - EIGV.EIGVLo i e 353
Double Precision Computation of Eigenvalues of Real

Matrices - DEIG 355
Double Precision Computation of Eigenvalues ar

Eigenvectors of Real Matrices - DEIGV 357
Compuration of Eigenvalues of Symmetric Real Matrices —

SEIG,SEIGT . 359
Computation of Eigenvalues and Eigenvectors of Symmetric

Real Matrices - SEIGV,SEIGV1 oo, 361
Double Precision Computation of Eigenvalues of Symmetric

Real Matrices — DSEIG i 363
Double Precision Computation of Eigenvalues and

Eigenvectors of Symmeuric Real Matrices - DSEIGV 365
Computation of Eigenvalues of Complex Matrices - CEIG 367
Computation of Eigenvalues and Eigenvectors of Complex

Matrices — CEIGYV L 369
Double Precision Computation of Eigenvalues of Complex

Matrices ~ DCELG 311
Double Precision Computation of Eigenvalues and

Eigenvectors of Complex Matrices - BCEIGV 373

£, Solution of Linear Equations

£; Solution of Systems of Lincar kquations with Equality
and Inequality Constraints - CLU ... 00 0 000 375

Least Squares Solution of Linear Equations
Least Squares Solution of Systems of Linear Equations

LESQLSQRUFTEHETIZ (oo o 377
Least Squares Solution of Overdetermined Systems of Linear

fiquations with Iterative limprovement LLSQMP 383
Double Precision Least Squares Solution of Systems of

Linear Kquations - DLLSQ DLSQR DHETLDUFTIZ o0 0.0 . . 385

X1

Least Squares Solution of Systems of Linear Equations with

Equality and Inequality Constraints - LSEI e 391
Least Squares Solution of Systems of Linear Equations with
Equality and Nonnegativity Constraints - WNNLS 395
Least Squares Iterative Improvement Solution of Systems of
Linear Equations with Equality Corstraints — L2SLV 399
Iterative Least Squares Solution of Banded Linear
Fquations - BLSQ i e 403
Iterative Least Squares Solution of Sparse Linear
Equations — SPLSQ,STLSQo e 405
Optimization
Minimization of Functions of a Single Variable - FMIN 407
Minimization of Functions of n Variables - OPTF 409
Unconstrained Minimum of the Sum of Squares of Nonlinear
Functions - LMDIFF e . 411
Linear Programming - SMPLX SSPLX i 413
The Assignment Problem — ASSGN 417
0-1 Knapsack Problem —~ MKP 419
Transforms
Inversion of the Laplace Transformm — LAINV 421
Fast Fourier Transform — FFT,FFTL 425
Multivariate Fast Fourier Transform - MFFT MFFTI1 427
Discrete Cosine and Sine Transforms - COSQI,COSQB,COSQF,
SINQB,SINQF 429
Approximation of Functions
Rational Minimax Approximation of Functious - CHEBY 433
L, Approximation of Functions - ADAPT 435
Calculation of the Taylor Series of a Complex Analytic
Function - CPSC,DCPSC .. 439

Curve Fitting

Linear Interpolation - TRP e 443
Lagrange Iuterpolation - LTRP ..o o oo o o . 445
Hermite Interpolation - HTRP ... o 447
Conversion of Real Polynomials from Newton to Taylor

Series Form - PCOEFF (... ..o oo oo . & 1
Least Squares Polynomual Fit - PFIT oo o 4051
Weighted Least Squares Polynomial Fit - WPFIT 453
Cubic Spline Interpolation - CBSPL SPLIFT A)
Weighted Least Squares Cubic Sphine Fatting - SPFITT (.00 . 1Y)
Least Squares Cubie Sphoe Fitting wiath tquahity

and Inequality Constraints CSPFIT o000 o000 e 459
Cubic Sphne Evaluation - SCOMPSCOMPI SCOMP2 00 0 0 .0 .00 461

X1t

Cubic Spline Evaluation and Differentiation — SEVAL,

SEVALLSEVAL? .. i 463
Integrals of Cubic Splines — CSINT,CSINT1,CSINT2ooiiininn... 465
Periodic Cubic Spline Interpolation - PDSPL 467
Least Squares Periodic Cubic Spline Fitting - PDFIT 469
Periodic Cubic Spline Evaluation and Differentiation —

PSCMP P SEVL . 471
N-Dimensional Cubic Spline Closed Curve Fitting ~ CSLOOP,

LOPCMP LOP D i 473
Sphline under Tension Interpolation - CURVI 0. 475
Spline under Tension Evaluation — CURV2o, 477
Differentiation and Integration of Splines under Tension -

CURVD,CURVI .. e e e 479
Two Dimensional Spline under Tension Curve Fitting -

KURV L KURV 2 e 481
Two Dimensional Spline under Tension Closed Curve

Fitting - KURVPLKURVP2 e, 483
Three Dimensional Spline under Tension Curve Fitting —

QURVIL, QURV 2 485
B-Splines 487
Finding the Interval that Contains a Point - INTRVL 489
Fvaluation and Differentiation of Piecewise Polynomials

from their B-Spline Representations - BVAL 491
Evaluation of the Indefinite Integral of a Piecewise

Polynomial from its B-Spline Representation - BVALL 493
Conversion of Piecewise Polynomials from B-Spline to

Taylor Series Form ~ BSPP . .. o 495
Evaluation of Piecewise Polynomials from their

Taylor Series Representation -~ PPVAL ..o .. .0 0. 0 0 . 497
Piecewise Polynomial Interpolation - BSTRP 499
Weighted Least Squares Piecewise Polynomial Fitting - BSLSQ 501
Least Squares Piecewise Polynomial Fitting with

Equality and Inequality Constraints BFUVT ..o 00 0.0 L. 503

Surface Fitting over Rectangular Grids
Bicubice Splines and Bisplines under Tensiono o000 L 500
Weighted Least Squares Bicubie Sphne Fitting - SPFEC2 0000 0. Y
Evalnation and Differentiation of Bicubic Splines

CSURF,CSURPFLCSREJCSRF2 0000000 o 509
Bisphne under Tension Surface Interpolation SUREF o000 000000000000 H13
Bisphine under Tension Evaluation SURF2NSUREF2 00 00 0 Y I
Bivariate B-Sphne Piecewise Polyunomial nterpolation BSTRP2 00 00000 L7

|
|
|
|

Bivariate 3-Sphne Precewise Polynonnal Least Squares

Fitting BSLSQZ AT
Fvaluation and Dhdferentiation of Bivanate Plecewise

Polynomats from their B Sphne Representation BVAL2 00000 Hel

Surface Fitting over Arbitrarily Pogitioned Data Points

Surface Interpolation for Arbitrarily Positioned Data Points -
TRMESH,GRADG,GRADL,SFVALSFVAL2 523

Manifold Fitting

Weighted lLenst Squares Fitting with Polynomiais of n Variables -
MFIT,DMFIT MEVALDMEVAL o i it 527

Numericai integration
Evaluation of Integrals over Finite Intervals - QAGS,

QXGS,QSUBA,DQAGS,DQXGS e 531
Evaluation of Integrals over Infinite Intervals - QAGLDQAGI 539
Evaluation of Double Integrals over Triangles - CUBTRI 543
integral Equations
Solution of Fredholin Integral Equations of the Second Kind - IESLV 545
Ordinary Differential Equations/lnitial Value Problems
| The Initial Value Solvers — Introductory Comments 549
Adaptive Adams Sclution of Nonstiff Differential Equations - ODE 581
Adaptive Block RKF Solution of Nonstiff Differential Equations -
BR K FAD 555
Adaptive RKF Solution of Nonstiff Differential Equations - RKF45 559
Adaptive RKF Solution of Nonstiff Differential Equations with
Global Error Estimation - GERK 563
Adaptive Solution of Stiff Differential Equations - SFODE,SFODE> 567
Fourth-Order Runge-Kutta - RK 571
Eighth-Order Runge-Kutta — RK8 i 573

Partiat Differential Equations

Separable Second-Order Elliptic Equations on Rectangular
Domains — SEPDE 575

Discrete Random Number Generation

Uniform Random Selection of Valves from a Finite Set of
Integers - URGET ..o 579
Continuous Random Number Generation
Uniform Random Number Generator - URNG,DURNG 581
Generating Points Uniformly in a Square - URNG2,DURNG2 583
Generating Points Uniformly in a Circle - RCIR,DRCIR 585
Normal Random Number Gernerator - RNOR,DRNOR,NENG,DNRNG 587
Multivariate Normal Random Vector Generator ~ NRVG DNRVG
NRYGLIDNRVGT o 589
Exponential Random Number Generator - RANEXP,DRNEXP 593
Garama Random Number Generawor and the Chi-Square Distribation -
RGAMDRGAM o 595

XV

Beta Random Number Generator - RBETADRBETA 597

F-Distribution Random Number Generator - FRANDFRAN 599

Student t-Distribution Random Number Generator - TRAN ,DTRAN 601

First Order Markov Random Number Generator - RMK1,DRMK1 603
Appendix. Instaliation of the NSWC Library and Conversion of

Codes from Single to Double Precision Form.............................. 605

5o e 5 PP 607

xXVvi

INTRODUCTION

In 1976 development of the NSWC library began. The objective was to forin a library
of general purpose Fortran subroutines that would provide a basic computational capability
for a variety of mathematical activities. Even though the subroutines were intended for
use on the « DC 68060-7000 series computers, emphasis was placed on their transportability.
Currently, the library is used on a variety of computers, ranging from supercomputers such
as the Cray Y-MP to personal computers such as the IBM PC. A brief appendix is inciuded,
which provides information for installing the library on all computers.

‘The subroutines in the library originate from a variety of sources. Approximately
40% of the subroutines were developed at NSWCDD. The remaining subroutines are from
government, commercial, and university research centers in the U.S. and abroad. The 1993
edition of the library contains 1060+ subroutines. This report describes the 576 subroutines
that are intended for general use. The remaining subroutines are supportive, normally being
of little interest to most users. The library contains single and double precision subroutines.
The single precision subroutines are designed for single precision floating arithmetics which
have 614 digite of accuracy, and the double precision subroutines are designed for double
precision arithmetics which have 12-30 digits of accuracy.

All subroutines are thoroughly examined and tested before being accepted for the li-
brary. Primary considerations are the reliability and transportability of the subroutine, its
efficiency, and its ease of use. The subroutines in the library are always subject to reexam-
ination and possible modification. If a subroutine becomes obsolete, then the subroutine
imay be eliminated.

The major issues concerning reliability are accuracy, the stability and robustness of
the algorithm being used, and the overall quality of the code. Testing is performed for
determining the accuracy and efficiency of the subroutine, checking for defects in the code,
searching for regions of numerical instability, and checking the robustness of the algorithm.
In most cases the testing must be highly selective, being used along with an examination
of the algorithm and code. After the algorithm and code have been examined and testing
1s finished, an assessnient 1s made of the overall performarnice of the code.

In regard to transportability, it is clear that machine dependent constants and pre-
cision dependent algorithms cannot be avoided. However, machine dependent code is not
permitted. In order for a code to be acceptable, it 18 required that the code satisfy the 1977
ANSI Fortran standard. The code of a subroutine is examined for illegal Fortran constructs,
detection of operations that are knewn to be error prene when no - used with extreme care,
location of global variables or ENTRY statements (which are not permitted), and checking
for the use «f EQUIVALENCE statements and common blocks (which are allowed, but with
extreme disapproval). Variables that are defined by DATA statements are never permitted
to be redefined. (The 1977 Fortran standard permits such a variable to be redefined by an
assignment statement. However, when the subroutine terminates the variable then becormnes
vndefined.)

The ease of use criterion is of considerable importance. The main purpose of the
library is to provide a service to as broad an audience as is possible. Hence, it is important
that the subroutines be as simple to use and comprehensive in scope as is practical, and
that the subroutines do not unnecessarily restrict the user. The only requirement for the

software that bas a direct bearing ¢© " 73 issue involves the use of I/O. No.I/O statements
are permitted. If error detection yrmed in a function, then it is required that the
function be assigned a special vali . 1 the error occurs. (No arguments of a function
in the library may be altered dur: p ipucction.) If error detection is performed by a
subroutine that is not a function, " e call line of the subroutine must contain one or
more parameters for reporting the e:tv . The use of such parameters allows the user to

have total control over the sequenc: of ents that follow.

If the precision of a subroutinc 1 e library is established, then this information is
given with the description of the suli« ine in the report. All precision estimates are for
the CDC 6000-7000 series 14-digit si-1+' >recision and 28-digit double precision truncation
arithmetics. The estimates do no! ‘de inherent error. Thus, the reported accuracy
of a subroutine may be better or « han the inherent error of the function that 1t is
computing.

Since the subroutines in the h:-ary originate from a variety of sources, standards
concerning in-line documentation and the style of code cannot be imposed. In general, all
supportive subrcutines not intended for direct use are not described in the report. This
makes it possible to modify or replace the code without bothering the programmer. This
capability is extremely important. Luring the last decade a vast amount of research has
resulted in the development. of new, more powerful algorithms for a variety of problems.
Many of the results affect current codes, occasionally making some codes obsolete.

Since the beginning of the development of the library, no proprietary or otherwise
restricted codes have been permitted i~ the library. Only general purpose mathematical
subroutines for use by the entire NSWCDD scientific community have been snsidered for
the library. Restrictions on the use of any library can severely impair its v .ue, both for
theoretical purposes (where the source codes are frequently of prime importance), and for
gencral use in applications. Since expertise is so widely scattered, reliable codes are so very
difficult to obtain, and many of the libraries do not provide source code, the policy has been
to make the scurce code of the library readily available to the general scientific community.

MACHINE CONSTANTS

Assume that the utegers arithmetic being used has base b, and that the integers are
representec 1 the form
ko + kbt o+ kp ")

where ko, ky, . .,k,_1 are integers such that 0 < &; < & (f = 0,1, ...,n — i). The value
n is the number of base b digits k;, and 8" — 1 and —(b™ — 1) are the largest positive and
negative integers that occur.

It is assumed that the single and double precision arithmetics being used have the same
base, say f, and that the nonzero numbers can be represented in the form

él oot _k_"l
B g
where ky, ...,k are integers such that 0 < ky < # (i = 1,...,m), k1 > 1, and ¢ is an
intzger such that €., < £ < £,.x. The value m is the n'unber of base 8 digits k;, and
k; > 1 is the requirement that the floating point numbers are normalized. The values
€imin and €., are the largest negative and positive exponents that arise where the floating
point numbers maintain full m digit accuracy. Then Zpyin == A% ! is the smallest positive
number that is represented and T,., = {1 — ™) 8% == the largest.

AN

£()6¢

Associated with wn is the coustant ¢ = f~™%? called the relative precision of the
floating point arithmetic being used. Theoretically, € is the smallest number for which 1+ ¢,
when stored in memory, is stored exactly and has a value greater than 1. Normally ¢ will
be the smallest number that satisfies these conditions. However, there do exist computer
arithmetics (such as the CDC 6000-7000 serics double precision arithmetics) for which this
i8 not the case. In such arithmetics, some arithmetic results are able to be stored more
accurately than others.

The functions SPMPAR, DPMPAR, and IPMPAR are available for obtaining the above
constants. IPMPAR is the only subprogram in the library that is machine dependent.

SPMPAR()

SPMPAR is a real valued function. It i1s assumed that 1 = 1,2, or 3. SPMPAR provides
the following constants for the single precision arithmetic being used:

SPMPAR(1) = ¢, the relative precision
SPMPAR(2) = z,4in, the smallest positive number

SPMPAR(3) - z,4x, the largest positive number

Programming. SPMPAK was written by A. H. Morris. The function IPMPAR is used.

DPMPAR(i)

DPMPAR is a double precision valued function. It is assumed that 1+ = 1,2, or 3.
DPMPAR provides the following constants for the double precision arithmetic being used:

DPMPAR(1) = ¢, the relative precision
DPMPAR(2) = zp,in, the smallest positive number
DPMPAR(3) = I ax,the largest positive number

DPMPAR must be declared in the calling program to be of type DOUBLE PRECISION.

Programming. DPMPAR was written by A. H. Morris. The function IPMPAR is used.
IPMPAR(Y)

iPMPAR is an integer valued function. It is assumed that 1 = 1, ...,10. IPMPAR
provides the following constants:

Integer arithmetic
IPMPAR(1) = b, the base of the arithmetic
IPMPAR(2) = n, the number of base b digits
IPMPAR(3) = b™ — 1, the largest integer

Base for the floating arithmetics
IPMPAR(4) =

Single precision arithmetic
IPMPAR(5) = n, the number of base 3 digits
IPMPAR({6) = £,,in, the largest negative exponent
IPMPAR(T) = £,,.x, the largest positive exponent

Double precision arithmetic

IPMPAR(8) = m, the number of base 3 digits
IPMPAR(9) = £,,in, the largest negative exponent
IPMPAR(10) = £,.x, the largest positive exponent

Programming. IPMPAR is an adaptation by A. H. Morris of the function IIMACH, de-
signed by P. A. Fox, A. D. Hall, and N. L. Schryer (Bell Laboratories). The constants for
the various computers are from Bell Laboratories, NSWC, and other sources.

ARGUMENT BOUNDS FOR THE EXPONENTIAL FUNCTION

The functions EPSLN and EXPARG are available for obtaining the argument bounds
for the exponential function EXP, and the functions DEPSLN and DXPARG are available
for obtaining the argument bounds for DEXP.

EPSLN(?)

If ¢ is. the relative precision of the single precision floating arithmetic being used (i.e.,
if SPMPAR(1) = ¢), then EPSLN(£) is assigned the logarithm value Ine. The argument £
is ignored.

Programming. EPSLN employs the function IPMPAR. EPSLN was written by A.H. Morris.
EXPARG(¢)

The argument £ may be an integer. If £ = 0 then EXPARG(¢) = the largest positive
value w for which EXP(w) can be computed. Otherwise, if £ # 0 then EXPARG(¢) = the
largest (in magnitude) negative value for which EXP(w) does not underflow.

Precision. EXPARG(¥) is accurate to within 1 unit of the 5" significant digit for any single
precision floating arithmetic, being slightly less in magnitude than the largest value w being
approximated.

Programming. EXPARG employs the function IPMPAR. EXPARG was written by A.H.
Morris.

DEPSLN(¢)

If ¢ 1s the relative precision of the double precision floating arithmetic being used (i.e.,
if DPMPAR(1) = ¢€), then DEPSLN(¢) is assigned the logarithm value Ine. The argument
£ i3 ignored.

Remark. DEPSLN must be declared in the calling program to be of type DOUBLE
PRECISION,

Programming. DEPSLN employs the function IPMPAR. DEPSLN was written by A.H.
Morris.

DXPARG ¢)

The argument ¢ may be any integer. If £ = 0 thes DXPARG(€) — the largest posi-
tive double precision value w for which DEXP(w) can be computed. Otherwise, if £ / 0
then DXPARG(£) -~ the largest (in magmtude) negative double precision value for which
DEXP({w) does not underflow.

Remark. DXPARG must be declared to be of type DOUBLE PRECISION in the calling

5

program.

Precision. DXPARG(¢) is accurate to within 1 unit of the 12'" significant digit for any
double precision floating arithmetic, being slightly less in magnitude than the largest value
being approximated.

Programming. DXPARG employs the function IPMPAR. DXPARG was written by A.H.
Morris.

[of]

SORTING LISTS

Let A be an array containing n > 1 elements ay, . ..,a,. Then the following subroutines
are available for reordering the elements of A.

CALL ISHELL(4, n)

It is assumed that A is an integer array. When ISHELL is called, the elements of A
are reordered so that ¢, < a;4y fort =1, ... ,n - 1.

Algorithm. The Shell sorting algorithm with increments (3% — 1)/2 is employed.
Programmer. A. H. Morris

Reference. Knuth, D. E., The Art of Computer Programming. Vol .3, Soriing and Search-
tng. Addison-Wesley, Reading, Mass., 1973, pp. 84-95.

CALL SHELL(A, n)
CALL AORD(A4, n)

It is assumed that A is a real array. If SHELL is called, then the elements of A are
reordered so that a; < a;4y for« = 1,...,n — 1. Otherwise, if AORD is called, then the
elements of A are reordered so that |a;] < |ai4| fori=1,...,n— 1.

Programmer. A. H. Morris
CALL RISORT(A, L,n)

It is assumed that A is a real array and L an integer array containing n elements. When
RISORT is called, the elements of A are reordered so that a;, < a;4y forv =1,...,n— L
The same permutations are performed on L as on A, thereby reordering the ele.nents of L
so as to correspond with the new ordering of A,

Programmer. A. H. Morris
CALL SHELL2(A, B,n)

It is assumed that A and B are real arrays containing n elements. Waen SHELL2 is
called, the elements of A are reordered so that a; < a;yy for+ = 1, ...,n — 1. The same
permutations are performed on B as on A, thereby reordering the elements of I3 so as to
correspond with the new ordering of A.

Programnier. A. H. Morris

CALL DSORT(A, n)
CALL DAORD(A, n)

It is assumed that A is a double precision array. If DSORT is called, then the elements
of A are reordered so that a; < a;4; for ¢ == 1, .., n — 1. Otherwise, if DAORD is called,
then the elements of A are reordered so that |as| < |ag41| fori=1,...,n~ 1.

Programmer. A. H. Morris
CALL DISORT(A4,L,n)

It is assumed that A4 is a double precision array and L an integer array coitaining n
elements. When DISCRT is called, the elements of A are reordered so that a; < a;4, for
t =1, ...,n — 1. The same permutations are performed on L as on A, thereby reordering
the elements of L so as to correspond with the new ordering of A.

Programmer. A. H. Morris
CALL DDSORT(A, B,n)

It is assumed that A and B are double precision arrays containing n elements. When
DDSORT is called, the elements of A are reordered so that a; < g;4; fori =1, ...,n— L
The same permutations are performed on B as on A, thereby reordering the elements of B
so as to correspond with the new ordering of A.

Programmer. A. H. Morris

CALL QSORTI(A, L, n)
CALL QSORTR(A, L, n)
CALL QSORTD(4, L, n)

QSORTI is used if 4 is an integer array, QSORTR is used if A is a real array, and
QSORTD is used if A is a double precision array. It is assumed that n < 2097152 and that
L is an integer array of dimension n or larger. When the subroutine is called, the indices
t1,...,%, are stored in L where a;, < --- < a,,_ . A is not modified by the routine.

Remarks.

(1) After L has been obtained, A may be reordered so that a; < a;yq fors =1, .. n -1
by IOKDER, RORDER, or DORDER (see below).

(2) QSORTI, QSORTR, and QSORTD employ a quick sort procedurc. These routines fre-
quently take less than half the time required by the corresponding subroutines ISHELL,
SHELL, and DSORT, which use 2 SHELL sort procedure.

Programmer. Robert Renka (Oak Ridge National Laboratory).

CALL IORDER(A, L,n)
CALL RORDER(A, L, n)
CALL DORDER(A, L.n)

IORDER 1s used if A 1s an integer array, RORDER is used if A is a real array, and
DORDER 1= used if A 18 a double precision array. L i3 an integer array containing a

8

permutation §;,... ,t, of 1,... ,n. If A initially contains a;,...,a, then A contains the
reordered sequence a;,,...,a;, when the subroutine terminates.

Programmes. Robert Renka {Oak Ridge National Laboratory).

CUBE ROOT
The following functions are available for computing the real cube root of a real number.

CBRT(z)
DCBRT(z)

CBRT is used if z is a single precision number, and DCBRT is used if « is a double
precision number. CBRT is a single precision function and DCBRT a double precision
function. The value of the function is /.

Remark. DCBRT must be declared in the calling program to be of type DOUBLE
PRECISION.

Programmer. A. H. Morris

FOUR QUADRANT ARCTANGENT

The function ARTNQ is similar to the ATAN2 function, the differences being that its
value lies in the interval [0,27) and its value at the origin is 0. DARTNQ is the double
precision counterpart of ARTNQ.

ARTNQ(y, z)
DARTNQ(y, z)

ARTNQ is used if z and y arc single precision values, and DARTNQ is used if z and
y are double precision values. ARTNQ is a single precision function and DARTNQ is a
double precision function.

if (z,y) is 2 point in the plane other than the origin (0,0), let L denote the straight
line connecting the poiuts (0,0) and (z,y). Then the function is assigned the value # where
9 is the angle between L and the positive x-axis measured in a counterclockwise direction.
Here O < 8 < 2x. Otherwise, if (x,y) is the origin (0,0), then the function is assigned the
value 0.

Remark. DARTNQ must be declared in the calling program to be of type DOUBLE
PRECISION.

Programmer. Richard Pasto

LENGTH OF A TWO DIMENSIONAL VECTOR
The following functions are avalable for computing the Tength of a real veetor (1, y).

CPABS(r,y)
DCPABS(r.vy)

CPABS is used if = and y are single precision values, and DCPABS is used if and y
are double precision values. CPABS is a single precision function and DCPABS is a double
precision function. The value of the function is V& LIRS TEN

Remark. DCPABS must be declared in the calling program to be of type DOUBLE
PRECISION.

Programmer. A. H. Morris

RECIPROCAL OF A COMPLEX WUMBER

The following subroutines are available for computing the reciprocal of a complex
number.

CALL CREC(z,y,u,v)
CALL DCREC(z,y,u,v)

CREC is used if x and v are single precision real numnbers and u and v real variables,
and DCREC is used if z and y are double precision numbers and u and v double precision
variables. It is assumed that z and y are the real and imaginary parts of a nonzero complex
number 2. When CREC or DCREC is called, u and v are set to the real and imaginary
parts of 1/z, respectively.

Programmer. A. H. Morris

DIVISION OF COMPLEX NUMBERS

The function CDIV and subroutine CDIVID are available for dividing complex num-
bers.

CDIV(a, b)

CDI1V(a,bd) == a/b for any complex numbers a and b where b £ .
Remarik. CDIV must be declared in the calling prograni to be of type COMPLEX.

Programmer. A. . Morris.
CALL CDIVID(a,,ay,b), by u,v)

The arguments a,, ag, by, by are double precision numbers, and u and v are double
precision variables. It s assumed that a; and ay are the real and imaginary parts of a
complex number a, and that by and by are the real and 1maginery parts of a nonzero
complex number & When CDIVID 15 called, v and v are set to the real and imaginary
paits of a/b respectively.

Programmer. A 1l Morns

SQUARE ROOT OF A DOUBLE PRECISION COMPLEX NUMBER

The followmg subrontine v avialable Tor vompntmy the square root of a donble precision

complex number.

CALL DCSQRT(/, W)

Z and W are double precision arrays of dimensicn 2. It is assumed that Z(1) and Z(2)
are the real and imaginary parts of a complex number z. When DCSQRT is called, if 2 = 0
then W(1) and W(2) are set to 0. Otherwise, if z # O then the square root w = /z where
-n/2 < arg{w) < n/2 is computed and stored in W. W (1) and W (2) contain the real and
imaginary parts of w, respectively.

Note. Z and W may reference the same storage area.

Pregramming. DCSQRT calls the function DCPABS. DCSQRT was written by A. H.
Morris.

14

CONVERSION OF POLAR TO CARTESIAN COORDINATES

The following subroutine is available for converting polar coordinatee {r,#) to cartesian
coordinates (z, y).

CALL PGCA(r,8,z,y)

Let (r,6) be the polar coordinates of a point in the plane and let =,y be variables.
When the routine is called, r and y are assigned the values z == r cos # and y = rsin 4.

CONVERSION OF CARTESIAN TO POLAR COORDINATES

The following subroutine is available for converting cartesian coordinates {z, y) to polar
coordinates (r,8).

CALL CAPO(z,y,r,0)

Let (z,y) be the cartesian coordinates of a point in the plane and let r, 8 be variables.
If (z,y) is the origin then CAPO sets r = § = G. Otherwise, if {z,y) is a point other than
the origin, let L denote the straight line connecting the points (0,C) and (z,y). Then when

CAPO is called, r 1s assigned the value \/2? 4 y? and 9 is defined to be the angle between
L and the positive z axis. Here —x < 8§ < .

ROTATION OF AXES

Let (z;,y1) be the (cartesian) coordinates for a point in the plane. The following
subroutine computes the new coordinates (zj,y2) for the point after the z,y axes bave
been rotated by an angle 4.

CALL ROTA(z;,y1,0,z2,y2)

The arguments z, and y; are variables. When ROTA is called, x5 and y» are assigned
the values:

o =21 co8 8 4 yy sin 8

y2 = —xy sin 6 + yy cos §

Programmer. A. 1. Morris.

——
fal

PLANAR GIVENS ROTATIONS

If a and b are real numbers where a? + b2 # 0, then there is an orthogonal matrix

(5 2y such that (5 %) (§) = (7): In this case 7 = a? + 4%, = a/r, and s = b/r.

The matrix (_i j) represents what is called a Givens rotation. Given a and b, the

matrix is uniquely defined up to the sign of r. For any real a, let sgn(a) = 1 if a > 0 and
sgn(a) = ~1if a < 0. If we define r = v a? + b? where

_ { sgn(a) if |a| > |b|
~ Lsgnld) if ja| < 3|

then for r # 0 we note that |¢c| > |s| implies ¢ > 0, and that |c¢| < |s| implies s > 0. For
convenience, when r =0 we set ¢ = 1 and s = 0.

The value o is not needed for the constuction of a Givens rotation matrix, but its use
permits the representation of ¢ and s by a single value z. For each ¢ and ¢, z is defined as
follows:

y —

{s if |s| <corec=0
I/c if0<]e|<s

The mapping (c,s) +- z is 1-1. If the user wishes to reconstruct ¢ and s from 2, then this
can he done as follows:

If z==1then set c =0and s = 1.
If |z] < 1 then set ¢ = V1~ 22 and s = z.
If |z| > 1 then set ¢ = 1/z and s = V1 — ¢2.

The subroutines SROTG and DROTG are available for computing ¢, s,r, and z. “ROTG
is used when a and b are single precision real numbers, and DROTG is used when a and b
are double precision numbers.

CALL SROTG(AR,BZ.C,: |
CALL DROTG(AR,BZ.C, S)

When SROTG is used then AR, BZ, C, and S are real variables. Otherwise, when
DROTG 13 used then AR, BZ, C, and 5 are double precision variables. On input, AR = «
and BZ = b. When the routine terminates AR - r BZ = 2z, C = ¢,and § = ¢.

Programming. These rovtines are part of the BLAS package of basic linear algebra sub-
rovtines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. SROTG
and DROTG were written by Charles Lawson (Jet Propulsion Laboratory).

THREE DIMENSIONAL ROTATIONS

If A = (ai;) is a 3 X 3 orthogonal matrix, then A can be represented in the form
A= .RgRgRlE where

1 0 0 cos fy O -sin 0,3\
Rl = (O co8 01 —sin 0[) Rg = (0 1 0
0

0 sin 6, cos 4 gin 0, cos 0,

0 0 1 0 0 =1/

R, represents a rotation around the z-axis, R; a rotation around the y-axis, and R; a
rotation around the z-axis. Since A is orthogonal the determinant det(A4) = 1. If det(A)
= 1 then E is the identity matrix and A is the combined rotation Rg Ry R, . If dei(A) = -1
then A is composed of the rotation R3R;R; and the reflection E = diag(1,1,—1). The
following subroutine is available for finding the angles 01,862,805 where —x < §; < x,]02] <
x/2,and —n < 3 < .

cos 3 --sinfy O 1 0 0
Raz(sin93 cos 3 0) E:(Ol O).

CALL ROT3(A, THETA)

THETA is an array of dimension 3 or larger. When ROT3 is called, the angles 8;,8,,43
are computed and stored in THETA.

Algorithm. If a1 = az; = O then let 83 = 0. Otherwise, let 83 = ATAN2(az1,a11). Then
ry di, ajs
REA=1] 0 ay ahy | =4
@31 4zz 4ass
where r; = V”&f'fl_aﬁ Also, if 8; = ATANZ2(a3;.r;) then
r2 ay, als
1{; Al = 0 (1122 (l;s = _1‘{”
O ay agg.

where v = \/r?+ a%,. Since ry > 0, by orthogonality it follows that ry == 1 and af, -
afs = 0. Finally, if 8, = ATANZ2(a},, a},) then

1 0 0
RYA" (0 rs ay,)
0 0 afy

where ry - \/(ah,)? 1 (a%,)2. Since rg > 0, by orthogonality we obtain ry - 1, alfy — 0,

and ayy t1

Programmer. A Il Morris

ROTATION OF A POINT ON THE UNIT SPHERE TO THE NCRTH POLE

Given the point (z,y, 2) where z2 -+ y% 4 2% = 1. Then there exist orthogonal matrices
1 0 o0 ¢ O -8,
R,_.:(O Cx —sx) andRy::(O i 0)
0 sz ¢4 sy 0 ¢y

x 0
such that Ry R, (y> = (O) . R, represents a rotation about the z-axis and R, a rotation
1/

about the y-axis. The following subroutine is available for obtaining the values c,., 3., ¢y, s,.

Z

CALL CONSTR{z,y,z,CX,¢X,CY,8Y)
CX,SX,CY,SY are variables. When CONSTR is called, these variables are assigned

the values ¢z, 8.,¢y,3y.

Pregrammer. Robert J. Renka (Oak Ridge Nationai Laboratory)

COMPUTATION OF THE ANGLE BETWEEN TWO VECTORS

Given the points z = (zy, ...,zn) and y = (Y1, ..., yn) wheren > 2, £ # 0, and y # 0.
Let L. denote the straight line connecting O and z, and L, the straight line connecting 0
and y. Then the function ANG is available for computing the angle ¢ between the two lines
L and L.

ANG(n, X,Y)

X and Y are arrays of dimension n containing zy, ...,z, and y1, ..., ¥s. ANG(n, X,Y)
= ¢ where 0 < ¢ < 7.

Error Return. ANG(n, X,Y)=—-1ifn<2,2=0,0ry=0.

Programming. ANG employs the function SNRM2. ANG was written by A. H. Morris.

23

TRIGONOMETRIC FUNCTIONS
The following functions are available for computing sinxz and cos nz for real «.
SIN1(z)

SINi{z) = sinrz for all real z.
Algorithm. Minimax apprcximations are used for sinnz and cosmz when |z| < 7/4.
Precision. SIN1(z) is accurate to within 1 unit of the 14*" significant digit when 0 < z < 1.
Programming. SIN1 was written by A.H. Morris. The function IPMPAR is used.
COS1(z)
COS1(z) = cosnz for all real z.
Algorithm. Minimax approximations are used for sinnz and cosxz when |z| < 7/4.

Precision. COS1(x) is accuraie to within 1 unit of the 14*" significant digit when 0 < z < 1
and z # 1/2.

Programming. COS1 was written by A. H. Morris. The function IPMPAR is used.

DSIN1(z)

The argument z is a double precision number. DSIN1(z) is the double precision value
for smrz.

Remark. DSIN1 must be declared to be of type DOUBLE PRECISION in the calling
program.

Algorithm. For |z| < x/4, sinmx and cos 7z are computed by the pewer series corresponding
to the Chebyshev expansions developed by J. L. Schonfelder (University of Birmingham,
England). The power scries were obtained by A. H. Morris.

Precision. DSIN1(z) is accurate to within 1 unit of the 28" significant digit when 0 < z < 1.

Reference. Schonfelder, J.I..,“Very High Accuracy Chebyshev Expansions for the Basic
Trigonometric Functions,” Math Comp. 3.1 (1980), pp. 237-244.

Programiming. DSIN1 was written by A.H. Morris. The function IPMPAR is used.
DCOS1(x)

The argument r is a double precision number. DCOSI1(z) is the double precision valie

for cosmr.

g]

Remark. DCOSI must be declared to be of type DOUBLE PRECISION in the calling
program.

Aigorithm. For |z| < # /4, sin 7z and cos 7z are computed by the power series corresponding
to the Chebyshev expansions developed by J. L. Schonfelder (University of Birmingham,
England). The power series were obtained by A. H. Morris.

Precision. DCOS1(z) is accurate to within 1 unit of the 28" significant digit when 0 <
z <1and z#1/2.

References. Schonfelder, J.L.,“Very High Accuracy Chebyshev Expansions for the Basic
Trigonometric Functions,” Math Comp. 34 (1980), pp. 237-244.

Programming. DCOS1 was written by A. H. Morris. The function IPMPAR is used.

26

HYPERBOLIC SINE AND COSINE FUNCTIONS

The following subroutine is available for computing sinh(z) — z, cosh(z) — 1, and
cosh(z) — 1 — z2/2 for real z.

CALL SNHCSH(S,C, z,IND)

S and C are variables, and IND is an input argument which specifies the functions to
be computed. IND takes the values:

IND = —1 if only sinh(z) — z is desired.

IND = 0 if sinh(z) -- z and cosh(z) — 1 are desired.

IND = 1 if only cosh(z) — 1 is desired.

IND == 2 if only cosh(z) — 1 — z*/2 is desired.

IND = 3 if sinh(z) — z and cosh(z) ~ 1 — z2/2 are desired.
S is assigned the value sinh(z) — z if this function is requested. When cosh(z) — 1 or
cosh(z) — 1 — z%/2 is computed then the value is stored in C.

Precision. For all z, sinh(z) — = has a relative error less than 2.3E-14, cosh(z) — 1 has a
relative error less than 2.2E-14, and cosh(z) — 1~ 2?/2 has a relative error less than 3.8E-14.

Programming. Written by A. K. Cline and R. J. Renka (University of Texas at Austin).
Modified by A. H. Morris.

(™)
-1

EXPONENTIALS

The functions REXF and DREXP are available for computing ¢* - 1. DREXP is a
double precision function.

REXP(z)
REXP(z) = €* — 1 for real z.

Algorithm. See pages 378-379 ar.d appendix B of the reference

Precision. REXP(z) is accurate to within 2 units of the 14" significant digit when REXP(z)
0.

Reference. DiDonato, A. R., and Morris, A. H., “Computation of the Incomplete Camma
Function Ratios and Their Inverse,” ACM Trans. Math Software 12 (1986), pp. 377-393.

Programmer. A. H. Morris.
DREXP(z)

The argument z is a double precision number. DREXP(z) is the double precision value
for e — 1.

Remark. DREXP must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DREXP(z) is accurate to within 1 unit of the 28'" significant digit when
DREXP(z) # 0.

Programmer. A. Il. Morris.

LOGARITHMS
The functions ALNREL, RLOG, RLOG1, DENREL, DRLOG, and DRLOG1 are avail-

able for computing In(1 + a), z — 1 — In(z), and ¢ — In{1 + a). DLNREL, DRLOG, and
DRLOG]1 are double precision functions.

ALNREL(a)
ALNREL(a) = In(1 + a) for a > —1.
Algorithm. See page 378 and appendix A of the reference.

Precision. ALNREL(a) is accurate to within 2 units of the 14'" significant digit when
ALNREL(a) # 0.

Reference. DiDonato, A. R., and Morris, A. H., “Computation of the Incomplete Gamma
Function Ratios and Their Inverse,” ACM Trans. Math Sofiware 12 (1986), pp. 377-393.

Programmer. A. H. Morris.
HLOG(z)
RLOG(x) = 2 — 1 — In{z) for « > 0.
Aigorithm. See page 379 and appendix E of the reference.

Precision. RLOG(z) is accurate to within 2 units of the 14'" significant digit when
RLOG(z) # 0.

Reference. Dillonato, A R., and Morris, A. H., “Computation of the Incomplete Gamma
Function Ratios and Their Inverse,” ACM Trans. Math Software 12 (1986), pp. 377-363.

Programumer. A. H. Morris.
RLOG1(a)
RLOG1(a) = a In(l t a) fora = L.
Algarithim. See page 379 and appendix B of the reference.

Precision. RLOGI{a) is accurate to within 2 units of the 14" significant digit when
RLOGI{a) # 0

Reference. DiDonato, A R | and Morris, A. H.) "Computation of the incomplete Gamnma
Function Ratios and Their Inverse” ACM Trans. Math Software 12 (1986), pp. 377 303,

Programmer. A. H. Morns

31

DLNREL(a)

The argument a is a double precision number where a > —1. DLNREL(a) is the double
precision value for In(1 + a).

Remark. DLNREL must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DLNREL(a) is accurate to within 1 unit of the 28" significant digit when
DLNREL({e) # 0.

Programmer. A. H. Morris.
DRLOG(z)

The argument z is a positive double precision number. DRLOG(z) is the double pre-
cision value for z - 1 — In(z).

Remark. DRLOG must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DRLOG(z) is accurate to within 1 unit of the 28" significant digit when
DRLOG(z) # 0.

Programmer. A. H. Morris.
DRLOG1(a)

The argument a is a double precision number a > —1. DRLOGI1(a) is the double
precision value for a — In(1 -+ a).

Remark. DRLOGI1 must be declared in the calling program to be of type DOUBLE
PRECISION.

Precision. DRLOGI(a) is accurate to within i unit of the 28" significant digit when
DRLOGI(a) # 0.

Programmer. A. H. Morris.

te

DETERMINING IF A POINT IS INSIDE OR OUTSIDE A POLYGON

Given a sequence cf points v; = (7,,y:) (# = 1, ...,n). Let 7 denote the polygonal line
which begins at point vy, traverses the points v; in the order that they are indexed, and
is the straight line segment connecting vy to viy; for each 1 = 1,...,n — 1. It is assumed
that v, = v;, or that there is also a straight line segment from v,, to vy when v, # v;.
Consequently, the polygonal path 7 is a loop beginning and ending at vy.

For any point vo = (o, yo) not on the path 7, let n(r,vo) denote the winding number
of the path 7 around the point 5. Then n(r,vo) = 0 if v is outside the polygon whose
boundary is 7. If v is inside the path then n(r,v9) = m where m is an integer. If m > O then
the path 7 loops m times in a counterclockwise direction around the point vy. Gtherwise,
if m < O then r loops |m| times in a clockwise direction around vyg.

Given an arbitrary point vg = (2o, yo), the following subroutine is available for deter-
mining whether v is on the path, outside the path, or inside the path. If the point vq is
inside 7 then the winding number n(r,vo) = m is also computed.

CALL LOCPT(zo,y0, X,Y,n,£,m)

It is assumed that n > I. X and Y are arrays containing z; ...,z, and y1, ...,Yn.
The arguments £ and m are variables. When LOCPT terminates £ has one of the following
values:

€= -1 if (zq,yo) is outside the path

£= 0 if (zo, yo) lies or the path

€= 1 if (z9,yo) is inside the path
The variable m is assigned the value 0 if (zo,y0) 1s on or outside the path. If (zo,yo) is
inside the path then m = the winding number of the path 7 around the point (zo, yo)-

Remark. There are no restrictions on the points (x;,y,). Consequently, the path may
mtersect itself.

Programming. The function SPMPAR is used. LOCPT was written by A 1. Morris,

INTERSECTION OF A STRAIGHT LINE AND PCGLYGONAL PATH

Given a sequence of points vy = (z;,y;) {{ = 1, ...,n). Let r denote the polygonal path
which begins at point vy, traverses the points v; in the order that they are indexed, and is
the straight line segment from 1 to 541 for each 1 = 1, ..., n — 1. Also consider a straight
line £ connecting two points (a1,az) and (by,bz). If £ and 7 intersect at a finite number of
points, then the following subroutine is available for obtaining the intersecting points.

CALL PFIND(a,b, X,Y,n,U,V, m, k,JERR)

The arguments a and b are arrays of dimension 2 containing the points (ay,a2) and
(b1,b2). It is assumed that a # band n > 2. X and Y are arrays containing z, ..., z, aad
Y1, - -+, Yn respectively.

The argument m is the estimated maximum number of points at which the line £ and
path 7 may intersect (m < n). U and V are arrays of dimension m or larger, and k and
IERR are variables. When PFIND is called, if no input errors are Jdetected then IERR 1<
set to 0, k = the number of points (u;,v;) where the line £ and path r intersect, and U
and V contain the abscissas uy, ..., ug and ordinates v, ..., vg of these points. The points
(u;, v;) are listed in the order that the path intersects £ when proceeding from (z;,y;) to

(T Yn).

Error Return. If an input error is detected than IERR has one of the following values:

IXRR =: 1 Either a - b or the path contains a single point.
i)
IERR ~ 2 U and V require more storage. The argument rn must be in-
creased.
IERR -~ 1 The 1** Line segment of the path contains a segmen. of the line €.
When an error is detected, k the number of points (u.,v,) found where the line € and
] i v J}

path 7 ntersect, and U and V contain the abscissas and ordinates of these points.

Remark. The intersecting points (1w, v,) need not be distinct. The path may intersect £ at
the same point a number of times when proceeding from (ry,yp) to (r,,,yn).

Programming. PFIND was written by A H. Morris, The function SPMPAR s used.

’ THE CONVEX HULL FOR A FINITE PLANAR SET

. If (z1,91), ---,{Zm,ym) are m distinct points in the plane, ther the following subrou-
s tine is available for finding the smallest convex polygon which with its interior contains the

at points.

. CALL HULL(X,Y, m, BX,BY, k, VX,VY,n)

" f It is azssumed that m > 2. X and Y are arrays containing the abscissas z;, ...,z and

ordinates yi, ..., Ym, respectively. When HULL is called th2 points are reordered so that
y1 <+ € ym. Thus X and Y may be modified when the routine terminates.

RX and BY ure arrays of dimension m 4 1 or larger, and k is & variable. When HULL
terminates, BX anad BY contain the abscissas and ordinates of the points (#,, y;) which lie
PR on the boundary of the desired convex polygen, and k = the number of pninis stored in
BX and BY. If BX and BY contain the abscissas 27, ..., z} and ordinates yj, . ,y;, then
T 4 the peints (2!,y]' are indexed in the order they occur when traversine the boundary in a

counterclockwise manner. Also (<}, y;) = (z,v1)

. " VX and VY are arrays of dimension m -- | or larger, and n is a variable. When
HULL terminates, VX and VY contain the abscissas and ordinates of the vertices »f the
desired convex polygon, and n = the number of points stored in VX and VY. If VX and
VY contain the abscissas z{, ...,z and ordinates yY, ...,yr, then the vertices (z!',y!') are
indexed in the order they occur when traversing the boundary of the convex polygon in a

counterclockwise manner. Also {z,yll) == (=, y{}.

i ; Example. Assime that we are given the points _ . S
. (-1,-3), (1,1) {0,3), (2,2), (-2,4), {-1,-1).
i When HULL 13 called X and Y are recordered
: and we obtain:
b ‘ X contains -1, -1,

Y contains -3,-1,1,7,
. BX contamns -1,2,0,-2, ~-1
BY contains -3,2,3,4,-3
V¥ contains —1,2,-2 ~1

VY contains -3,2,4, -3

Programming. HULL calls the subroutine RRSORT and function SPMPAR. HULL was
written by A H Morns.

AREAS OF PLANAR POLYGONS

Given a sequence of points v; = (zy,4) (= 1, ...,n+ 1) where n > 1 and v,41 = v1.
Let r denote the polygon whose boundary 9dr is a polygonal line which begins at point vy,
traverses the points v; in the order that they are indexed, and is the straight line segment
connecting v; to v, for1 = 1, ..., n. Then the function PAREA is available for computing
A(ry = [[dxdy. If the boundary dr is a positively (regatively) oriented simple closed
curve, then A(r) is positive (negative) and |A(7)| = the are:. of r. However, 87 need not be
simple. It may be self-intersecting or have overlapping line segiments.

PAREA(X,Y,N)

X and Y s&re arrays containing the abscissas z;,. zx and ordinates yy, ...,yn,
respectively. The argument N may have the value n or n + 1. fince vp4y = vy, 2,41 and
Yn+1 ae not reaquired to appear in X and Y. PAREA(X,Y, N) is assigned the value A(7).

Programmer. A. H. Morris
Reference. DiDonato, A. R. and Hageman, R. K., Computation of the Integral ofthe Bi-

varsate Normal Distribution over Arbitrary Poiygons, eport TR 80-166, Naval Surface
Weapons Center, Dahlgren, Virginia, 1980.

39

HAMILTONIAN CIRCUITS

Given a directed graph G containing n vertices, denoted by the integers 1, ..., n. Then
any circuit of n arcs which {raverses the n vertices, say in the order 1y, ...,t,, is called a
Hamiltonian circuit. For convenience, it 18 assumed that for any two vertices 1 and j, no
more than one arc exists which beging at 1 and ends at j§. Then the fcllowing subroutine is
available for finding the Harniltonian circuits of G, if any exist.

CALL HZ(IND,m,n, P, A,NB, S, IWK,NUM)

The argument m is the number of arcs in the graph G. P is an integer array of
dimension n + ! and A an integer array of dimension m. The graph is stored in P and A
as follows: Fort = 1, ... ,n let

R; = {7: there exists an arc which begins at ¢ and ends at 7}.

Then the vertices in Ry, ..., K, are stored in 4, where the data in R; precedes the data in
Ry fori =1, ...,n— 1. For each ¢, the vertices in R; may be given in any order in A.
The array P contains the data

P{1) =0
P(i + 1) == the total number of vertices in Ry, ..., R; (1 =1, ...,n).

Hence, if P(s) < P{i+ 1) then the vertices in R; are found in locations P(¢)+1, ..., P(i+1)
of A Otherwise, if P(t) = P(i + 1) then R; = ¢ (the empty set); i.e., there are no arcs in
& which begin at ¢ (and ro Hamiltonian circuits exist). Also, I’(n + 1) = m since there are
m arcs in G.

Example. Consider the graph where
m=235n=4
Ry = {2,4} K3 = ¢
R, = 11,3} Hy={3}.
Then A coatains 4,2,1,3,3
P contains 0,2,4,4,5.

When HC is called, a depth-first tree search employing backtracking is used. NB 1s a
variable for controlling the backtracking. If NB > 0 on input, then it is assumed that WB is
the maximum number of backtracks that may be performed to find a Harmiitonian circuit,
Otherwise, if NB < 0 then it is assumed that no restriction 1s placed on the backtracking.
When HC terminates, NI = the number of backtracks that were actually performed.

S 18 an integer array of dimension n. When HC is called, if a Hamilionian circuit 1s
found which traverses the vertices, say in the order 1y, ...,1,, then the ordered vertices
t(,...,1, are stored in S,

IWK i3 an arcay of dimension NUM that is o work space for the routine. 14 s assumed
that NUM > m + 8n 4 20,

Only one Hamiltcaian circuit will be obtained on a call to HC. However, this routine
can be repeatedly called to obtain all the Hamiltonian circuits. IND is a variable which
controls the operation of the routine on input, and reports the status of the results on
cutput. It is assumed that IND = 0 on the first cal! to HC. When the routine termirates,
if no input errcrs are detected then IND has orne of the following values:

IND == 1 A Hamiltorian circuit was found and the ordered vertices traversed
by the circuit stored in S. To find another circuit, reset NB and
recall the routine.

IND = 2 The maximum number of backtracks were performed. To continue,
reset NB and recall the routine.

IND = 4 No more circuits exist. The array A has been restored (see the
remark on the storage of A below) and the procedure is finished.

We note in passing that on an initial call to the routine, the setting IND = 4 on output
indicates that the graph contains no Hamiltonian circuits.

After a call to HC, if IND = 1 or 2 on output then the search procedure can be
continued by resetting NB and recalling the routine. Do not modify IND when the tree
search i3 to be continued. In this case, the storage of A has been temporarily modified
and IWK contains information needed for the search. If a new Hamiltonian circuit is found
when HC is recalled, then the vertices iraversed by the new circuit will now be stored in S.

Atter a cail to HC, if IND = 1 or 2 on output and it is desired that the search procedure
be terminated, then reset IND = 3 and recall the routine. In this case, the array A will be
restored and IND = 4 when HC terminates.

Storage of A. When A is restored, the order of the vertices of R, in .i may be modified
for each 1.

Error Return. If an input error is detected then IND is set to one of the tcllowing values:

IND = —1 IND < 0 or IND > 3 on input.

IND = —2 IND was modified, being assigned a value # 3 when HC was re-
called. Reset IND to its previous output value, reset NB, and
recall HC if another circuit is wanted.

IND = —3 The input setting IND = 3 is not needed when the previous output,
value for INI) was 4. In this case, nothing was done.

IND = -4 NUM < m + 8n + 20.

IND = -5 P(1) #0or P(n+1) # m.

IND = -6 £2(t) > P(i + 1) for some 1.

Pemarks.

(1) It ic assumed that ¢ contains no loops.
(2) Normaily, few backtracks are needed when the number of vertices in each R; is small,
say U or less. Consequently, the setting NB == -1 is generally appropriate in such

caies,

Programming. HC employs the subroutines HC1, IPATH, FUPD, BUPD, IUPD, and
RARC. The search procedure in these routines was written by Silvano Martello (University
of Bologns, Italy). The user interface involving the variable IND was written by A. H.

Morris.

Rcference. Martello, S., “Algorithm 595. An Enumerative Algorithm for Finding Hamilwo-
nian Circuits in a Directed Graph,” ACM Trans. Math Software 9 (1983), pp. 131-138.

43

ERROR FUNCTION

For any complex z the error function is defined by

o) = 7o [et

and its complement by erfc(z) = 1 — erf(z). The subroutines CERF, CERFC, DCERF,
and DCERFC are available for computing erf(z) and erfc(z) when z is complex, and the
functions ERF, ERFC, ERFC1, DERF, DERFC, and DERFC1 are available for computing
erf(2) and erfc(z) when 2 is real. DCERF, DCERFC, DERF, DERFC, and DERFCI are

double precision routines.
CALL CERF(MO, z,w)

MO is an integer, z a complex number, and w a complex variable. When CERF is
called, w is assigned the value erf(z) if MO = 0 and the value erfc(z) if MO # 0.

Algorithm. For z = z + ty where z > 0, if z satisfies |z2| < 1 or both of the inequalities
1 < |z| < v/38 and z? — y? + .064z%y? < 0, then the series

n 2n—{1

(1) erf(z \r Z nv(zn Y

is used. If 1 < |z| < v/38 and z? — y? + .084z%y? > O then

ze -~ n
(2) erf(z) = 1 - NG ,,Z:’l e

is employed. A, and r, are the poles and residues of the rational function approximation
for the complex Fresnel integral E(z) given in the reference. The error function is related
to E(z) by erf(z) = 1~ {V2E(-2?) for |arg(2)| < x/2. If |z| > /38 and z > .01 then erf(z)
is computed by the asymptotic expansion erf(z) = 1 — ¢(z) where

2

(3) W(z) = ;’i:f_. 1 + Z(__l),,l_-_%__gzn —71)7 '

\/‘7‘— z zanyl
n>1

Otherwise, if [z| > /38 and 0 < z < .01 then erf(z) == —(z) is employed. When z < 0
then the relation erf(--z) == —erf(z) is applied.

Programming. Written by Allen V. Hershey and A. H. Morris.

Reference. Hershey, A. V., Approxrimation of Functions by Sets of Poles, Report TR-
2504, Naval Weapons Labumtory, Dahlgren, Virginia, 1971.

CALL CERFC(MO, z, w)

MO is an integer, z a complex number, and w a complex variable. When CERFC is
called, w is assigned the value erfc(z) if MO = 0 or Re(z) < 0. Otherwise, if MO # 0 and
Re(z) > 0 then w is assigned the value e*erfc(z).

Precision. For MO # 0, Re(w) and Im(w) are accurate to within 1 unit of the 12** signifi-
cant digit when |Re(w)| > 10728 and Im{w) # 0.

Programming. CERFC employs the subroutine CREC and functions EXPARG and IPM-
PAR. CERFC was written by Allen V. Hershev and A. H. Morris.

Reference. Hershey, A. V, Approzimation of Functions by Sets of Poles, Report TR-
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

ERF(z)
ERF(z) = erf(z) for any real z.
Precision. ERF(z) is accurate to within 2 units of the 14** significant digit for z # 0.
Programmer. A. H. Morris

Reference. Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math Comp. 23 (1969), pp. 631-637.

ERFC(z)
ERFC(z) = erfc(z) for any rea! z.

Precision. If £ < 3 then ERFC(z) is accurate to within 2 units of the 14** significant digit.
Otherwise, if z > 3 then ERFC(z) is accurate to within 4 units of the 14* significant digit
when ERFC(z) # 0.

Programming. ERFC employs the functions EXPARG and IPMPAR. ERFC was written
by A. H. Morris.

Reference. Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math Comp. 23 (1969), pp. 631-637.

ERFC1(IND, x)

IND is an integer and z a real number. ERFC1{IND,z) = erfc(z) when IND = 0, and
ERFCI(IND,z) == e*erfc(z) when IND # 0.

Precision. If z < 3 then ERFC1(0,z) is accurate to within 2 units of the 14** significant
digit. Otherwise, if z > 3 then ERFC1(0,z) is accurate to within 4 units of the 14"
significant digit when ERFCI1{G,z) 4 0. If IND # 0 then ERFCI(INI)z) is accurate to

46

within 2 units of the 14*? significant digit for z > —1.

Programming. ERFC1 employs the functions EXPARG and IPMPAR. ERFC1 was written
by A. H. Morris.

Reference. Cody, W. J., “Rational Chebyshev Approximations for the Error Function,”
Math Comp. 23 (1969), pp. 631-637.

CALL DCERF{MO,Z, W)

MO is an integer, and Z and W are double precision arrays of dimension 2. It is
assumed that Z(1) and Z(2) are the real and iniaginary parts of a ccmplex number z. If
MO = 0 then the double precision value for w = erf(z) is computed, and if MO # 0 then
the double precision value for w = erfc(z) is computed. W (1) and W(2) contain the real
and nmaginary parts of w, respectively.

Algorithm. For z = z + ty where z > 0, if |z| < 1 then (1) is used, and if |z — 2| < 1 and
z £ 2 then the Taylor series

(4) erfc(z) = erfc(a) + -\-/2—;6—(12 ;:31(—-1)” no1l(a}(z —a)?/n! (a=2)

is employed. Here H,(a) are the Hermite polvnomlals If 1 < |z] < 2.5 then (4) and the
Pade approximation A, (22)/B,(z?) for \/#(2z)~'e* erf(z) are used where

Ao(z) =1 A(z)=1+ %2
30(2) =1 Byfz)=1-%z

(5)

and A, and B, satisfy

22 dn{dn + 2)2*

(6) Buiae) = |1~ (4n + 1)(4n +5) Bulz) + (4n — 1)(4n + 1)%(4n + 3) Bn-1(2)

(see pp. 191,192, and 422 of the reference). Also, if 2.5 < || < 12 then A,(2?)/B.(2?) and
the Pade approximation G, (z2)/H(2?) for \/72¢* erfc(z) are employed where

(7) o .

and G,, and H,, satisfy

(8) Ho1(2) = (22 + dn + 3)H o (2) ~ 2n(2n+ V) H 1 (2)

(see pp. 201 and 422 of the reference). Ctherwise, if |¢] > 12 and z > .0l then the

asymptotic expansion erfc{z) = ¢(=) is used where ¥(z) is given by (3). Also, if [2] > 12

and 0 < z < .01 then erf(z) = -¢(2) is employed. When 2 < 0 the relation erf(- z)
erf(z) is applied.

47

Programming. DCERF calls the subroutines ERFCM2, CDIVID, and DCREC. DCERF
and ERFCMZ2 were written by A. H. Morris. The function DPMPAR is also used.

Reference. Luke, Yudell L., The Special Functions and Their Approzimaiions, Vol 2,
Academic Press, New York, 1969,

CALL DCERFC(MO,Z, W)

MO is an integer, and Z and W are double precision arrays of dimension 2. It is
assumed that Z(1) and Z(2) are the rea! and imaginary parts of a complex number z.
If MO = 0 or Re(z) < O then the double precision value for w = erfc(z) is computed.

Otherwise, if MO # 0 and Re(z) > 0 then the double precisicn value for w = e erfc(z) is
computed. W (1) and W(2) contain the real and imaginary parts of w, respectively.

Precision. For MO # 0 and Re(z) > 0, W(1) and W(2) are accurate to within 3 units of
the 26" significant digit when W (2) # 0.

Programming. DCERFC employs the subroutines ERFCM2, DCIVID, and DCRE(, and
functions DXPARG, DPMPAR and IPMPAR. DCERFC and ERFCM2 were written by A.
H. Morris.

DERF(z)

The argument z is a double precision number. DERF(z) is the double precision value
for erf(z).

Remark.DERF must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If |z| < 1 then the power series corresponding to the Chebyshev expansion
given in the SLATEC library by Wayne Fullerton {Los Alamos) is used, and if |z| > 1 then
minimax approximations are employed. The power series and minimax approxirations
were obtained by A. H. Morris.

Precision. DERF () is accurate to within 2 units of the 28" significant digit for z # 0.
Programming. DERF employs the function DERFCO. DERF was written by A. H. Morris.
DERFC(z)

The argument z is a double precision number. DERFC(z) is the double precision value

for erfc(z).

Remark. DERFC must be declared in the calling program to be of type DOUBLE
PRECISION.

Algorithm. If [z| < 1 then the power series corresponding to the Chebyshev expansion given
in the SLATEC library by Wayne Fullerton (Los Alamos) is used. Otherwise, if 1 < jz| < 50

48

then minimax approximations are used, and if [z| > 50 then the asymptotic expansion (3)
is employed. 'Che power series and minimax approximations were obtained by A. H. Morris.

Frecision. DERFC(z) is accurate to within 2 units of the 28*" significant digit for z < 2.

Programming. DERFC employs the functions DERFCO, DXPARG, and IPMPAR. DERFC
was written by A. H. Morris,

3 DERFC1(IND, z}
IND is an integer and = a double precision number. DERFC1{IND,z) is the double
e precision value for erfc(z) when IND = 0, and DERFC1(IND,z) is the double precision
value for e‘zerfc(a:) when IND # 0.
Remark. DERFC! must be declared in the calling program to be of type DOUBLE
PRECISION.
Precision. DERFCI(IND,z) is accurate to within 2 units of the 28" significart digit when
IND=0and 2 < 2, and when IND #0and z > -1
Programming. DERFC1 employs the functions DERFCO, DXPARG, and IPMPAR. DERFC1
was written by A. H. Morris.
AR
Y
49
P R

INVERSE ERROR FUNCTION

For any 0 < z < 1, the following functions are available for obtaining the value w > 0
for which erf(w) = z.

ERFi(z,y)

It is assumed that z > O, y > 0, and z + y = 1. Then ERFI(z,y) = w where w > 0
and erf(w) = z.

Error Return. ERFI(r,y) = —1ifz <O or y <0, and ERFI(z,y) = —-2ifz + y # L.
Precision. ERFI{z,y) is accurate to within 3 units of the 14*h significant digit.

Programming. ERFI was written by Armido R. DiDonato and modified by A. H. Morris.
The function SPMPAR is used.

Reference. Blair, J. M., Edwards, C. A., and Johnson, J. H.,“Rational Chebyshev Approx-
imations for the Inverse of the Error Function,” Math. Comp. 36 (1976), pp. 827-830.

DERF!(z,y)

The arguments x and y are double precision numbers wherez > G,y > 0, and z+y == 1.
DERFI(z,y) is the double precision value for w where w > 0 and erf(w) = z.

Remark. DERFI must be declared to be of type DOUBLE PRECISION in the calling
program.

Error Return. DERFI(z,y) = -1 if z < Oor y <0, and DERFY(z,y) = -2 if z + y # 1.

Algorithm. If z < 15/16 then an initial value for w is given ty minimax approximations
due to A. H. Morris. Otherwise, if z > 15/16 then an iritial value for w is given by minimax
approximations from the reference. These approximations are accurate to 17-18 digits. If
inore accuracy is needed, then a single iterate of the Newton procedure for solving F(w) = 0
18 taken to obtain w to machine precision. Here

erf(w) — z if £ < 3/4

Flw) = § erfe(w) ~y if 3/4 < x < 15/16
Inlerfe(w)] - In(y) if z > 15/1€.

Precision. DERFY(z,) is accurate to within | unit of the 27" significant digit.

Programming. DERFI employs the functions DERF, DERFC1, DERFC0, NDXPARG,
DPMPAR, and IPMPAR. DERFI was written by A. H. Morris.

Reference. Blair, J. M., Edwards, C. A, and Johnson, J. H. “Rational Chebyshev Approx-
imations for the Inverse of the Error Function,” Math. Comp. 30 (1976), pp. 827 830.

DIFFERENCE OF ERROR FUNCT!ONS

For any real z and h, let aerf{z,h) = erf(z+h) —erf(z - k). Then the functions AERF
and DAERF are available for computing aerf(z, h).

AERF(z, h)
AERF(z,h) = aerf(x,k) for any z and h.

Precision. AERF(z,h) is accurate to within 8 units of the 12*} significant digit when
AERF(z, h) # 0.

Programming. AERF employs the functions ERF, ERFC, EPSLN, EXPARG, SPMPAR,
and IPMPAR. AERF was written by Armide R. DiDonato and modified by A.H. Morris.

Reference. DiDonate, A.R., Significant Digit Computation of the Elliptical Coverage
Function, Report NSWC TR 90-513, Naval Surface Warfare Center, Dahlgren, Virginia,
1990.

DAERF(z, h)

The arguments z and h are double precision numbers. DAERF(z, k) is the double
precision value for aerf(z, k).

Remark. DAERF must be declared to be of type DOUBLE PRECISION in the calling
program.

Programming. DAERF employs the functions DERF, DERFC, DERFCO0, DEPSLN, DX-
PARG, DPMPAR, and IPMPAR. DAERF was written by Armido R. DiDonato and mod-
ified by A. H. Morris.

Reference. DiDonato, A.R., Significant Digit Computation of the Elliptical Coverage

Function, Report NSWC TR 90-513, Naval Surface Warfare Center, Dahlgren, Virginia,
1990.

R

NORMAL PROBABILITY DISTRIBUTION FUNCTION

For any real z, the normal probability distribution function P(z) (of mean 0 and
variance 1) is defined by

P(z) = —/2 g

1 x
— e
Ver ./._oo
and its complement by Q(z) = 1 - P(z). The following function is available for computing
P(z) and Q(z).

PNDF(z,IND)
IND is an integer and r a real number. If IND = 0 then

P(z) ifz>-8
PNDF(z,O):{ P'(z)

if 2z < -8
\ P(:L') 11 r

where P'(z} is the derivative of P(z). Otierwise, if IND # 0 then

Q(z) ifz<8
PNDF(z,IND) = ¢ Q'(z) .
m~ if £>8

where Q'(z) is the derivative of Q(z).
Algorithm. The identitics P(z) = } erfc(-z/v/2) and Q(z) = } erfe(z/\/2) are used.

Programming. PNDF calls the function ERFC1. PNDF was written by A.H. Morris.

INVERSE NORMAL PROBABILITY GiSTRIBUTION FUNCTION

For any real w, the normal probability distribution function P(w) (of mean O and

variance 1) is defined by
1 v 2
P - [el
(Var J_ oo

and its complement by Q(w) =1 - £(w). For any 0 < p < 1 and ¢ = 1 — p, the following
suabroutines are available for obtaining the value w for which P(w) = p and Q(w) = ¢.

CALL PNIi(p,q,d, w,IERR)
CALL DPNI(p,q,d,w,IERR)

PNI is used when p, ¢, and d ar~ real numbers and w 1s a real variable, and DPNI is
used when p, ¢, and d are double precision numbers and w is a double precision variable.

It is assumed that p > 0, ¢ > 0,p+¢ =1,and d = p— 1/2. IERR and w are variables.
When PNI or DPNI is called, if no input errors are detected then IERR is set to 0. Also,
w is assigned the value for which P(w) = p and Q(w) = ¢.

Error Return. IERR = 1ifp< 0,9 <0,or p+q#1,and IERR = 2 ifd# p - 1/2.
Algorithm. For y > 0, let y == erf "!(z) when z == erf(y). If P(w) = p then the identities

{ V2erf 11 -2p) f0<p<1/2
w - ,
V2erf '(2p 1) if1>p>1/2

are applied.

Precision. If PNI is called then w is accurate to within 3 units of the 14" significant digit.
Otherwise, if DPNI is called then w is accurate to within 1 unit of the 27'® significant digit.

Programming. PNI employs the functions KRFI SPMPAR, and IPMPAR| and DPNI em-
ploys the functions DERFI DERiY, DERFCI, DERFCO, DXPARG, DPMPAR, and [PM-
PAR. PNI was written by Arniido R DiDonato and modified by A. H. Morris. DPNI was
adapted from PNIL by A.H. Morris,

N T

DAWSON'S INTEGRAL

For any real r, Dawson’s integral is defined by

F(z) = 6"22/ e’ dt.
0

The following functions are available for computing F(z).
DAW(z)
DAW(z) = F(z) for any real z.
Precision. DAW(z) is accurate to within 2 units of the 14*? significant digit for z # 0.

Programming. DAW belongs to the FUNPACK package of subroutines aeveloped at Ar-
gonne National Laboraiory. The function was modified by A. H. Morris.

Reference. Cody, W.J., Paciorek, K.A., and Tacher, H.C., “Chebyshev Approxiinasions for
Dawson’s Integral,” Math Comp. 24 (1970), pp. 171-178.

DPDAW(z)

The argument z is a double precision number. DPDAW(z) is the double precision
valu for F(z).

Remark. DPDAW must be declared to be of type DOUBLE PRECISION in the calling
program.

expansion given in the SLATEC library by Wayne Fullerton (Los Alamos) is used, and
if 1 < |z| < 4 then the 44'" degree Chebyshev expansion given in the SLATEC library
by Wayne Fullerton is employed. Otherwise, if |z| > 4 then minimax approximations are
applied. The power series and minimax approximations were obtained by A. H. Morrs.

Frogramming. DPDAW eiuuploys the funciions DCSEVL and DPDAWO. DPDAW was
veritten by A. H. Meorris.

COMPLEX FRESNEL INTEGRAL

For any omplex 2 not on the positive real axis the complex Fresnel integral £(z) can
be defined by

1 ¥ gt
E Z Py =gl _—
(=) V/;Zﬂ' j—-o() /1

at.

Here it is assumed that O < arg(z) < 2x and arg{\/z) == 1/2 arg(z}. E(z) can be extended
to the positive real :xis by letting G < arg{z) < 2x. Then erf(z) = 1 — iv/2 E(-2?) for
-7 /2 < arg(z) < /2 where erf{z) s the error function and arg(—2z?) = x + 2 arg(z). The
following subrouune i available for computing E(z).

CALL “FRNLI(MO, 2,)

MO is an integer, z a complex number, and w a complex variable. When CFRNLI is
called, w is assigned the valne E(z) if MO == 0 and the value e~ *E(z) if MO # 0.

Algorithm. If 2 = r + iy satisfies 12| < 1 or both of the inequalities 1 < |z| < 38 and
—z + .016y% < 0, then the series

F(z) = -—+\/2“/ >

n'(2n +1)

isused. If 1 < |z| < 38 and -~z + .016y® > O then

E(z) = \/ . ;—:—

> 33 and lm \/2z/7 > 008 then E(z) is computed by the asymptotic
expansion E(z) = ¢(z) where

1-3.-+(2n - 1)
"b() .in'z [+ Z (2z)n

Precision. For MO # O, Rel) and Im(w) are accurate to within 1 unit of the 12"
significant digit when Re(w) aud Im(w) are nonzero.

Programming. CFRNLI employs the functions CPABS, EXPARG, and IPMPAR. CFRNLI
was written by Allen V. Hershey and A. H. Morris.

Reierence. Hershey, A. V., Apnrozimation of Functiors by Sets of Poles, Report TR-
2564, Naval Weapons l.aboretory, Dahlgren, Virgmia, 1971.

61

REAL FRESNEL INTEGRALS

For any complex z the Fresnel integrals C(z) and S(z) can be dofined by

5 x
T{z) = ces —tz\ dt
() _/{) (2 /
* x
S() = / sin (42) dt
(2) A *‘41[1(2)

The follewing subroutine is available for computiug Cy<} and 5(z) when .: is real.
CALL FRNL(z,C, 5)

The argument x may be any rea! number. C and S are variables. When FRNL is
called C is assigned the value C(z) and & is assigned the value S{z).

Algorithm. If 0 < z < 1.65 then 27 'C(z) and 27 38(z) are computed by minimax polyno-
mial apprcximations. Otherwise, if « > 1.65 ti:en the relations

1 :
Cle) = + f{2) sinza® — g(=) sosZ?
1 _
S(x) =5~ /(=) cos-z? — 9(z) sin . x?
PA 2 9

are invoked. For 1.65 < z < 6,zf(z) and z3¢(z) are computed by rational mninimax
approximaticns. Otherwise, for z > 8 the auxiliary functions f(z) and g(zj are computea
by the asymptotic expansionas:

1 - 1-3.. (46— 1)
Fepuy | BN S | R, S
) N g8 (4d 4 1)
9(=) = - .%3(1) (re)B+T
Here m = 5. If z < 0 then the relatione C(~1z) = —C(z) and 8(~x) = - S(x) are applied.

Precigion. If |z < 2 then FRNL iz accurate to within 3 units of the 14" significant digit.
Otherwise, if [z] > 2 then FRNL is accurate to within 1 urit of the 14'P significant digit.

Programming. FRNL calls the functione SIN1, COS1, and IPMPAR. FRNL was writien
by A. H. Morris.

£

N\
)
Y

EXPONENTIAL INTEGRAL FUNCTION

For anv cowrplex z # 0 not on the positive real axis the exponrential integral function
Ei(z) is defined by

~ :

v —co
Ei(z) is an analytic function. ¥ z is rupiaced by —« and t by ~t we obtain the related
function

. o0 ot
Ey{z) = —Ei(—-z):/ A

x

which is defined for all 2 # 0 not on the negative real axis. It can be verified that
Ei{z) = v +-In(—2) + —

everywhere in the plan=z cul along the positive real axis where v is the Euler constant. Thus,
the vaiues of Ei{z) on the upper and lower edges of the cut are

Ei(z £1i0) = ei{z) T ¢

where ei(z) is the real function defined by

. v B
eifz)=v+Inz+ > e
“n-nt

for 2 > 0. The function ei(z), also known as the expounential integral function, has a zero
. he point g = 37250 74107 81367 Ei(z) may be computed by the subroutine CEXPII
wher: 2z is complex, and Ei(z) and ei(z) may be computed by the subroutine EXPL!{ and
functions DET and DEI1 when 2 is real. DEI and DEI1 are double precision functions.

CALL CEXPLI(MO, 2, w)

MO is an integer, z # 0 a complex number, and w a complex variable. When CEXPIL1
is called, w is assigned the valu: Ei(z) if MO = 0 and the value e~ % Ei(z) if MO # 0.

Remark. If 2 is a positive real number and MO = 0 then w = ei(z) +n¢.

Precision. If MO = 0 then Re(w) and Im(w) are accurate to within 2 un’ts of the 12t
significant digit when z is nov near a zero of Re(Ei(z)) or Im(FEi(z)).

Programiving. CEXPLI employs the functions CPABS and SPMPAR. CEXPLI was -
tlally written by Allen V. Hershey, and later rewritten by A. 1. Morris.

Refererce. lHershiey, A. V.| Approzimations of Functions by Sets of Poles, oo, o TR
2564, Naval Weanons Laboratory, Pahlgron, Virginia, 1971,

€5

CALL EXPLI(MO, z, w,JERR)

MO may have the values 1,2, or 3 The argument z 13 a nonzero real number and w
a real variable. When EXPil is called, if MO = 1 then w is assigned the value Ei(z) for
z < 0 and the value eilz) for z > 0. If M, = 2 then it is assurned that = > 0. In this case
w is assigned the value Fy(z). Otherwise, if MO == 3 then w iz assigned the value e *Ei(z)
for 2 < O and the value e™% ci{z) for x > 0.

Error return. IERR is a variable that reports the status of the results. If the requested
value w is obtained then IERR is set to 0. Otherwise, IERR is assigned one of the following
values:

JERR = 1 Underflow occurs. In this case w = 0.

IERR = 2 Overflow cccurs.

[ERR = 3 (Input error) z = 0.

IERR = 4 (Input error) MO = 2 and z < 0.
The variable w 1s not defined when IERR > 2. I

Algorithm. If MO # 2 and 4 < z < 8, then the Chebyshev expansion in the SLATEC
library cbtained by Wayne Fullerton (Los Alamos) is used. The remaining approximations
employed are from the references.

Precision. If MO # 2 and z > 0, then w is accurate to within 4 units of the 14" significant
digit when w 3 0. Otherwise, w is accurate to within 3 units of the 14" significant digit
when w # 0.

Piogramming. EXPLI employs the functions ALNREL, CSEVL, EXPARG, and IPMJP’AR.
EXPLI was written at Argonne National Laboratory for the FUNPACK packagr of special
function subroutines. EXPLI was modified by A. H. Morris.

References.

(1) Cody, W.J. and Thacher, H. C., “Rational Chebyshev Approximations for the Expo-
neatial Integral E,(z),” Math Comp. 22 (i968), pp. 641-649.

(2) ., “Chebyshev Approximations for the Exponential Integral Ei{z),” Math
Comp. 23 (1969), pp. 289-303.

DEI(r)

The argument z 4 0 is a double precision number. DEI{7) is tlie double precision value
for Ei(z) whep z < 0, and the double precision value for ei(z) when z > 0.
) I ,

Remark. DEI must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If 35 < z < 4 then the Taylor series expansion of ei{x] around zy is used.
This expansion was obtained by AL H. Morris. I |r

> 90 then the standard asymptotic

expansion for 1 and ei 14 applied. Otherwise, the Chebyshev expansions in the SLATLO

libirary obtained by Wayne Fullerton {Los Alanaes) are used.

v
.

Programming. DEI employs the functions DE1E and DEIO. These functions were written
by A. H. Morris. The functions DCSEVL and DPMPAR are also used.

DEN(z)

The argument z # 0 is a double precision number. DEIi(z) is the double precision
value for e~% Ei(x) when z < 0, and the double precision value for ¢ ~* ei{z) when z > 0.

Remark.DEil must be declared in the calling program to be of type DOUBLE PRECISION.

Algarithm. If .35 < z < .4 then the Taylor series expansion of ei(z) around zo is used.
This expansion was obtained by A. H. Morris. If |z| > 90 then the standard asymptotic
expangion for E: and ei is applied. Otherwise, the Chebyshev expansions in the SLATEC
library obtained by Wayne Fullerton (Los Alamos) are used.

Precision. DEI1(z) is accurate to within 4 units of the 28*" significant digit when DEI1(z)
£ 0.

Programming. DEI1 employs the functions DE1E and DEIO. These functions were written
by A. H. Morris. The functions DCSEVL and DPMPAR are also used.

67

SINE AND COSINE INTEGRAL FUNCTIONS

For any complex z the sine integral and cosine integral functions Si(z) and Cin(z) are

defined by
Si(z) = / st g
0 t

s e t
Cin(z) :/ 1TCost dt.
0 t

These are entire functions. The following functions are available for computing Si(z) and
Cin(z) when z is real.

Si(z)
SI(z) = Si(z) for all real z.

Precision. SI is accurate to within 2 units of the 14*P significant digit.

Programming. SI calls the function SPMPAR. SI was written by Donald E. Amos and
Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

CIN(z)
CIN(z) = Cin(z) for all real z.

Precision. CIN is accurate to within 2 units of the 14" significant digit.

Programming. CIN calls the function SPMPAR. CIN was written by Donald E. Amos and
Sharon L. Daniel (Sandia Laboratories), and modified by A. H. Morris.

EXPONENTIAL EXPONENTIAL INTEGRAL FUNCTION

For any complex z # 0 not on the positive real axis, the exponential exponential integral
function EEi{z) can be defined by

EEi(z) = /_ oo CTU Ei(u) du

where Ex(u) is the exponential integral function. The following subroutine is available
for computing £FE1(z), where EEi(z) is extended to the positive real axis by letting 0 <
arg(z) < 2.

CALL CEXEX!(z,w)

The argument z is a nonzero complex number and w is a complex variable. "Vhen
CEXEXI is called, w is assigned the value EEi(2).

Precision. Re(w) and Im(w) are accurate to within 1 unit of the 12*" gignificant digit when
Re(EEi(w)) and Im(EEi(w)) are not near 0.

Programming. CEXEXI was written by Allen V. Hershey and modified by A. H. Morris.

Reference. Hershey, A. V., Approzimation of Functions by Sets of Poles, Report TR~
2564, Naval Weapons Laboratory, Dahlgren, Virginia, 1971.

DILOGARITHM FUNCTION

For any complex z where |arg(l - 2z)| < w, the dilogarithm function L(«) may be

defined by

L(z) = lﬂ(_l_t_i)_ dt'
t
Y}

L{z) is real-valued fer any real z > —1, and —1 is a branch point. L(2) can be extended to
the negative real! axis from oo to ~1 by letting -a < arg(l + z) < n. Then for any real
£ < 1

Iz) = ~n* /6 + /[; Ln'(‘f‘t:-ﬂ dt +inln(-z) (i=V~1).

The function CLI is available for computing L(z) when z is complex, and the function ALI
is available for computing the real part of L(z) when z is real.

CLI(z)

CLl is a complex--valued function where CLI(z) == L(z) for all complex z. CLI must
be declared in the calling program to be of type COMPLEX.

Algorithm. For |z| < 1/2 the Maclaurin series
- (—Z "
(1 wa=-y O

is used. If |z| > 3 then

(2) L(z) = x%/6 — L(1/2) + 1/21a® 2

is applied, and if 0 < |z + 1| < 1/2 then

(3) L(z) = -#%/6 - L(~1~ 2) + In(~2) In(1 + 2)

is applied. Otherwise,

oo
L(z) = —/ T 4\ (Debye Function)
o o
(1) B 2n 41
. — Honw
o - - 4 — e < 2
w+ w’/ n>>"‘1 G 1] |w] n
is used where w = —In{l 4 z) and B,, are the Bernoulli numbers B; = 1/6, By

-1/30, In (3) we note that In(-z)In{1 +z) » 0 when z —» ~1.

Programming. CLI 1s a modification by A. H. Morrig of the subroutine CLGMCI, written
by Allen V. Hershey.

Reference. Hershey, A. V., Approzimation of Functiong by Sets of Poles, Report TR~
2564, Naval Weapons Laboratory, Dahigren, Virginia, 1971.

ALl(z)
ALI{z) = Re[L(z)] for all rea! x.

Algorithm. Rational minimax approximations are used when —1/2 < < 1. if z > 1 then
(2) is appiied, and if -2 < z < -1 or ~1 < z < —~1/2 then (3) is applied. Otherwise, if
r < —2 then

Re!L(z)] = -x*/3 — L(1/z) + 1/2In*(~2)

(which follows from (2)) is used except when —26.63 < 2 < —6.97. Since Ke[L(zo)] = C for
xo = —12.59517 ..., the Tavlor series of Re|L(z)] around zg is used when --14 < z < —11.1.
Otherwise, if —11.1 < z < --6.97 or -26.63 < r < —14 then rational minimax approxima-
tions are employed.

Precision. ALI(z) is accuraie to within 2 units of the 14'® significant digit when z > 0.
Otherwise, if z < 0 then ALI(z) is accurate to within 4 units of the 14? significant digit
when ALI(z) # C.

Programmer. A. E. Morris

Reference. Morris, Robert, “The Dilogarithin Function of a Real Argument,” Math.
Comp. 33 (1979), pp. T78-731.

GAMMA FUNCTION

For any complex z # 0,—1,--2, ... the gamma function can be defined by

o
LY - \ (_l)n 1 /00 a1 ~t
P(a:) = ’;;6 —n—"—‘ ;-{—""; + 1 t e dt.

Then I'(z) is a meromorphic function having simple poles at 0,1, -2, ... ,and

F(z):/ t* e tdt
0

for Re(z) > 0. Also I'(z) # O for all z. The subrocutines CGAMMA and DCGAMA are
available for computing ['(z) and InT'(z) when z is cotaplex, and the functions GAMMA,
GAMLN, DGAMMA, and DGAMLN are available for computing '(z) and InT'(z) when 2
is real. DCGAMA, DGAMMA, and DGAMLN are double precision procedures.

CALL CGAMMA(MO, 2, w)

MO is an integer, z a cornplex number satisfying z £ 0, -1, -2, .. ., and w a complex
variable. When CGAMMA is cailed, w is assigned the value I'(2) if MO = 0 and the value

InT'{z) if MO # 0.

Error return. If 2 =0,-1,-2, ..., or if Re(z) < 0 and Re(z) is too large for In I'(z) to be
computed, then w is assigned the value 0.

Programming. CGAMMA calls the functions REXP. SPMPAR, and IPMPAR. CGAMMA
was writien by A. H. Morris.

References.

(1) Kuki, Hirondo, “Complex Giamma Function with Error Control,” Comm. ACM 15
(1672), pp. 262-26%.

'2) Spira, Robert, “Calculation of th» Gamma Function by Siirling’s Formula,” Math
Comp. 25 (1971), pp 317-322.

GAMMA)

The argument z ‘s a real number. I I'(z) can be computed then G LMMA (z) is assigned
the value I'(x). Otherwise, if I'(z) cannot be computed, tien GAMMA(z) is set te 0.

Algorithm. If |zl < 15 then z is reduced to the interval [1,2) by I'{a + 1} al'(a), and a

rationzl minimax approximation is employed. If £ < 15 then
x
(1) E)
sm{nzjl’(1 x)
75

is applied. For z > 15
(2) Inl(z) = (z - §)Inz - z+ In(27) + A(x)

is computed where A(x) is a minimax approximation. The function A{z) is evaluated in
single precision, and a double precision value is ottained for Inz. This yields a double
precision value for In I'(z). If InT'(z) = a4 6 where « is the leading portion of InI'(z), then
['{z) is set to e*(1 + §). This is permissible since 1 + & is the portion of the Taylor series
expansion for e® that is significant.

The logarithm ln iz is evaluated as follows: Let n be the largest integer less than or
equal to z, and let t = (z — n)/(z + n). Then z = n(l +t)/(1 — t) so that Inz =
Inn 4+ In[(1 4 t)/(1 - ¢)]. Also 0 <t < 1/(2n). The function In {(1+t)/(L - t)] is computed
by a polynomial minimax approximation in single precision, and the value In n is stored in
double precision.

Precision. If 0 < z < 2 then GAMMA (z) is accurate to within 2 units of the 14" significant
digit. If z > 2 then GAMMA (z) is accurate to within 3 units of the 14" significant digit.
Otherwise, GAMMA(z) is accurate to within 5 units of the 14*? significant digit.

Programming. GAMMA calls the functions GLOG and EXPARG. These functions were
written by A. H. Morris. The functions SPMPAR and IPMPAR are also used.

GAMLN(=z)
GAMLN(z) = InT(z) for all positive real z.
Algerithm. See p. 379 and appendix D of the reference.

Precision. GAMLN(z) is accurate to within 2 units of the [4*" significant digit when
GAMLN(z) # 0.

Reference. DiDonato, A. K. and Morris, A. I1., “Computation of the Incomplete Gamma
Function Ratios and Their Inverse,” ACM Trans. Math Software 12 (1986), pp. 377-393.

Prograsaming. GAMLN calls the function GAMLNIL. These functions were written by
A. H. Morris.

CALL DCGAMA(MO, 2, W)

MO s an nteger, and Z and W are double precision arrays of dimension 2. It is
assumed that Z{1) and Z(2) are the real and nnaginary parts of a complex number z. If
MO . 0 then the double precision value for w o I'(2) 1s computed. Otherwise, if MO /0
then the double precision value for w InU'(z) s computed. W (1) and W (2) contain the

real and imaginary parts of w, respectively,

Error Return If = 0, 1) 2, . orif Re(z) 0 and Re(z) is too large for In1'(z) to be
computed, then W (1) and W{2) are assigned the value 0.

76

Programming. DCGAMA calls the functions DREXP,DPMPAR, and IPMPAR. DCGAMA
was written by A. H. Morris.

References.

(1) Kuki, Hirondo, “Cemplex Gamma Function with Error Control,” Comm. ACM 15
(1972), pp. 262-267.

(2) Spira, Robert, “Calculation of the Gamma Function by Stirling’s Formula,” Math
Comp. 25 {1971), pp. 317-322.

DGAMMA(z)

The argument z iz a double precision number. DGAMMA(z) is the double precision
value for I'(z) when I’(z) can be computed. Otherwize, DGAMMA(z) is set to O when I'{z)
cannot be computed.

Remark. DGAMMA must be declared in calling program to be of type DOUBLE PRECI-
SION.

Algorithm. Li |x] € 20 then z is reduced to the intesval [1,2) by T'(a + 1) = aT'(a), and
minimax approximations are used. If £ < —20 then 1) is applied, and if z > 20 then (2)
is used. A(z) is computed by the power series correxponding to the Chebyshev expansion
in the SLATEC library given by Wayne Fullerton Los Alamos). The power series and
minimax approximations were obtained Liy A. H. Morris.

Precision. If 0 < z < 2 then DGAMMA(¢) is accu; ate to within | unit of the 28" signifi-
ant digit. Otherwise, if z > 2 then DGAMM (z* is accurate to within 1 unit of the 25th
significant digit.

Programming. DGAMMA calls the fun:tions DGAMI1, DPDEL, DSIN1, and DX PARG.
These functions were written by A. H. Morris. The functions DPMPAR and IPMI'AR are
also used.

DGAMLN(z)

The argument z is a double procision positive number. DGAMLN(z) is the double
precision value for In ['(z).

Remark. DGAMLIN must be declared in the calling program to be of type DOUBLE
PRECISION,

Algorithm. If .5 < &+ 2.5 then minhinax approximations are used, and if ¥ =~ 10 then (2) 15
applied. A(x) 1s commputed by the power series corresponding to the Chebyshev expansion
in the SLATEC Lbrary given by Wayne Fullerton (Los Alames). The power series and

minimax approximations were obtained by A, H. Morrns,

Precision. DGAMLN(z) is accurate to within 2 units of the 28" significant digit when
DGAMLN(z) # 0.

Programming. DGAMLN calls the functions DPDEL, DGMLN1, DGAM]I, and DLNREL.
These functions were written by A. H. Morris.

DIGAMMA FUNCTION
For any complex z # 0,—1,—2, ... the digamma (or psi) function ¢(z) is deiined by
¥(2) = T'(2)/T(2)

where I'(z) is the gamma function. For real z > 0, ¢(z) is an increasing function having a
zero at the point zp = 1.4616 32144 96836. The subroutines CPSI and DCPSI are available
for computing ¥(2) when z is complex, and the functions PSI and DPSI are available for
computing ¢{z) when z is real. DCPSI and DPSI are double precision procedures.

CALL CPSI{z,w)

The argument z is a complex number satisfying z # 0,—-1,-2, ..., and w is a complex
varizble. When CPSI is called, w i3 assigned the value ¢(zj.

Error Return. 1f z = 0,-1,-2, ..., or if Re(z) < 0 and Re(z) is too large for 1(z) to be
computed, then w is assigned the value O.

Algorithm. If z == z 4 1y satisfiez 2 > 0 and |z| > 6, then the asymptotic expansion

(1) Y(z) =lnz - —1; - _Bam

is employed. Otherwise, if £ > 0 then the smallest nonnegative integer n is found for which
lz 4- n| > 6, and the relation

n-1
.1
'J)(z) = = Z ;‘;‘.—7 + ¢z + n)
1=0
15 applied. When z < © then
(®) ¥(2) = (1~ 2) - meot(xz)

18 also used.

Programming. CI’Sl calls the functions REXP, SPMPAR, and IPMPAR. CPSI was written
by A. H. Morris.

PSi(z)

The argumeat r iy a real number. If ¢(z) can be coruputed then PSI(x) s assigned
the value {z). Otherwise, if ¥(r) cannot be computed then PSH{r) is set to 0.

Precisien. If r - O thea PSHrjis accurate to within 2 units of the 14 significant digit
when PRi(r) 7 0.

Programming. PSI calls the functions SPMPAR and IPMPAR. PSI was written at Argonue
National ILaboratory for the FUNPACK package of special function subroutines. PSI was
modified by A. H. Morris.

Reference. Cody, W. J., Strecok, A. J., and Thacher, H. C., “Chebyshev Approximations
for the Psi Function,” Matk Comp. 27 (1973), pp. 123-127.

CALL DCPSI(Z,W)

Z and W are double precision arrays of dimension 2. It 1s assumed that Z(1) and Z(2)
are the 1.al and imaginary parts of a complex nuraber z. When DCPSI is called the doubile
precision value for w = ¢(z) is computed. W (1) and W (2) contain the ceal and imaginary
parts of w, respectively.

Error Return. If 2 = 0,-1,-2, ..., or if Re(z) < 0 and Re(z)} is too large for ¥(z) to be
computed, then W(1) and W (2) are assigned the value O.

Programming. DCPSI calls the functions DREXP, DPMPAR, and IPMPAR. DCPSI was
written by A. H. Morris.

DPSI(z)

The argument z is a double precision number. If (x) can be computed ther DPSI(z) is
the double precision value for y(z). Otherwise, if '/~ cannot be computed, then DPSI{z)
is set to 0.

Remark DPSI must be declared in the calling program to be of type DOUBLE PRECISION.

Algorithm. If |z| < 10 then z is reduced to tke interval {1,2) by ¢(a+ 1) = % + ¢(a), and
the Chebyshev expansion in the SLATEC library given by Wayne Fullerton (Los Alamios)
is used when |z - zo| > 21072, Otherwise, if |z — zo| < 2- 1072 then the Taylor series
around the zero zg is used. The coefficients for the Taylor series were obtained by A. H.
Morris. If z < —10 then (2) is applied, and if z > 10 then (z) - In z is computed by the
power series corresponding to the Chebyshev expansion in the SLATEC library given by
Wayne Fullerton. The power series was obtained by A. H. Morris.

Precision. If 0 < z < 1 or z > 2 then DPSI{z) is accurate to within 2 units of the 28"
significant digit. Otherwise, if 1 < z < 2 then DPSI(x) is accurate to within 5 urits of the
28 gignificant digit when DPSI(z) # 0.

Programming. DPST calls the functions DCSEVL, DPSIO, DPMPAR, and IPMPAR. DPSI
was written by A. H. Morris,

80

DERIVATIVES OF THE DIGAMMA FUNCTION

The following subroutine is available for computing the digamma function ¢(z) and its
derivatives for real =z > 0.

CALL PSIDF(z,n, m,W,IERR)

-1 n+1
(rz* — (") () where () (z) is the n*? derivative of ¢(z)

Let wo = —¢(z) and w, =
(n=1,2,...).

The argument z is a positive real number, n and rn are integers where n > 0 and
m > 1, and W is an array of dimension m or larger. When PSIDF is called, wy,44.1 18
computed and stored in W(¢) for i =1, ..., m.

IERR is an irteger variable that reports the status of the results. When FSIDF termi-
nateg, IERR. has one of the following values:

iERR = 0 The values w,, ..., Wy tm—¢ Were obtained and stored in W.

IERR =1 (Input errer) 2 <0,n < 0, 0or m < 1.

IERR = 2 (Overflow) Either z is too small or n + m — 1 too large.

IERR = 3 [Underflow) Either z is too large or n+ m — 1 tco large.

IERR = 4 This setting can occur only if n +m — 1 > 100. When it occurs,
Wn4+m-1 cannot be computed since n + m — 1 ia too large for z.
(However, wp4m-1 may be computable for larger values of z.)

Remark. Even thcugh PSIDF may be used for computing wg = --4(z), its primary purpose
is for computing the scaled derivatives wy(n > 1) of ¢(z). For z > 3, wy is accurate to
withip 2 units of the 14'P siguificant digit. However, far less accuracy is frequently obtained
when = < 3. In the worst case, all relative accuracy is lost for w, when z ig sufliciently near
the zero zo = 1.4616 ... of ¥(z). For z < 3, the function PSI should be used for computing

¥(z).

Precision. For 1 < n < 30 and = < 1000, w,, is accurate to within 1.5 units of the 12tP
significant digit.

Programming. PSID® employs the functions IPMPAR, SPMPAR, EPSLN, and EXPARG.
PSIDF 1s a modification by A. H. Morris of the subroutine PSIFN, written by Donald E.
Amos (Sandia Laboratcries).

Reference Amos, D. E “Algorithm 810. A Portable Fortran Subroutine for Derivatives of
the Psi Function,” ACRY Trans. Math Software 9 {1983), pp. 494--502.

. -
TR
Y
=
»
.

INCOMPLETE GAMMA RATIO FUNCTIONS

For a > 0 and z > 0 let P(a,z) and Q(a,z) denote the {unctiens defined by

Pla,) =gy |, e 2

1 o
Q((l,x) :-]:C}_)/ e_t'tamtdt,

Then 0 < P(a,z) < 1 and P(a,z) + Q(a,z) = 1. Also, P{a,z) — 1 and Qa,z) — 0 fr
z > 0 when a -~ 0. Hence, we may define P(0,z) = 1 and Q(0,z) = C for z >» 0. The
subroutines GRATIO and DGRAT are available for computing P(a,z) and Q(a, z}, aud
the auriiiary functions RCOMP and DRCOMP are provided for computing e~*z%/I'(a).

CALL GRATIO(a,z,P,Q,5)

It is assnm.d that ¢ > 0 and z > O, where a and z are nct both 0. P and @ are
variables. GRATIO assigns P the value P(a,z) and Q the value @(a,z). The argument ¢
may be any integer. This argument specifies the desired accuracy of the resuits. If 1 = 0 thea
the user is requesting as much accuracy as possible (up to 14 significant digits). Otherwise,
if i = 1 then accuracy is requested to within 1 unit of the 6" significant digit, “1d if + # 0,1
then the accuracy is requested to within 1 unit of the 37! significant digit.

Error Return. P is assigned the value 2 when a or z is negative, wher @ = z = 0, or
when P(a,z) and Q(a, z) are indeterminant. P(a,z) and Q(a,z) are indeterminant when
z & a and a is exceedingly large. On the CDC 6000-7000 series ccruputers this occurs when
|z/a — 1| < 107! and a > 6.6E25.

Programming. GRATIO calls the functions ERF, ERFC1, REXP, RI1.OG, RCOMP, GAM]1,
GAMMA, and 3PMPAR. GAMMA employs the functions GLOG, EXPARG, and IPMPAR.
GRATIC was written by A. H. Morris.

Referencs. DiDonato, A. R. and Morris, A. H., *Comgutation of the Incomplete Gamma
Function Ratios and Their Inverse,” ACM Trans. Mat: Software 12 (1986), pp. 377-393.

RCOMP(q,)

RCOMP(a,z) == e *2*/I'(a) for a > 0 and z >> 0.

Algonthm. See page 378 of the reference.

Programming. RCOMP employs the functions EXPARG, GAMMA, GAMI, GLOG, and
RLOG. These functions were written by A . Morris. The functions SPMPAR and 1PM-
PPAR are also used.

Refercrice, Dillonato, A. R. and Morris, A. ., “Computation of the Incomplete Gamma
Functicn Ratios and their Inverse,” ACM Trans. Math Software 12 (1986), pp. 377-393.

CALL DGRAT(c, z, P,Q IERR)

The arguments a and z are nonnegative double precision numbers, where a and z are
not both . P and @ ave double precision variatles, and IERR an integer variable. When
DGRAT is called, if P(a,x) and Q(a,z) can be computed then IERR is set tc 0 and P and
Q are assigned the double precision values for P(a,«) and Q{e,z).

Error Return. If P(a,z) and @{e,z} cannot be computed then 7 is set to 2 aad IERR is
assigned one of the following values:
IERR == { @ or z is negative.
IERR=2 u=z=0.
IERR = 3 P{a,z) and Q(a, z) are indeterminant. This setting occurs only
when z ~ @ aud a is exceedingly large.

Algorithm. A modification of the algorithm given in the refereuce is used. The functions
cr(z) appearing in the Temrre Expansion on page 381 are computed by minimax approxi-
mations designed by A. H. Morris.

Programming. DGRAT employs the subroutines DGR2¢ and DGRI17, and ihe fuuctions
IPMPAR, DPMPAR, DXPARG, DREXP, DRLOG, DSIN1, DERF, DERFC1, DERFCO,
DGAMMA, DGAMI, DRCOMP, and DPDEL. DGRAT was written by A. H. Morris.

Retercnce. DiDonato, A.R. and Morris, A H., “Computation of the Incomplete Gamma
Function Rattog and Their Inverse,” ACM Trans. Math Software 12 (1986), pp. 577-393.

DRCOMP(a. 1)

The arguraenis ¢ and z are double precision numbers where ¢ > 0 and z > 0.
DRCOMP(a,) 1s the double precision value for e7%z% /I'(a).

Remark. DHCOIMP must be doclared to be of type DOUBLE FRECISIC W in the calling
program.

Programming. DRCOME employs the functions IPMPAR, DPMPA R, DXPARG, DRLOG,
DSINT, DGAMMA, DGAML, and DPDEL. DRCOMP was written by A. H. Morris.

84

INVERSE INCOMPLETE GAMMA RATIO FUNCTION

For a > 0 and = > 0 let P(a,z) and Q(a,z) denote the incomplete gamma ratio
functions defined by

») ___!‘_____ x —t,0—
F (a,z)-r(a)/o e ft* Lt
Q(a, z) :i,—(%) /we—‘t“"dt.

Then 0 < P(a,z) < 1 and P(a,z) + Q(a,z) = 1. If we are given a, p, and ¢ where
a>0,0<p<1,and p+ g =1, then the subrouiines GAMINV and DGINYV are available
for obtaining the value z > 0 for which P(a,z) = p and Q(a,z) = 4.

CALL GAMINV{a, X, 0, p, g, IND)

X is a variable. If p == 0 then X is assigned the value 0, and if ¢ = 0 then X is set to
the largest floating point number available. Otherwise, if p # 0 and ¢ # 0 then GAMINV
attempts to obtain a solution « for P(a, z) = p and G(a, z) = q that is correct to at least 10
significant digits.! If a solution is obtained then it is stored in X. The solution is normally
computed by Schroder iteration. The argument zg is an optional initial approximation for
2. If the user does not wish to supply an initial approximation then set zg < 0.

IND is a variable that reports the status of the results. When GAMINYV terminates,
IND has one of the following values:

IND == 0 The solution was obtained. Iteration was not used.

IND > 1 The solution was obtained. IND iterations were performed.

IND = -2 (Input error) a < 0.

IND = -3 No solution was obtained. The ratio Q/a is too large.

IND == —4 (Input error) p<G,¢<0,orp+q#1.

IND = -6 20 iterations were performed. The most recent value obtained for
z 18 stored in X. This cannot occur if zg < 0.

IND = 7 lteration failed. No value is given for z. This may occur when
z = 0.

IND == -8 A value for z is stored in X, but the routine is not certain of its

accuracy. Iteration cannot be performed in this case. If zo < 0
then this can occur only when pa~ Qor ¢~ 0. If 25 > 0 then this
can occur when a s z and a is exceedingly large (say a > 1029),

Remark. If z; < 0 then 3 or fewer iterations are required.

Programming. GAMINV emiploys the subroutines GRATIO and PNI, and functions ERF,
ERFC1, ERFI, REXP, RLOG, ALNREL JGAN MA, GLOG, GAMI, GAMLN, GAMLN1,

YIf a k digit floating point arithmetic is being used where k < 10, then the routine attempts to obtain a

solution that 1s correct to machine accuracy.

RCOMP, EXPARG, IPMPAR, and SPMPAR. GAMINV was written by A. H. Morris.

Reference. DiDonato, A.R. and Morris, A.H., “Computation of the Incomplete Gamma
Function Ratios and Their Inverse,” ACM Trans. Math Software 12 (1986), pp. 377-393.

CALL DGINV(a, X,p, ¢,IND)

The arguments a, p, ¢ are double precision numbers and X a double precision variable.
If p = 0 then X is asgsigned the value 00, and if ¢ = 0 then X is set to the largest double
precision number available. Otherwisc, i p £ 0 and ¢ # 0 then DGINV attempts to obtain
a double precision solution z for P(a,z) = p and Q{a,z) = ¢ that is correct to machine
accuracy. If a solution is obtained then it is stored in X.

IND is a variable that reports the status of the results. When DGINV terminates, IND
has one of the following values:

IND = 0 The solution was obtained. Iteration was not used.

IND > 1 The solution was obtained. IND iterations we;: serformed.
IND = -2 (Input error) a < 0.

IND = -3 No solution was obtained. The ratio Q/a is toc large.

IND = —4 (Input error) p <0, ¢ < 0,0r p+ ¢ # L.

IND = -6 10 iterations were performed. The most recent value obtained for
z is stored in X (This setting shouid never occur.)

IND = -7 Iteration failed. No value is given for z. This may occur when
z =0,

IND = —8 A value for z is stored in X, but the routine is not certain of its

accuracy. Iteration cannot be performed in this case. This can
occur only when p Oer g =30

Remarks. Schroder iteration is normally used. On the CDC 6000-7000 series computers 4
or fewer interations are required.

Programming. DGINV employs the subroutines GAMINV, GRATIO, PNI, DGR17, DP’NI,
DGR29, and DGRAT, and functions RCOMP, DRCOMP, SPMPAR, DPMPPAR, EXPARG,
DXPARG, REXP, DREXP, ALNREL, DLNREL, RLOG, DRLOG, DsIiNi, ERF, EFRCI1,
DERF, DERFC1, DEFRCO, ERFI, DERFJ, GAMMA, GLOG, GAM!, GAMLN, DGAMI,
GAMLN1, DGAMMA, DPDEL, DGAMLN, DGMLN1, and IPMPAR. DGINV was written
by A. H. Morris.

LOGARITHM OF THE BETA FUNCTION
For a,b > 0 the beta function B(a,b) can be defined by

1
B(a,b) =/ 211~ t)> 1 dt,
0

From this it follows that B(a,b) = I'(a)I'(8)/T'(a + b) where I'(a) is the gamma function.
The functions BETALN and DBETLN are available for computing In B{a,b). DBETLN is
a double precision function.

BETALN(a,)
BETALN(a,) = In B(a,b) for a,b > 0.

Algorithm. See pages 19-21 of the reference.

Precisien. BETALN(a,b) is accurate to within 4 units of the 14'" significant digit when
a,b > 1 and BETALN(a, b) # 0. In particular, when a,b > 15, BETALN(«,6) is accurate
to within 2 units of the 14" significant digit.

Programming. BETALN employs the functions ALNREL, ALGDIV, BCORR, GAMLN,
GAMLNI, and GSUMLN. These functions were written by A. H. Morris.

Reference. DiDonato, A. R. and Morris, A. H., “Algorithi 708 Significant Digit Compu-
tation of the Inccmplete Beta Function Ratios,” ACM Trans. Math Software 18 (1992),
pp. 360-373.

DBETLN(a, b)

The arguments a and b are positive double precision numbers. DBETLN(aq,b) is the
double precision value for In B(a,).

Remark. DBETLN must be declared in the calling program to be of type DOUBLE
PRECISION,

Algorithm. The algorithm for In B(a, b) on pages 19-21 of the reference is used. A(z}) is
computed by the power series corresponding to the Chebyshev expansion in the SLATEC
library given by Wayne Fullerton (Los Alamos). The power series was obtained by A. M.
Morris

Programming. DBETLN employs the functions DLNREL, DLGDIV, DBCCORR, DPDEL,
DGAMLN, DGMLNI1, DGAMI and DGSMLN. These functions were written by A. 1. Mor-
ris. The function DPMPAR 1Is also used.

Reference. Diljonato, A. R. and Morris, A, ., “Algorithim 708 Significant Digit Comypn.
tation of the Incomplete et Function Ratios,” ACM Trans. Math Software '8 frea)
pp. 360-373.

INCOMPLETE BETA FUNCTION

For a,b > 0 and 0 < r < 1 the incomplete beta funiction is defined by

- 1 * a—1¢1 _ 4\b—1
Lo(a,b) = B(a,b)/{)t (1-t)*1dt

where B{e,b) is the beta function. Then we note that 0 < I,(a,b} < 1 and

lirr}) I(a,b)=1forz #0
}irr(x) Iz(a,b) =0 for z # 1.

These limits permit I;(e,b) to be defined to be 1 when a = C and b # 0,z # 0, and for
I;(a,b) to be defined to be 0 when b = 0 and a # 0,z # 1. The subroutine BRATIO
is available for computing [,(a,b) for arbitiary a,b > 0, and the subroutine ISUBX is
available for computing I.(a, b) for the highly specialized case i »n a and b are integers or
half-integers. Also, the auxiliary function I'*:COMP is provided for computing z%y®/B(a,b)
whenO<z<landy=1-1z.

CALL BRATIO(a,b, z,y, W, W1,IERR)

It is assumed that a > 0,0 > 0,0 < z < l,and y = 1 — 2. W, W1, and IERR are
variables. If no input errors are detected then IERR is set to 0, W is assigned the value
I:(a,b}, and W1 is assigned the value 1 - [,(a,b).

Error Return. When an input error is detected, then W and W1 are assigned the value 0
and IERR is set to one of the following values:

IERR=1ifa<Qorb<0

IERR =2 ifa=b=0

IERR =3 ifz<0o0r x> 1

IERR = 4 ify<Qory>1

IERR =5 dr ity /1

IERR ~6 iz a0

IKRR - 7 ify b0
Programming. BRATIO cmploys the subroutines BGRAT and GRATI, and the fune-
uwons ALGDIV, ALNREL, APSER, BASYM, BCORR, BETAY.N, BFRAC, BPSER, BR.
COMP, BRCMPL, BUP, ERF, ERFCL, FPSER, GAMLN, GAMM NI, GAM!, GSUMLN,
PSE ESUM, EXPARG, RUXP, and RLOG1. These subroutines an. functions were wribten
by A. L Morris. The fundctions SPMPAR and IPMPAR are also use |

Reference. Dibonato, AL R.and Morris, AL H., “Algorithia 708 Signic ant Dipii Comyo-
tution of the fncamplete Bets Panction Ratios,” ACM Trans. M th 5 ‘tware U8 RGO,
pp. 360 373

X9

CALL ISUBX(a,b, z, W, IERR,EPS)

It is assumed that a,b, and z satisfy the following restrictions:
(1) a>0,6>0,and 2 >0
(2) a>1/2,1/2<b<70,and z < 1
(3) o and b are integers or half-integers
EPS specifies the (absolute) accuracy that is desized. W is a real variable and IERR an

integer variable. When ISUBX is called, if there are no input errors then W is assigned the
value I (a,b) and IERR is assigned the value 1.

Error Return. If an error is detected then IERR is assigned one of the following values:

IERR = 2 if restrictions (1) are violated.
IERR = 3 if restrictions (2) are violated or a is too large.
IERR = 4 if reuirictions (3) are violated.

Also W is assigned the value 0.
Remarks. ISUBX was designed for a maximum precision EPS = 1010

Programming. ISUBX employs the functions ALGDIV, ALNREL, BLND, IPMPAR, and
LOGAM. ISUBX was written by A. H. Morris.

Reference. Dilonatc;, A. R. and Jarnagia, M. P, “The Efficient Calculation of the Incom-
plete Beta-function Ratio for Half -Integer Values of the Parameter a,b,” Math Comp. 21
(1967), pp. 652-662.

BRCOMP(a, b, z, y)

BRCOMP(a, b,z,y) == z*y* 'B(a,?) for a,b > 0 and z,y ;> O where z+y = 1.
Algorithm. See pages 19-21 of the reference.

Programming. BRCOMP empleys the functions ALGDIV, ALNREL, BCORE, BETALN,
GAMI1, GAMLN, GAMLNI1, GSUMLMN, and RLOG1. These functions were writien by
A. L. Morris.

Reference. DiDonato, A. R. and Morris, A 1 “Algerithm 708 Significant Digit Compu-
tation of the Incomplete Beta Funciion Ratiosn.” ACM Trans. Math Seftware 18 {1992),
pp. 360 373.

Y

BESSEL FUNCTICN J,(z)

If v is complex then J,(z) is defined by

_ v (=1 k(z/2) HEE
Ju(7) = gt KT(v+k+ 1)

for any z # 0 in the complex plane cut alorg the negative real axis. J,(z) is analytic in
the region |arg(z)| < =, and J, (z) is an entire functior of v for any fixed z. J,(z) can be
extended to the negative real axis by letting —7 < arg(z) < x. If v is an integer then J,(2)
is alsn detined at O and is an entire function of 2. The following subroutines are available
for computing J,{z).

CALL C3SSLI(z,v,w)
The arguments z and r are complex numbers and w is a complex variable. It is as-

sumed that z # 0. When CBSSL, is called, w is assigned the value J,(z).

Precision. The real and imaginary parts of w are normally accurate to 11-12 significant
digits when Re[J,(z)] and Im|J,(z)] are not near 0. The only exception tc this i3 when
Re(2z) ~ 0, Im(v) = 0, and 14 < |z| < 17.5+}|v|®. Then Re(w) is accurate to 11-12 signif-
icant digits, but all accuracy for the small nonzero value Im(w) may be lost.

Algorithm. A modification of the Hershey procedure for applying the Maclaurin, Debye,
and asymptotic expansions is used.

Programmimg. CBSSLT ompioys the subroutines CREC, CGAMMA, CBJM, CBDB,
CBJA aid functions IPMPAR, SPMPAR, CPABS, CDIV, EXPARG, REXP, SIN1, COS1,
CGAMO, GAMMA, GLOG. CBSSLJ was written. by Andrew H. Van Tuy! and A. H. Morris.

Reference. llershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, l)ahlgren, Virginia, 1973, pp. 33-42.

CALL BSSLI(:,n,w)

The argument = 13 a complex number, n i an integer, and w 13 a complex variable.
When BSSL. is called, w is assigued the value J,,(z).
r 1

Precision. BSSLJ is accurate to within 5-10 M forreal 0 < z <2 35 and n 0 1.

Programmer. A\ V. Hershey

Reference. Hersniey, A. V., Computation of Special Functione, Report TR 3785 Naval
Surface Weapons Center, Dahlgren, Vicgima, 1978

CALL BESJ(z,a,n,W, k)

The arguments z and « are nonnegative real numbers, n is a positive integer, and W is
an array of dimension n or larger. When BESJ is called J44i—1(2z) is computed and stored
inW()fori=1, ... ,n

The argument k is an integer variable that is set by the routine. If all J,4,_1(2z) are
computed then k is set to 0. Otherwise, k is assigned cne of the following values:

k = —1 The argument z is negative.

k = —2 The argument « is negative.

k = —3 The requirement n > 1 is violated.

k > 0 The last k compounents of W have Leen set to O because of under-
flow.

Precision. For 0 < z €< 35 and 0 < a < 1, BESJ is accurate to within 8- 10712,
Programming. BESJ calls the subroutines ASJY and JAIRY, and the functions GAMLN,
SPMPAR, and IPMPAR. The subroutines were written by Donald E. Amos, Sharon L.

Daniei, and M. Katherine Weston {Sandia Laboratories).

References.

(1) Amos, D.E., Daniel, S. L., and Weston, M. K., CDC 6600 Subroutines for Bessel
Functions J,(z),z > 0,v > 0 and Airy Functions A;(z),Al(x),-o00 < < oo. Report
SAND 75-0i47, Sandia Laboratories, Albuquerque, New Mexico, 1975.

(2) ____ ., “CDC#6600 Subroutines IBESS and JBESS for Bessel Functions I, (z)
and J,(z),z > 0,v > 0,” ACM Trans. Math Software 3 (1977}, pp. 76-92.

BESSEL FUNCTION Y, (2)

If v is any complex number not an integer, then Y, (z) can be defined by

Yo (2) = Jo(z) cosvm — J_,(2)

sin vx

for any 2 # O in the complex plane cut along the negative real axis. For any l.ateger n we
can also define Y,,(2) = lim Y, (2). Then for any complex 1, Y, (z) is analytic iz the region
yv—n

jarg(z)| < x. Also, Y,.(2) is an entire function of v for any fixed z. The following subroutine
is available for computing Y, (z) when v is an integer.

CALL BSSLY(z,n,w)

The argument z is a complex number, n is an integer, and w is a complex variable. It
is assumed that Jarg(z)| < . When BSSLY is called, w is zssigned the value Y, (z).

Precision. If .005 < z < .785 then Yp(z) and Y;(z) are accurate to within 3 units of the
14* significant digit. Otherwise, if z > .785 then Yp(z) and Y;(z) are accurate to within
4-1074,

Programmer. A. V. Hershey

Reference. Hershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, Dahlgren, Virginia, 1978.

MODIFIED BESSEL FUNCTION 1, (z2)

If v is complex then I, (2) is defined by
2/2 u+2k
I(z) = Z < KIT(v+k+1)

for any z # 0 in the complex plane cut alcng the negative recal axis. I,(z) is analytic in
the region |arg(z)| < m, and I,(z} is an entire function of v for any fixed z. I,(2) can be
extended to the negative real axis by letting —x < arg(z) < #. If v is an integer then I, (z)
is also defined at (and is an entire function of 2. The following subroutines are available
for computing I,.(2).

CALL CBSSLI(z,v, w)

The arguments z and v are complex numbers and w is a complex variable. It is assumed
that z # 0. When CBSSLI is called, w is assigned the value /,(2).

Algorithm. The evaluation of 1,(z) is reduced to J,(z) using

I(z) = eV /2 Jb,(ze"""/z) -2 <arg(z) Inm
n

I(2) = e ™2, (2¢™/?) < arg(z) <

x
7

Programming. CBSSLI calls the subroutine CBBSSLJ and functions EXPARG, COS1, and
SINT. Also, the functions and subroutines needed for CBSSLJ are used. CBSSLI was
written by Andrew H. Van Tuyl and A H. Morris

CALL BSSLI(MO, z,n, w)

MO 1s an integer, 2z a complex number, nan integer, and w a complex variable. If MO
/4 0 then it s asswuoed that farg(z)] <0 7. When BSSLD is called, w is assigned the value
L, 2} if MO 0 and the value e #1,(z) if MO /0

Precision. BSSLUis accurate to withio 5 units of the 13t g mificant digit for real 0 <0 2 - 35
£ B
and n O 1, 40,

Programmer. Allen V. Hershey

Reference. tershey, AL V., Computation of Speciad Functions, Report TR-3788, Nuval
S orface Weapons Center, Dahlpgren, Vieginia, 16978,

CALL BESI(r, o, MO n W k)

MO may be b ar 20 The crguments © and o are nonnegative real numbers, roas a

positive iteger, and Woas an array of dinension noor larger. When BEST w0 called | ff MO

0

= 1 then [, 4-1(r) is computed and stored in W{i) for ¢ = 1, ..., n. Otherwise, if MO = 2
then "%/, ;_1(z) 1s computed and stored in W ()

The argument k is an integer variable that is set by the routine. If all I,4;_;(z) or
e *I,4i—1(z) are computed then k is set to 0. Otherwise, k is assigned one of the following
values:

=: —2 The argument « is negative.
—3 The requirement n > 1 is violated.
—4 MO isnot 1 or 2.
~5 The argument z is too large for MO = 1.
0 The last k components of W have been set to 0 because of underflow.

= —1 The argument z is negative.

il

|

k
k
k
k
k
k

Vol

Precision. For 0 < 2 < 35 and 0 < a < l,or0 < z < 35and e = 1,2 ...,40, I,(z) is
accurate to within 2 units of the 12*" significant digit.

Programming. BESI calls the subroutine ASIK and the functions GAMLN, SPMPAR,
and IPMPAR. BESI and ASIK were writien by D. E. Amos and S. L. Daniel (Sandia
Laboratories).

References.

(1) Amos, D. E. and Daniel, S. I.., A CDC 6600 Subroutine for Bessel Functions
I.(z),v > 0,z > 0. Report SAND 75-0152, Sandia Laboratories, Albuquerque, New
Mexico, 1975.

(2) Amos, D. E., Daniel, S. L., and Weston, M. K., “CDC 6600 Subroutines BESS and
JBESS for Bessel Functions I, (z) and J,(z), z > 0, v > 0,” ACM Trans. Math
Software 3 (1977), pr. 76-92.

a6

MODIFIED BESSEL FUNCTION K, (z)

If v is any complex number not an integer, then K, {z) is defined by

(+) K, (2) = ooz Z el

2 sln vmw

for any z # 0 in the conplex plane cut along the negative real axis. For any integer n we
can also define K,,(z) = lim K,(z). Then for any complex v, K, (z) is analytic in the
yv—n

regien |arg(z)] < x. Also, K,(z) is an entire function of v for any fixed 2. K,(z) can be
extended to the negative real axis by letting —x < arg(z) < ». The following subroutines
are available for computing X, (2).

CALL CBESK(z, v, w)

The arguments z and v are complex numbers and w is a complex variable. It is assumed
that = # 0. When CBESK is called, w is assigned the value X, {z).

Algorithm. K, (z) is computed using (*), the asymptotic expansion

)= () s e

(1) .
(4v? — 1) (402 - (2k - 1)?
(v.h)=" - Skk!) ’

the relation

v .
(2) Kuai(s) = K, (2) + K,oa(2)

along with the Miller algorithm and the power series K, (2) -) cifk and K, ,,(2)
k>0

«
&

2~ cx(pk - kfi) given in the references, and the analytic continuation formulae
P k?o

) K, (z) ~e "MK, (e ™2) anl (e ™2) (0 < arg(z) < x)
K (z) ~e"T" K, (") + inl,(e"'2) (n« arglz) < 0).

Precision. Frequently, 11 12 digit accaracy is obtained For 102 < 1zl < 50, CBESK
maintains accuracy to within 3 units of the 8" significant digit except when Re|K, ()} or
Im[K, (2)] s near O, or occasionally when s on the negative real axis. Let 1 b /ie
For 50 « lz] <= 100, Be{w) and Im(w) are normally accurate to within 3 uniis of the 80
significant digit when v > Land 7 -7 1/2. However for 1/2 - 7« 1 and v not real, weuracy
gracually decreases as |z] micreases,

\

Programming CBESK employs the subroutines CHBKA, CBR1 CBRM, CRKML | CKRPS,

a7

CGAMMA, CBSSLI, CBSSLJ, CREC and functions CDIV, CGAMO, CO30, COS1, SINO,
SIN1, CPABS, CXP, EXPARG, SPMPAR, IPMPAR. Also, the furctions and subroutines
needed for CBSSLJ are used. CBESK was written by Andrew H. Van Tuyl and A. H.
Mouoiris.

References.

(1) Amos, D.E., Computation of Bessel Functions of Complex Argument, Report SAND
83-0086, Sandia Laboratories, Albuquerque, New Mexico, 1983.

(2) Temme, N.M., “On the Numerical Evaluation of the Modified Bessel Function of the
Third Kind,” J. Comp. Physics 19 (1975), pp. 324--337.

CALL CBSSLK(z, r, w)

The argument z i3 2 nonzero complex number, v a real number, and w a complex
variable. When CBSSLK is called, w is assigned the value K,(z).

Algorithm. The algorithm employed by CBESu is used. For real r, (¥} is not needed.

Programming. CBSSLK employs the subroutines CBSSLJ, CKA, CKM, CKML, CREC
and functions CPABS, COS0, CXP, GAM]1, SINO, SPMPAR, IPMPAR. Also, the functions
and subroutines needed for CBSSLJ are used. CBSSLK was written by Andrew H. Van Tuyl
and modified by A. H. Morris.

CALL BSSLK{MO, z,n, w)

MO is an integer, z a complex number, n an integer, and w a complex variable. It is
assurnea that |arg(z)l < x. When BSSLK is called, w is assigned the value K,(z) if MO
= 0 and the value e* K ,(z) if MO # 0.

Precision. BSSLK is accurate to within 6 units of the 14'P significant digit for real z and
n=201.

Prvogrammer. Allen V. tlershey.

Reference. iershey, A. V., Computation of Special Functions, Report TR-3788, Naval
Surface Weapons Center, Dahlgren, Virginina, 1978.

AIRY FUNCTIONS

o0
For any series w == Y a,z" satisfying the differential ecuation w'’ = zw, it follows
Y) R

n=0
that w = agf(z) + a19(z) where

1:4---(3n~2) ,
z) = 14+ 3 ="
/(z) n>1 (3n)!

o(s) = 14 3 2202l

In particular, the Airy functions Ai(z) and Bi(z) are independent solutions of w” = zw
where

i

Ai(2) cll_f(z) —~ c29(2)
Bi(z) = V3 [e1f(2) + c29(2)]

for ¢; = 37%/3/T'(2/3) and ¢y = 371/3/I(1/3). Ai(z) and Bi(z) are entire functions.

The subroutines CAI and CBI are available for computing Ai(z) and Bi(z) when z is
complex, and the functions Al, AIE, BI, and BIE are available for computing A4i(z) and
Bi(z) when z is real. CAI and CBI also provide the dervatives Ai'(z) and Bi'(z) of Ai(z)
and Bi(z).

CALL CAI(IND,z,w, v’ JERR)

IND is an integer, z a complex number, and w and w’ complex variables. When CAI
is called, w is assigned the value Ai(z) and w’ the value A¢’(z) when IND = 0. Otherwise,
if IND # 0 then w = €5 Ai(z) and w' = e’ As'(z) where ¢ = 2:3/%,

IERR is a variable that is set by the routine. When CA! terminates, IERR has one of
the following values:
tERR == 0 The desired values were obtained.
IERR — 1 z1s teo large for the desired values to be computed. In this case
w and w' are assigned the value 0.
Precision. For IND £ 0 the real and imaginary parts of w and w’ are accurate to within 2
units of the *2'" significant digit except near points where they vanish.

Programming. CAIl employs the subroutines AIRM, ALl ATA) JA, SMC, BIM, KA, KML,
IMC, and BIM. These routines were written by Andrew T Van Tuyl and modified hy AL H
Mcrris. The subroutines CAPO and CREC, and functions CPARBS, KXPARG,) IPMPAR,
and SPMPAR are also used.

CALL CBHIND 2, w,w'IERR)

Ui

IND is an integer, z a complex number, and w and w’ complex variables. When CBI
is celled, w is assigned tlie value Bi(z) and w’ the value Bi'(z) when IND = 0. Otherwise,

if IND # 0 then
{ e 'Bi(z) if |arg(:)] < n/3

efBi(z) otherwise

_ { e $Bi'(z) if jarg(z)| < /3
T | e Bi'(2) otherwise
where ¢ = 73-23/2.

IERR is a variable that is set by the routine. When CBI teriminates, IERR has one of
the following values:

IERR = 0 The desired values were obtained.
IERR =1 =z is too large for the desired values to be computed. In this case
w and w' are assigned the value 0.

Precision. For IND # O the real and imaginary parts of w and w' are accurate to within 2
units of the 12" significant digit except near points where they vanish.

Programming. CBI employs the subroutines AIRM, BII, BIA, 1A, IMC, BIM, JA, JMC,
and BJM. These routines were written by Andrew H. Van Tuy! and modified by A. H.
Morris. The subroutine CREC and functions CPABS, EXPARG, IPMPAR, and SPMPAR
are also used.

Al(z)

Al(z) = Ad(z) for real z.

Algorithm. Rational minimax approximations are used. If £ < —1 then R and @ are
computed where Ai(z) = R sin(n/4 -+ 0).

Precision. For z > - 1, Al{x) is accurate to within 2 units of the 129 significant digit when

Al(z) #0.

Programming. Al calls the subroutine AIMP and function EXPARG. These subprograms
were written by A, H. Morris. The function IPMPAR is also used.

AlE(x)

If 2 = 0 then All(2) - e Ai{z) where ¢ = Z2%/2 Otherwise, if £ < 0 then AlE(x)
Ai(z).

Algorithn.. P ational minimrax approximations are used. I « < I then K and 0 are
cornputed where Avlx) R osin(n/1 0 8).

Precision. For o » |, AlR{z) is accurate to within 2 units of the 4™ sipmibicant digit

1N

Progremming. AIE calls the subroutine AIMP. AIE and AIMP were written by A. H.
Morris.

Bi(z)

BI(z) = Bi(z) for real z. If z is a positive value for which Bi(z) is too large to be
computed, then BI(z) is assigned the value O.

Algorithm. Rational minimax approximations are used. If 2 < —1 then R and 4 are
computed where Bi(z) = R cos(x/4 + 8).

Precision. For z > —1, BI(z) is accurate to within 2 units of the 12*" significant digit when
Bi(z) # 0.

Programming. BI calls the subroutine AIMP and function EXPARG. These subprograms
were written by A. H. Morris. The function IPMPAR is also used.

BIE(z)

If z > 0 then BIE(z) = ¢75 Bi(z) where ¢ = 223/2. Otherwise, if z < 0 then BIE(z) =
Bi(z).

Algorithm. Rational minimax approximaticns are used. If z < -1 then R and @ are
computed where Bi(z) = R cos(x /4 +).

Precision. For z > —1, BIE(z) is accurate to within 2 units of the 14*" significant digit.

Programming. BIE calls the subroutine AIMP. BIE and AIMP were written by A. H.
Morris.

101

COMPLETE COMPLEX ELLIPTIC INTEGRALS OF THE
FIRST AND SECOND KINDS

If k is complex then the complete elliptic integrals of the first and second kinds can be
defined by

x/2
(k) = / (1 - k% sin?t)~ Y% dt
0
x/2
E(k) :/ (1 - k? sin?t)'/? dt
0

for |arg(1 — k?)| < x. K(k) and E(k) can be extended to —x < arg{1—k?) < x. For |k| < 1

K= 23 eak®

n2>0

(1)

7|. kin
Bk = =5 2 engn
n>0
2n)! ’
where c,, = [4£(n))_2] . Also, if £2 = 1 — k? where |€] < 1 and —7r < arg(¢?) < m, then
ni

1
K(k):; LCnL 2m41
n>1
(2) (k) - 1 K | 16 - ", 1’2" 1)1"
Blk) = ;[(¢) -)] “k_ N \"C -1 2‘ i Zm + Z‘C" TN.»

nl m=] n>0

The function CK is available for computing K (k), and the subroutine CKI for computing
K (k) and E(k).

CK(k,)

CK(k, #) = K(k) for any complex k aud € where k* { £ Tand £ / 0. CK is a complex
valued function which must be declared in the calling program to be of type COMPLEX,

Error Return. CK(k.€) 0if ¢ Oor k* ¢« 6% /1

Remarks.

(1) CK{k, £} may underflow, yielding the value O, when [k s suflicient'y large
(2) CK and the subroutine CKE employ the same algorithm for & (k)

103

Precision. If k is real and |k| < 1 then the relative error of CK is less than 10713, Also, if
k is purely imaginary then the relative error is less than 10713, K (%) is real-valued for only
these values of k. Otherwise, let g5 == 10712 if |k| < 0.8,e4 = 2- 10713 if 0.8 < |k| < 2, and
ex = 10713 if |k| > 2. Then the relative errcrs of the real and imaginary parts of CK are
less than ex except when underflow occurs, |k| < 1 and |arg(+k)] < 107287 or |k| < 10'®
and |r/2 — arg(+k)| < 107280, In the latter two cases the relative error of the real part of
CK 1s less than ey, but all relative accuracy for the imaginary part may be loss.

Programming. CK calls the subroutine KL and functions ALNREL, CFLECT, KM, and
SPMPAR. CK, KL, and KM were written by Andrew H. Van Tuyl and modified by A. H.
Morris.

CALL CKE(k,¢, K, E,IERR)

The arguments k and £ are complex number: where k2 +¢2 = 1 and £# 0,K and E
are complex variables, and IERR an integer varia :le. When CKE is called, if no errors are
detected then IERR is set to 0, K is assigned the value K(k), and E is assigned the value
E(k).

Error Return. IERR = 1if £ = 0 and IERR = 2 if k? + £* # 1. In these cases, K and F
are not defined.

Algorithm. For k = 0 or —n/2 < arg(k) < x/2, formulae (2) are used if |¢] < .55, (1) are
used if |€] > .55 and |k| < .55, and approximations of the form

N
N
K(k) =) o T kR

N
\ bpk bk
I’J(IC) ‘ {I 2—4 ap {l i [7 - tan lé:l
vio.1 .

are t od A €] > 05 ard 5 k] < 1 (3) are obtained from integral representations for

K (k) and #(k) by numerical guadratuce. I [€] > 55, (k| > 1, and |k] < |€] the
(4)
kY - Bk)/e £y L
are applied where the sign in Ay s selecred so that n/2 < arg(kyd a7 /20 Othierwine,

- nh Tkl - L, and [k - et &y 1/k and ¢, L1€/k where the sipn is selected s
that n/2 < arg(fy) n/2 Then

(R By (k) o K(F))]
(H)

are applied where s = 1 if Iim(k) > 0 and 5 = -1 if Im{k) < 0. If arg(k) > n/2 or
arg(k) < —n/2, then K (k) = K(--k) and E(k) = E{~k) are applied.

Precision. If k is veal and |k| < 1, or & is purely imaginary, the - he relative crror of F is
less than 10718, K(k) is real-valucd for only these values of k. Otherwise, let ¢, = 107 1% if
of E are less than € except whou underflow occurs, k| < 1 and |arg(dk)| < 107289 or
|k < 10*® and |x/2 — arg(+k)| < 10728 In the latter two cases the relative error of the
real part of I is less than £4, but all relative accuracy for the irnaginary part may be lost.

Programming. CKE calls the subroutines EXI, and EKM, and the {unctions ALNREL,
ATN, CF" ECT, and SF MPAR. CKE wi. wrinten by Andrew H. Van Tuyl,

REAL ELLIPTIC INTEGRALS OF THE FIRST AND SECOND KINDS
10 < ¢ < #/2, then the elliptic integrals of the first and second kinds are defined by
¢
F(e,%) :/ (1 - k% sin?t)= /2 a4t
0
¢ o
E(p,k) = / (1 - Kk sin’t)V? di
0
for any real k wh ce k? < 1 and 1 — k? sin®$ # 0. Alternatively, we may consider
.l. [o2e]
B a,bc)- / [0+ a)(t-+8)(t -+)/ 2 at
0
where a,b, c zre noanegative and at mos. one of thern is 0, and
Ro(a,b,c) = g/ (L +a) 2L+ b) V2 (e + o) 32 de
Jo

where a and b are nonnegative such that a+ b > 0, and ¢ 1s positive. Ifa < b <canda < ¢
then

e 1/2
Rp(a,b,c) = :i_xiE_F((#’ k)

3c—3/2 [o
RI)(a)b, C) = kZ‘—S;n"s'qg LF(¢;k) - 11((,6,)(.)

where coi'¢ = afc and k? = (c - b)/(c ~ a). If ¢ = n/2 then the integrals F(¢, k) and
E(¢,k} ar said to be complete. Otherwise, it ¢ < a/2 then the integrals are said to he
tncompi-te. The subroutines ELLPI RFVAL, RDVAL, DELLPI DRFVAL, and DRDVAL
are available for computing (¢, k), E(¢, k), Rrp(a,b,¢) and Ry (a,b,¢). DELLPL DRFVAL,
and DEIDVAL are double precision routines.

CALL ELLP.(¢, ¢, k. ¢, F, £, IERR)

The arguments ¢, 1, k, € are rear numbers which satisfy ¢ - 0.9 - 0,¢ 1 ¥ 5 /2, and
k? 4 g? 1. Also if v 0 then it 13 assumed that € 7 0. F F and [KERR are variables
When ELLPLHis catled. if uo input errors are detected then TEET 18 set 4o 0] F s assigued

the value #F(¢, k), wud s assigned the value E{¢ k)

Error Return. If an input error is detected then IERR s set as Sllows:
JERR 1 ¢« 0 oy - O
IERR - 2 jk] .- Torif > 1
IERR -5 ¢ Oand £ 0

107

Precision. ELLPI is accurate to within 4 units of the 14*F significant digit.

Programming. ELLPI calls the functions ALNREL and CPABS. ELLPI was written by
Allen V. Hershey and modified by A. H. Morris.

Reference. DiDonato, A. R. and Hershey, A. V., “New Formulas for Computing Incomplete
Elliptic Integrals of the First and Second Kind,” JACM 6 (1959), pp. 515-526.

CALL RFVAL(a,b,c, w, IERR)

The arguments 1,5, c are nonnegative real numbers, only one of which can be 0. IERR
and w are variables. When RFVAL is called, if no input errors are detected then IERR is
set to 0 and w is assigned the value Rp(a,b,c).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either a,b, or ¢ is negative.

IERR = 2 Either a+ b,a + ¢, or b+ ¢ is too small.
IERR = 3 Either a,b, or ¢ is too large.

Precision. RFVAL is accurate to within 4 units of the 14*" significant digit.

Programming. RFVAL was written by B. C. Carlson and Elaine M. Notis (Jlowa State
Universit:), and modified by A. H. Morris. The function SPMPAR is used.

References.
(1) Carlson, B. C., “Computing Elliptic Integrals by Duplico‘ion,” Numerische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., “Algorithin 577. Algorithms for Incomplete Eiliptic
Integrals,” ACM Trans. Math Software T (1981), pp. 398-403.

CALL RDVAL(a,b,c, w, IERR)

The arguments a and b are nonnegative real numbers where a + b > 0, an! ¢ 13 a
positive real number. IERR and w are variables. When RDVAL is called, if no inpur eovors
are detected then IERR is set to 0 and w is assigned the value Rp(a,b,c).

Error Return. If an input error is detected then IERR has one of the following values:

IERR = | Either a,b, or ¢ 13 negative.
IERR = 2 Either a+ b or ¢ 13 too small.
IERR - 3 Either a,b, or ¢ 13 too large.

Precison. RDVAL is accurate to within 4 units of the 14" significant digit

Programming. RDVAL was written by B. C. Carlson and Elaine M. Notis {fowa State
University), and modified by A. H. Morris. The function SPMPAR 1 used.

108

References.

(1) Carlson, B. C., “Computing Elliptic Integrals by Duplicaiion,” Numerische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., “Algorithm 577, Algorithms for Incomplete Elliptic
Integrals,” ACM Trans. Math Software 7 (1981), pp. 398-403.

CALL DELLPI(8, ¢, k,£, F, E, IERR)

The arguments ¢, 1, k, £ are double precision numbers where ¢ > 0,4 > 0,¢+ ¢ = n/2,
and k% +£2 = 1. Also, if ¢ = O then it is assumed that £ # 0. F and E are double precision
vaviables, and IERR is an intege: variable. When DELLPI is called, if no input errors are
detected then IERR is set to 0, F is assigned the double precision value for F{¢,k), and £
is assigned the double precision value for E(¢,k).

Error Return. If an input error is detected then IERR is set as follows:

IERR=1¢<0o0r¢y<0
IERR=2 |k|>1or |l >1
IFRR =3 ¢ =0ard £=0

Precision. DEI LPI is accurate to within 5 units of the 28" significant digit.

Programming. DELLPI employs the functions DCPABS, DLNREL, and DPMPAR.
DELLP) was written by Allea V. Hershey and modified by A. H. Morris.

Reference. DiDonato, A. R. and Hershey, A. V., “New Formulas for Computing Incomplete
Elliptic Integrals of the First and Second Kind,” JACM 6 (1959), pp. 515-526.

CALL DRFVAL(a,b,c, w, IERR)

The arguments a, b, ¢ are nonnegative double precision numnbers, only one of which can
be 0. IERR is an integer variable and w a double precision variable. When DRFVAL 1s
called, if no input errors are detected then IERR is set te 0 and w is assigned che double
precision value for Rp(a,b,).

Error Return. If an input error is detected then IERR has one of the following values:

IERR - 1 Either a,b, or ¢ is negative.
IERR =: 2 Kithera+ b,a+4 c,or bt cis too small.
IERR =- 3 Either a,b, or ¢ is too large.

Programming. DRFVAL was written by B. C. Carlson and Elane M. Notis (lowa Staie
University), and modified by A. H. Morris. The function DPMPAR s used.

References.

(1) Carlson, B. C.; “Computing Elliptic Integrals by Duplication,” Nunierssche Mathe-
matik 33 (1979), pp. | 16.

109

(2) and Notis, E. M., “Algorithm 577, Algorithms for Incomplete Elliptic

Integrals,” ACM Trans. Math Software T (1981), pp. 398-403.

CALL DRDVAL(a, b, c, w, IERR)

The arguments a and b are nonnegative double precision numbers where a -+ b > 0,
and c is a positive double precision number. IERR is an integer variable and w a double
precision variable. When DRDVAL is called, if no input errors are detected then IERR is
set to 0 and w i3 assigned the double precision value for Rp(a,b,¢).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either a,b, or ¢ is negative.
IERR = 2 Either a 4 b or ¢ is too small.
IERR = 3 Either a,b, or ¢ is too large.

Programming. DRDVAL was written by B. C. Carlson and Elaine M. Notis (Iowa State
University), and modified by A. H. Morris. The function DPMPAR is used.

References.

(1) Carlson, B. C., “Computing Elliptic Integrals by Duplication,” Numecrische Mathe-
matik 33 (1979), pp. 1-16.

(2) and Notis, E. M., “Algorithm 577, Algorithms for Incomplete Elliptic
Integrals,” ACM Trans. Math Software 7 (1981), pp. 398--403.

REAL ELLIPTIC INTEGRALS OF THE THIRD KIND

For any 0 < ¢ < 7/2 the elliptic integral I{¢, n, k) is defined by
¢
(¢, n, k) = / (1 -nsin®0)"1(1 — k®sin®9) " 3df
0

where n is any real number such that 1 — nsin® ¢ # 0, and k any real number such that
k?* <1 and 1 — k?sin? ¢ # 0. Alternatively, for any r 7 0 we may consider

3 [,
Ry(a,b,e,r) = ~2—/ (t+)" Mie + a)(t+b)(t -+)]~ Tt
o]

where a, b, ¢ are nonnegative and at most cne of them is 0. If a < b < ¢ and a < ¢ then

—3
Ry(a,b,c,r) = .-§£~9—¢[n(¢,n,k) F(é,K)]

nsin
where F(¢, k) is the elliptic integral of the first kind, cos? ¢ = a/c,k? = (¢~ b)/(c - a), and
n=(c~r)/(c—a). If ¢ =mn/2then the ellipiic integral II(¢, n, k) is said to be complete.
Otherwise, iIf ¢ < x/2 then the integral is said toc Le fncomplete. The subroutines EPI,

RJVAL, DEPI, and DRJVAL are available for computing I1(¢,n, k) and R;(a,bd,c,r). DEPI
and DRJVAL are double precision routines.

CALL EPI{¢, ¢/, k* €% n,m, w,IERR)

The arguments ¢, ¢, k%, €% n,m are real numbers where ¢ > 0,¢ > 0,¢ t ¢ n/2,
kT p e -1, |nf <1 and n t m - 1 Also, if ¢ -~ 0 then it is assumed that € £ 0 and
m # (. IKRR and w are variables. When EPI s called, if no input errorg are detected then
IERR is set to 0 and w 15 assigned the value (¢, n, k).

Error Return. If an input error is detected then IERR has ane of the following values:
IERR 1 Either ¢ or ¥ is negative, or ¢ + 0 f 72
IERR - 2 Either n] - Lorn i m # 1
IERR 3 Either k% or €% s negative, or k2 1 €2 /1.
IERR 4 Either ¢ and miare too close to 0, or b and €* are too close 1o 0

l"'h

Precision. Pl s accurate to within 4 units of the shgnifresnt i

Fiogrammiaing EPTemploys the subroutine, REVAL, RIVAL, ROVALL and function SPM
PAK. LI'T was wnitten by AH Morrs

CALL RIVAL{a,b.c,r w IFRR)

The arguments a, b, c are nonnegative real numbers, only one of which can be O and r

15 a4 positive real number. TERR and w are vanables. When RIVAL s called 1f no pat

1!

errors are detected then IERR is set to O and w is assigned the value R;(a,b,¢c,r).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either q,b,c, or r i3 negaiive.
[ERR = 2 Either a+b,a+ ~,b+4-¢, ¢ r is too small.
IERR = 3 Either a,b,¢, or r is too large.

Precision. RIVAL is accurate to within 4 uni‘c of the 14** significant digit.

Programming. RJVAL calls the subroutine RCVAL1. These subroutines were written by
B.C. Carlson and Elaine M. Notis (Iowa State University), and modified by A.E. Morris.
The function SPMPAR is also used.

References.

(1) Carlson, B. C., “Computing Elliptic Integrals by Duplication.” Numerische Mathe-
matik 33 (1979), pp. 1--16.

(2) and Notis, E. M., “Algorithm 577,Algorithms for Incomplete Elliptic
Integrals.” ACM Trans. Math Software T (1981), pp. 398-403.

CALL DEPI(,4,k?, €2 n,m, w IEKR)

The arguments ¢, v, k,£* n, m are double precision numbers where ¢ > 0,v > 0, ¢ +
Y=n/2,k?+£% =1,|n| < 1,and n+m = 1. Also, if ¥ = 0 then it is assumed that ¢2 # 0
and m # 0. IERR is an integer variable and w a double precision variable. When DEPI is
called, if no input errors are detected then IERR is set to 0 and w is assigned the double
precision value for TI(g, n, k).

Error Return. If an input error is detected then IERR has one of the following values:
IERR = 1 Either ¢ or ¢ is negative, or ¢ + ¢ # x/2.
IERK = 2 Either [n| > {orn+m 3 1.
IERR = 3 Either k% or £? is negative, or k% -+ €2 # 1.
IERR = 4 Either ¢ and m are too close to 0, or ¢ and £* are too close to 0.

Programming. DEPI employs the subroutines DRFVAL, DRIVAL, DRCVL1 and function
DPMPAR. DEPI was written by A.H. Morris.
CALL DRJVAL(u, b, c,r, w,IERR)
The argun:ents a, b, ¢ are nonnegative double precision numbers, only one of which can
be 0, and r is a positive double precision pumber. IERR is an integer variable and w a
double precision variable. When DRJVAL is called, if no input errors are detected then
KRR 19 set to O and w is assigned the double precision v e for B {a, b, c,r).

Error Return. If an input error 1s detected then KRR has one of the following values:
I g

IKRR = 1 FKither a,b,c, or r is negative.

[I]

IKRR - 2 Either a § b,a i ¢, b} ¢, or ris toe sinall.

112

IERR == 3 Either a,8,¢, or r s too large.

Programming. DRJVAL calls the subroutine DRCVLL. These subroutines were written by
B.C. Carlson and Elaine M. Notis (Iowa State University), and modified by A.H. Morris.

The function DPMPAR i3 aiso used.

References.
(1) Carlson, B. C., “Computing Elliptic Integrals by Duplication.” Numerische Mathe-

matik 33 (1979), pp. 1-16.
and Notis, E. M., “Algorithm 577,Algorithms for Incomplete Elliptic

Integrals.” ACM Trans. Math Software 7 (1981), pp. 398-403.

(2)

13

JACOBIAN ELLIPTIC FUNCTIONS

For any complex number k 3 0,21 the elliptic function sn(z, k) may be defined as the
meromorphic function w(z) that satisfies

(%)~ (- whu -k

I

(1)

w(0) = 0, w'(0) = 1.

)
If & = 0 then sn(z,0) = sin z satisfies (1), and if k = =1 then sn(z, k) = tanh 2 satisfies (1).
Alternatively, sn{z, k) = sin ¢ where ¢(z) satisfies

do* _ 2 oo
(2) (;1;> = 1—k“sin ¢
4(0) = 9, ¢'10) = 1.

The elliptic functions cn(z,k) and dn(z, k) may be defined by
(oK) = T “onls B
dn(z, k) = \/fiﬁ?r@,‘%”)_?

where the roots take the value 1 for z = 0. In perticular, if & = 0 then en(2,0) = cosz
and dn(z,0) = 1, and if k = +1 then en(z,k) = dn(z,k) = 1/cosh =. The subroutines
ELLPF and ELPFCI are available for computing sn(z, k), en(z, k), and dn(z, k) when k is
a real value such that |kl < 1. ELLPF may be used when z is real and ELPFC1 when 2 is
complex.

CALL ELLPF(u,k, ¢, 5,C, D,IERR)

It is assumed that w, k, and £ are real numbers wiere k* | €2 - 1. S,C, and 1) are
real variables. When ELLPE is called, S,C, and D are assigned the values S - sn(u, k),
C = cn(u, k), and D - dn(n, k).

1IERR is a variable that reports the status of the results. When the routine terminates,
IERR has oue of the following values:

IERR == 0 The elliptic funciions were computed.

IERR 1 (Input error) k% + €2 /1.

IERR . 2 w4 is too large for &

When IERR > 1, no computation is performed.

Precision. Let A (k) be the complete elitptic integral of the first kind. For [k < 99995 the
relative errors of sn{u, k) and dn(u, k) are less than 10 '* when 0 « uw < A(k), and the
2 when 0+ w e YTH (k).

relative error of en(u, kY is less than 10

Algorithm. Let K = K(k) be the complete elliptic integral of the first kind. For 0 < u <
K /2 (when £ # 0), the Maclaurin expansior:

1+ kN 1+ 14k? + k*
.sm(u,k):u—(3') (L + 5'+ Ju? —

is employed when u < .01. Ctherwise, if u > .01 let K' = K(£), ¢ = exp(—7K'/K), and
r = exp(-nK/X'). Then

2 ~ ¢T3 . (2n4 Uru
snlu, k) = K }__{ [g sin 5K
n>0

is used when k < ¢ and

m (=1)*r2r 27u
sn(u, k) = KT tanh 2—}?7 +4 Z s sinh
n>

is used when k > £. The functions e¢n{u, k) and dn(u, k) are obtained from

sn(u,k)? + en(u, k)? =
dn(u,k)? + k*sn(u, k)? = 1.

For K/2 < u < K the identities

sn(u, k) = en(v, k)/dn(v, k)
en(u, k) = |€sn(v,k)/dn(v, k)
dn(u, k) = |€]/dn(v, k)

are applied. Here v = K - u.

Programming. LELLPF employs the subroutines SCD, SCDF, SCIJ, SCDM, ELLPL
SNHCSH and functions ALNREL, CPABS, SPMPAR, IPMPAR. ELLPF was written by
Andrew H. Van Tuyl and modified by A. H. Morris.

CALL ELPFC1(z k¢, 5,C, D,IERR)

The argument z is complex, and k and £ are real numbers where k* + 2 = 1. S,C,
and D are complex variables. When ELPFC1 is called §,C, and D are assigned the values
S = sn(z,k), C = enlz k), and D = dn(z, k).

IERR is a variable that reports the status of the resuits When the routine - -minates,
IERK has one of the tollowing values:

IERR - 0 The ellipuc functions were computed.

IERR 1 (Input error) A% 4 €2 4 1.

IKRR - 2 z1s too large for k.

IERR © 3 z1s a pole for the elliptic functions.

116

When JERR > 1, no computation is performed.

Precision. Let z = Re(z), y = Im(z), K = K(k) be the elliptic integrai of the first kind
for k, and K’ = K(£). For |k| < .99995 the relative errors of the real and imaginary parts
of sn(z,k) are less than 1071* when 0 < z < K and 0 < y < .992K’, and the relative
errors of the real and imaginary parts of cn{z,k) and dn(z,k) are less than 10712 when
O0<z< 97K and 0 < y < .97K’.

Algorithm. For z = z + 1y let
s = an(z, k) 81 = sn(y,£)
¢ = cn(z,k) c1 = en(y, £)
d = dn(z,k) dy = dn(y,)
and D = ¢ + k?s?s2. Then
sn(z,k) = (sdy + tedsycy)/D
en(z, k) = (ccy — ¢sdsy1,)/D
dn(z, k) — (dcydy — <k%scsy)/ D
are applied when D # 0.
Programming. ELPFCI1 calls ELLPF, which employs the subroutines SCD, SCDF, SCDJ,

SCDM, ELLPI, SNHCSH and functions ALNREL, CPABS, SPMPAR, IPMPAR. ELPFC1
was written by Andrew H. Van Tuyi.

1

WEIERSTRASS ELLIPTIC FUNCTION FOR THE EQUIANHARMONIC
AND LEMNISCATIC CASES

Lei w and w’ be complex numbers where Im(w’/w) > 0, and Wy, = 2w + 2nw’ for all
integers m,n. Then for any complex z, the Welerstrass elliptic function P(z; w,w’) can be

defined by
1 bl
Pz;w,w’) ;1 Z Vi

(z - Wmn) wi .

where ¥/ denotes the sum for all m,n = 0,+1,+2, ... except m = n = 0. If w = re‘® and

w' = 1'e'*" where ¢ = ¢+ 0 for 0 < @ < 2n, then the restriction Im(w’/w) > 0 is equivalent
to assuming that 0 < 8 < x. P(z;w,w’) is analytic everywhere except at the points wp,y,
which are poles, and

P(z + 2w;w,w') = P(z; w,w’)

Pz + 2w w,w') = Pz w,w)
for all z. The reiations

P(—z;w,w') = Pz; w,w’)

P(Az; Aw, Aw’) = A7 2P(z;w,w') A #0
also hold A somewhat surprising fact is that only the values go = 60L'w, * and gs =
1405 w3 are needed for computing P(z; w, w’) at a point z. Hence, P(z; w,w’) is frequently
denoted by P(z;92,93). For A#£0

g2(Aw, Aw’) = A gy (w, w')

g3(Aw, Aw') = A7 %g;(w, w’')
also hold. We now couasider the following cases:

(1) Equianharmonic (g2 = 0 and g3 is a positive real number)

(2) Lemniscatic (g2 i1s a positive real number and g3 = 0)
(1) occurs when 2w = , - %9-1 and 2w’ = | + %5-', and (2) occurs when 2w = 1 and
2w’ = ¢. The following subroutines are available for computing P(z; w, w’) and its derivative
P'(z;w,w’) for these two choices of (w,w’).

CALL PEQ(z, ¢l RR)

The argument 2z 1s a complex number, e is a con:plex variable, and [IKRR 1s an integer
variable. It is assumed that the periods are 2w =: % - \/"1 and 2w’ = % 1 \/3 . When PEQ
is called, if 2z Is not a pole then IKRR i3 assigned the \alue 0 and ¢ 18 db.slgned the valuc

Plz;w w)
Error Return. If z w,,,, for some m,n then IERR is assigned the value 1 and ¢ = 0.

Precision. If |P(z;w,w’)] < 1 then the absolute error is less than 7+ 10 ' Otherwise, the
relative error 1 less than 7- 10 14

Programming. Written by Ulnch Fekhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.

19

References.

(1) Eckhardt, Ulrich,“Algorithm 549, Weierstrass’ Elliptic Functions,” ACM Trans. Matk
Software 4 (1980), pp. 112-i20.

(2) . - ,“A Rational Approximation to Weierstrass’ P-Function,” Math Comp.
30 (1976}, pp. 818-826.

CALL PEQ1(z,e,JERR)

The argument z is a complex number, € is a complex variable, and IERR is an integer

variable. It is assumed that the periods are 2w = % - 3?:' and 2w’ = %+ \g_gl When PEQI1

is called, if z is not a pole then IERR is assigned the value 0 and e is assigned the value
P'(z; w,w').

Error Return. If 2 = w,,,, for some m,n then IERR is assigned the value 1 and e = O.

Precision. If |P/(z; w,w’)| < 1 then the absolute error is less than 7-107!3. Otherwise, the
relative error is less than 7 - 10713,

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.

References.

(1) Eckhardt, Ulrich,“Algorithm 549, Weierstrass’ Elliptic Functions,” ACM Trans. Math
Software 4 (1980), pp. 112-120.

(2) _______ _ ,“A Rational Approximation to Weicrstrass’ P-Function,” Math Comp.
30 (1976), pp. 818-826.

CALL PLEM(z,¢,IERR)
The argument z is a complex number, e is a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w = 1 and 2w’ = ¢{. When PLEM is calied. if
z 18 not a pole then IERR is assigned the value 0 and e is assigned the value Pz w,w').

Error Return. If 2 == w,,,, for some m, n then IERR is assigned the value ! and e = 0.

Precision. If |P(z; w,w’)| < I then the whsclute error is less than 6- 10713 Otherwise, the
relative error is less than 6 - 1013

Programming. Written by Ulrich Eckhardt (University of Harburg, West Germiany). Mod-
fied by A. H. Morris.

Rcferences.

(1) Eckhardt, Ulrich,“Algorithni 549, Weierstrass” Elliptic Functions,” ACM Trans. Math
Software 4 (1980), pp. 112 120,

120

(2) ,“A Rational Approxirnation to Weierstrass’ P-Function. II: The Lem-
niscatic Case,” Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341-348.

CALL PLEM1(z,¢,JERR)

The argument z is a complex number, ¢ 13 a complex variable, and IERR is an integer
variable. It is assumed that the periods are 2w =: 1 and 2w’ =¢. When PLEM1 is called, if
z is not a pole then IERR is assigned the value O and e is assigned the value P'(z; w,w’).

Error Return. If z = w,,,, for some m,n then IERR is assigned the value 1 and e = 0.

Precision. If |P’(z; w,w’)| < 1 ther the absolute error is less than 6 1073, Otherwise, the
relative error is less than 6 - 10713

Programming. Written by Ulrich Eckhardt (University of Hamburg, West Germany). Mod-
ified by A. H. Morris.

References.

(1) Eckhardt, Ulrich,“Algorithm 549, Weierstrass’ Elliptic Functions,” ACM Trans. Math
Software 4 (1980), pp. 112-120.

(2) ,“A Rational Approximation to Weierstrass’ P-Function. II: The Lem-

niscatic Case,” Computing (Arch. Elektron. Rechnen) 18 (1977), pp. 341--349.

INTEGRAL OF THE BIVARIATE DENSITY FUNCTION OVER
ARBITRARY POLYGONS AND SEM:-INFINITE
ANGULAR REGIONS

Given a sequence of points v; = (z;,%){(f = 1,... ,n + 1) where n > 3 and Vpi1 = vy.
Let 7 denocte the polygon whose beundary 87 is a polygonal line which begins at point vy,
traverses the points v; in the order that they are indexed, and is the straight line segment
conunecting v; to v;1; for each ¢ = 1,... ,n where 1; # Vi+1. Then the subroutine VALR2
is available for computing the integral

l 2 2
P(r) == -(="+y%)/2 4.
(1) = o //e z dy

r

and the associated function A(r) = [[dzdy. If the boundary 97 is a simple positively

(negatively) oriented closed curve, then P(r) and A(r) are positive (negative) and |A(7)| =
the area of . However, 87 need not be simple. It may be self-intersecting or have overlap-
ping line segments. If A, is the angle between the vectors vi ~ vy and vy — 1y (where
Vo = v,), then it may occur that Af; -= 7 tor some 1, in which casc a portion of the palygon
may be degenerate. In general, —n < A8, < = for each 1 where the sign of the angle is
positive (negative) if the angle is measured in a counterclockwise (clockwise) direction from

14]
by = Viey to vy - v VALRZ also computes the value k(r) - 21; 2: Af;, which is an

s 1
integer. If the boundary is a simple closed curve, then k(7) is the winding number of the
curve around any terior point of the polygon 7.

Alternatively, assume that we are given three points v, (ro,9)(f = 1,2,3) and let
A0 denote the angle between the vectors v, - vy and g - pry. In this case, assume that
the angle A# is measured in a counterclockwise direction from vy - vy to vy vy, so that
0 < ad < 2r. Let £denote the straight line beginning at point 1y and passing through point
vq, and let ¢ denote the straight line beginring at vy and passing through vy, Then the
subroutine VALR2 is also available for computing P(r) when 7 is the semi-infinite angular
region bounded by ¢ and t’;, and having the angle A9, 0 < 1’(7) = 1 for any angular region
r,and P(r) » 1 when A0 » 2n.

"y o

Anguiar region 71 B
\ Al
iy o

CALL VALR2(X, Y n, P IOP AIND k)

The argument nis either 1 or the numiber of points mvolved o defimng o polygon
If no 1 then it is assumed that 7 s a semi-infinite angeoar region defined by the points
v oyoy (o 123), and that X and Y oare arrays containing oy, oy, raoand oy ys, gy

Otherwise, if n /1 then it s assumed that 1 s a puolygon defined by the pomts -

,wv)
oy

(zs,95)(=1,...,n+ 1) where n > 3 and vp4; = v;. In this case, X and Y are arrays
containing the abscissae z;,...,2,4, and ordinates yy, ...,y,+;. Since v,.1 = vy, the
values 2,41 and yn41 need not be supplied by the user. The routine automatically stores
z; and y; in X(n + 1) and Y(n + 1).

P, A, and k are variables. If n = 1 then P is assigned the value F(r) for the angular
region 7 and A is assigned the value 0. In this case, k is not defined. Otherwise, if n > 3
then P is assigned the value P(7), A is assigned the value A(r), and k is assigned the value
k(r) for the polygon .

IOP is an input argument which specifies the (relative} precision to which P{r) is tc
be computed. IOP is set to 1, 2, or 3 for 3, 6, or 9 decimal digit accuracy.

IND is the variable that reports the status of the results. The routine assigns IND one
of the following values:

IND = 0 The desired values were obtained.

IND = 1 {Input error) v, is either equal to v; or vs, or is too close to vy or
v3 to compute P(r) for - e angular region 7. In this case, P is set
to 5.

IND = 2 The desired values were obtained. If n = 1 then Af ~ x. Other-

wise, if n > 3 then |Af;| ~ n for some 1.
IND = 3 (Input error) Either n < 1 or n = 2.

Remarks. VALR2 can be used for computing the integral of the general bivariate density
function over an arbitrary polygon or semi-infinite angular region 7. Consider

P() - B // emp{'.z.(_i:;:}.;).z.j {(‘f{;_w“w)2 PAHCE /;wu)iz “ k) (2 U“>2J} dw dz

where B = (1 - p?) Y2/ (2ro,0,), (#tw, 1s) 1s the mean, o, and o, are the (nonzero)
variances, and p is the correlation coefficient satisfying |p] <2 1. Consider also

Y [*‘-’ w z < z
(1 pY) 'ﬁ[a pz # and vy M=

g, 0,] ("

Since this transformation maps straight lines into straight lines, 7 is mapped ont - a polygon
or angular region 7 and we obtain P(7) P(r). Moreover, if 7 is a polygon ten A(7)

[dwdz o, 0,\/1 p*A(1).

Programming. VALRK2 employs the functions ERF, ERFCI, and SPMPAK. VALR?2 was
designed by Armido R DiDonato and Richard K. Hageman, and modified by A. H. Morris,

Reference. LiDonato, A R | and Hageman, R K | Computation of the Integral of the Di-
vartate Normal Dystribution over Arbitrary Polygons, Report TR 80 166, Naval Surface
Weapons Center, Dahlgren, Virginia, 1950,

CIRCULAR COVERAGE FUNCTIONM

The subroutine CIRCV is available for computing the circular coverage function P(R, d)
and the generalized circular error function V(K,¢). V is the integral of an uncorrelated
elliptical Gaussian disiribution with standard deviations o, and o, over a circle of radius
Ko, centered at the mean of the distribution. If o, > o, then

1 K " w2
V(K,c):”—é«/o/;exp{;(:—z-[1+cz+(l——c2)cose]}rd0dr

where ¢ = 0, /0;. P is the integral of a circular Gaussian distribution with comimnon standard
deviation ¢ over a circle of radius Ko whose center is offset a distance de from the mean of
the distribution.

R 1,
P(R,d) = P / [exp {—5 [(d + rcosf)? + r?sin?g] } rdddr
0

vO

Alternatively,

V(K=

c.

K
/ e B I (Arrdr (¢ #0)
0

R
P(R,d) e*"“/ e "2 y(rd)r dr

t)

where A -~ (1 ¢%)/(4¢?), B = (1 + ¢?)/(4¢%), and Iy is the modified Bessel function
of the first kind and order 0. Since V(K,c) » erf(K/\/2) when ¢ -+ 0, we may define
V(K,0) erf{K/\/2).

CALL CIRCV(r, a1, w,IERR)

The argmment 1 may be any integer. 1 0 then the arguments x and a are assumed
to have the values ¢+ A and a ¢ where K > 0 and 0 < ¢ < 1. Otherwase, if 1 /0 then
r Randa dwhere B - 0and d - 0.

IERR and w are vartables. When CIRUV a8 called, if nonput ecrors are detected then
IERR is assigned the value 00 Also, w V(A e)if s Oand w P(R d)af 1 /0.

Error Retarn. If an mmpat error is detected then [TRRR a8 set as {ollows:

TERR 1 r 01s not satisfied.
T REK 20 ¢+ lord 018 not satistied

When either of these errors s deiected, wos assipned the valie

Precision 11 O then woas accurate toowithin L unit of the 13 somniticant digt when
V(A o) s st near 00 Otherwise, af 02 0 then seoas accurate to st Lumt of the R

stpnfivant dynt when P08 0d) s not near 4

Algorithm. If AK? < 14 then V(K,¢) = Y T, is employed where

Lon>0

. 2 3
Qg — 1 BK 1 -BK
o T gt To = 4 51l €)
2 / -
_ [AK? . 2n-1 A? AK? A) AK?
Sp = (*2;;*‘) Sn-1 T, = “2n BY Tooy - \'" B) 2n Sn (" > 1)'

Otherwise, if AK? > 14 then the asymptotic expansion V (K, c) = 1 - e K'/2 Yonsg Mais
used where -

.1 K32 Ty
My = fef Perle(1) T e b VIl
o 2n-1 ¢? - n- 1 2n-1
Muyy = '"jn ",c"":(- M,) Tn+l = “90 4AK3IIn (" 2 l)-

-~

If R < 1.70r Rd < 16 then P(R,d) - >_ ., T is employed where

Lo

T, ¢ %) [1 T } 6 d¥j2 4 R*2
Otherwise, if Rd =~ 16 and K > 1.7 then the asymip otic expanston

(R, d) se Tlsy s it R d
(R .
o de > (sy 4 sg)] MR d

15 used where 2 [d|/V2, s Hpd o\ M., sy ooy) Tn, and

2V KA L] VIHG S

l,

3
T, Ve M, e® t'rfr(z)
. 2n 1 In 1 in 1 . N
Tnoi 2n akd Tn Moo on ara (e 7ML (n - 1)

Programming CIRCV emplovs the functions ERFERFCTH ERFOR, EXPARG, GAMMA,
GAMIL, GLOG, RCOMP, REXP, RLOG and subroutines ERFCO, GRATIO. The functions
SPMPAR and IPMPAR are also used CIRCV was wnitten by Arnado B IDhiDonato wid
modified by A-H Morrs

References.

(1) ibonato, A. R Fve Statistscal rograms suw BASIC for Desktop Corputers,
Report NSWO T I\ 8313, Naval Surface Weapons Center, Dahlgren, Virgnoa, 1982

(2) and Jarnagin, MO P A Method for Computing the Generalized
Cireular Iarrm' Function and the (lrculur Coverage Funetion, Report 1768 Naval
Weapons aboratory, Dahilpren, Virgona, 1062

[

ELLIPTICAL COVERAGE FUNCTION

The subroutine PKILL is available for evaluating the integral of an uncorrelated el-
liptical Gaussian distribution over the arca A of a circle (z - h)* 4+ (y — k)2 = R?. The
probability to be computed is given by

1 1/z? y?]
P(R,0,,0y4,h,k) = Er_ozo,, //A exP[_E(}—Z + 0—2>J dz dy

v/

where ¢, is the standard deviation in the z direction and oy is the standard deviation in
the y direction. Then

P(R,Uz,dv,h,k) = P(R)U[H(’z)k)h)y
P(R,0,,0,,h,k) = P(R,0,,0,,|h|,|k|), and
P(R,05,0y,h,k) = P(aR,a0,,a0,,ah,ak)
for any a > 0. Alse P =C when R = 0.
CALL PKILL(R,0,,0,, h,k, P)
R,0.,0,,h,k are real numbers and P is a variable. It is assumed that R > 0, o, >> O,
and g, > 0. When PKILL is called, P is assigned the value P(R,0,,0,,h,k).

Zrror Return. P = -10'"% if g, <0 oro, < 0.

Precision. P is accurate to within 1 unit of the 6'" significant digit when P > 1072° and
|hi,|k|,Vh? 4+ k? are not near R.

Programming. PKILL employs the subroutine GRATIO and functions SPMPAR, ERF,
[PMPAR, EPSTN, EXPARG, REXP, RLOG, ERFC, ERFC1, AERF, GAMMA, GAMI,
GLOG. PKILL was written by Armido R. DiDonato.

Reference. DiDonato, A. R., Stgnificant Digit Computation of the Elliptical Coverage

Funetion, Report NSWC TR 90 513, Naval Surface Warfare Center, Dahlgren, Virginia,
1990.

COPYING POLYNOMIALS

m-—-1 .
If p(z) =) ajz’ and the coefficients a; are stored in an array A, then the following
=0
subroutines are available fcr copying the first r coefficients a, into an array B.

CALL PLCOPY(A.ka,m, B, kb, n)
CALL DPCOPY(A, ka,m, B, kb, n)

A and B are arrays. PLCOPY is used if A and B are real arrays, and DPCOPY is
used if A and B are double precision arrays.

The arguments m, n, ka, kb are positive integers. The coefficients a; are ¢ umed to be
stored in A where A(1+ j-ka) = a, for j = 0,1, ...,m -~ 1. The routine stores the first n
coefficients a; in B where B(1 + j-kb) = a, for y=0,1, ...,n - 1.

Note. If n > m then B(1+ j-kb) =0 for § > m.

Programmer. A. H. Morris.

129

ADDITION OF POLYNCMIALS

Loe], : m-1 . .) .
If p(x) = 2;0 a;z? and q(z) = ZJO bz then the following subroutines are available for
J=0 VS
computing the first n coefficients of the polynomial p(z) + ¢(x) = 2 cju.

CALL PADD(A, ka,t, 3,kb,m,C, ke, n)
CALL DPADD(A, ka, £, B, kb, m,C, ke, n)

A, B and C arve arrays. PADD is used if A, B and C are real arrays and DPADD is
used if A, B and C are double precision array:s.

The arguments €, m,n, ka, kb, kc are positive integers. The coeflicients a,; and b; are
assumed to be stored in A and B where
A(l+j-ka)=a; (j=0,1,...,6~1)
B(1+j-kb)y =b; (j=0,1,...,m~1).
The routine stores the first n coefficients c; of p(z) + ¢(z) in C where C(1 + 5 -ke) = ¢y for
7=0,1, ... ,n-1.

Remarks. The array C may begin in the same location as A or B. If C begins in the same
location as A then it is assumed that k¢ = ka. In this case, the result C will overwrite
the input data A. Similarly, if C begins in the same location as B then it is assumed that
kc = kb. Otherwise, if C' does not begin in the same location as A or B, then it is assumed
that the array C' does not overlap with the arrays A and B.

Programmer. A. H. Morris.

SUBTRACTION OF POLYNOMIALS

£-1 m--1 .
Ifp{z) = 3 a; ¢(z) == 3. b;x? then the following subroutines are available for
3:=0 720
computing the first y ¢ ients of the polynomial p(z) ~ q{2) = 37 ¢j7.
CALL PSU LT ka,l, B kb,m,C, kc,n)
CALL DPSIEY A ka,l, B kb,m,C, ke, n)
A, B and C are ar: PSUBT is used if A, B and C are real arrays and DPSUBT is
used if A, B and C are ¢+ ble precision arraya.
The arguments ¥, ‘ka, kb, kc are positive integers. The coefficients a; and b; are
assumed to be storec nd B where
A(L + 7-ka) (7=0,1,...,6-1)
B(1 + j-kb) (G=0,1,...,m—1).

The routine stores the = si n coefficients ¢; of p(z) — ¢(z) in C where C(1 + j-k¢) == ¢; for
j=0,1,...,n~1.

Remarks. The array C may begin in the same location as A cr B. If C begins in the same
location as A then it in assumed that kc = ka. In this case, the result C wiil overwrite
the inpnt data A. Similacly, if C begins in the same location as B then it is assumed that
ke = kb. Otherwise, if C does not begin in the same location as A or B, then it is assumed
that the array C does not overlap with the arrays A and B.

Programmer. A. H. Morr's.

133

MULTIPLICATION OF POLYNOMIALS

t—-1) m—1 .
If p(z) = 37 ayx7 and ¢(z) = 3 b,27 then the following subroutines are available for
320 1=0

computing the first n coefficients of the polynomial p{z)q(x) = 2y ¢zl

CALL PMULT (A, ka, ¢, B, kb,m, C, ke, n)
CALL DPMULT(A, ka, £, B, kb, m,C, ke,n)

A4, B and C are arrays. PMULT is used if A, B and C' are real arrays and DPMULT
is used if A, B and C are double precision arrays.

The arguments €, m, n, ka, kb, kc are positive integers. The coefficients a; and b; are
assumed to be stored in A and B where
A(l+jka) =a; (5=0,1,...,0~1)
B(1+j:kb)=b; (5=0,1,...,m~1).
The routine stores the first n coefficients ¢; of p(z)q(x) in C where C(1 + j-k¢) = ¢, for
7=0,1,...,n—1.

Remarks. It is assurned that the array C does not overlap with the arrays 4 and B.

Programmer. A. H. Morris.

DIVISION OF POLYNOMIALS

-1) m—1 .
If p(z) = 3 a,;z7 and ¢(z) = 3 bjz? where by # 0, then the following subroutines
1=0 7=0

are available for computing the first n coefficients of the series p(z)/q(z) = 2_; ;7.

CALL PDIV(A, ka,t, B, kb,m,C, ke, n,JERR)
CALL DPDIV(A,ka,t, B, kb,m,C, kc,n,IJERR)

A, B and C are arrays. PDIV is used if A, B and C are real arrays and DPDIV is
used if A, B and C are double precision arrays.

The arguments £, m, n, ka, kb, kc are positive integers. The coeflicients a; and b; are
assumed to bc stored in A and B where
A{l1+ j-ka)=a; (3=0,1,...,£-1)
B(1+47-kb)=b; (j=0,1,...,m—1).
IERR is a variable. When the routine is called, if by # O then IERR is assigned the value
0 and the first n coefficients ¢; of p(z)/q(z) are stored in C where C(1 + 7-k¢) = ¢, for
7=0,1,...,n- 1

Error Return. JERR = 1 if by = 0. In this case, nc computation is performed.
Remarks. It is assumed that the array C does not cverlap with the arrays A and B.

Programmer. A. H. Morris.

137

REAL POWERS OF POLYNOMIALS

m-—1)
If r is real and p{z) = 3} a;z’ where a; > 0, then the following subroutines arc
3=0
available for computing the first n coeflicients of the series p(z)" = 25 bz’

CALL PLPWR(r, A, ka,m, B, kb, n JERR)
CALL DPLPWR(r, A, ka, m, B, kb, n,IERR)

A and B are arrays. PLPWR is used if A and B are real arrays and r a real nuruber,
and DPLPWR is used if A and B are double precision arrays and r a double precision
number.

The arguments m, n, ka, kb are positive integers. The coefficients a; are assumed to be
stored in A where A(1+ j-ka) = a; for j = 0,1,...,m — 1. IERR is a variable. When the
routine is called, if ag > O then IERR is assigned the value 0 and the first n coefficients by
of p(z)" are stored in B where B(1+ j-kb) =b, for =0,1,...,n— 1.

Error Return. IERR = 1 if ap < 0. In this case, no computation is performed.

Remark. It is assumed that the arrays A and B do not overlap.

Algorithm. If ¢ = p" then pg' = rqp’ where p’ and ¢’ are the derivatives of p and q.

3
Consequently, b; = J—.:—O 2o (ri+1— 7)asb;_; is used for j > 1. Also b = ap,.
=1

Programmer. A. H. Morris.

139

INVERSES OF POWER SERIES

Given an analytic function w = f(z) = 3. a;z* where f(0) == 0. Then the inverse
i>1
function z = f~!(w) exists when ay # 0, and f~!}(w) = 3 diw*. The subroutines PINV

i>1
and DPINV are available for obtaining the coeflicients d; when the coeflicients a; are real.
DPINYV is a double precision routine.

CALL PINV(A4, D,n,WK)
CALL DPINV(4, I, n,WK)

If PINV is called then A, D, and WK are real arrays. Otherwige, if DPINV is called
then A, D, and WK are double precision arrays.

It is assumed that n > 2. A is an array containing the coefficients a;, ...,a, and D is
an array of dimension n. When PINV or DPINV is called, the coefficients dy, ...,d,, are
computed and stored in D).

WK is an array of dimension n(n + 1)/2 or larger. WK is a work space for the routine.
Programmer. A. H. Morris.

Reference. Chang, Feng-cheng,“Power Series Unification and Reversion,” Applied Math
and Computation 23 (1987), pp. 7-23.

111

DERIVATIVES AND INTEGRALS OF POLYNGMIALS

n--1 .
Let f(z) = }, a;z' be a polynomial with real coefficients a;. The polynomial can be
+==0
differentiated and integrated by the following subroutine:

CALL MPLNMV(MO,zq,n, A, w)

A is an array containing the coefficients a; where A(i) = a;_; for ¢ = 1,...,n. The
argument Zy is an arbitrary real number and w is a variable. MO may have the values
~1,0,1,2. When MPLNMYV is called w is assigned the value:

([f(x)dz if MO = —1
f(zo0) iFMO = 0
fi{zo) MO = 1
["(z0) MO = 2

Programmer. Allen V. Hershey.

143

EVALUATION OF CHEBYSHEV EXPANSIONS
For any complex number z and integer n = 0,1, ... let
To(z) =1, Ty(z) =2

Trat2(2) = 22T 11(2) — Ta(2).

Then Tn(z) is a polynomial of degree n having the leading coefficient 2*~! when n > L.
Also Ta(t) = cos(nf) when t = cos8(0 < 8 < =), so that |Tn{t)] < 1 for real t where
[t| < 1. The polynomials T, (z) are called the Chebyshev polynomials {of the first kind). If

f(z) = ao/2 + 2:: a;T;(z) where a; is real, then the following functions are available for
=1
computing f(z) when z is real.
CSEVL(z, A, n)

It is assumed that n > } and that A is an array containing ag, ¢y, ...,a2,-1 Where
A(f) = a;-1(s = 1, ...,n). Then CSEVL{z, A, n) == f(z) for any real z.

Programmer. A. H. Morris.
DCSEVL(z, A,n)
It is assumed that n > 1 and A is a double precision array containins ag,a;, ...,2,_1
where A(Y) = a;—;(f =1, ...,n). Then for any double precision value z, DCSEVL(z, A, n)

is the double precision value of f(z).

Remark. DCSEVL must be declared in the calling program to be of type DOUBLE
PRECISION.

Programmer. A. H. Morris.

145

LAGRANGE POLYNOMIALS

Let ay, ...,an be n distinct real numbers. Then the i** Lagrange polynomial is defined
by
(z —a1)(x —az)---(z - ai1)(z = Giy:) -~ (z — an)

¢i(z) =
(=) (a; — a1)(ai — az2) -+ (a; = ai—y)(a; — aiq1) -+ (a; = an)
fori=1,2, ...,n. The Lagrange polynomials have the property that ¢;(a,) = 1,¢,(a;) =0
n
for 7 # 1, and p(z) = Y p(a,)é:(z) for any polynomial of degree n — 1. For convenience,
=1

di = (a; — ay)(ai — az) -+ (a; — ai-1){as — ai+i) -+ (a; — an)

is called the nermalization divisor of ¢,(z). The following subroutines are available for
computing the Lagrange polynomials and their normalization divisors.

CALL LGRNGN(A, n, D)

A and D are arrays of dimension n. The arguments a;, ...,a, are given in the array
A. The normalization divisors dy, ...,d, are computed by the routine and stored in D.

Programmer. Allen V. Hershey.

CALL LGRNGV(MO,n, 20, A, D, F,DF, DDF)

A and D are arrays of dimension n. The arguments ay, ...,a, are given in A and
the normalization divisors dy, ..., d, are given in D. The argument z; is an arbitrary real
number and F,DF,DDF are arrays of dimension n.

The argument MO may take the values 0,1,2. If MO == 0 then the polynomials ¢;(z)
are evaluated at zo and the values ¢,(zo) stored in F. If MO = 1 then the function ¢;(z)
and its derivative ¢!(z) are computed at zo. In this case, ¢,{zo) is stored in F(1) and ¢;{x()
is stored in DF{s) for ¢ = 1, ...,n. Similarly, if MO = 2 then the function ¢;(z) and its
first and second derivatives are computed at zg. The values ¢, (zp) are stored in F, the first
derivatives are stored in DF, and the second derivatives are stored in DDF.

Note. If MO == 0 then DF and DDF are ignored by the routine. Similarly, if MO . 1 then
DDF 1is ignored.

Programmer. Allen V. Hershey.

CALL LGRNGX (4, n,C)

A 13 an array of dimension n and € an array of dimeusion nox (0t 1), The arguments
Y } 8

ay, ...,a, are given in A. The purpose of the routine is to compute the coeflicients ¢, of

the Lagrange polynomials

noi

. Y
by(r) P cnirh
ko

147

When LGRNGX is called, the coefficients of ¢;(z) are stored in the j** column of C for
7 < n. Also, the first n coefficients of the polynomial

g(z) = (2 —a1)+-+(z ~ an)
are stored in the (n + 1)®* column of C.

Programmer. Allen V. Hershey.

148

CRTHOGONAL POLYNOMIALS ON FINITE SETS

Let u;, ..., un be n distinct real numbers. For any real-valued functions f,g¢ defined

3

on the points u; let (f,g) = }_ f(u:)g(u). Then (f,g) is an inner product when f and
1=1

g are regarded as functions defined only on u;. Thus, an orthonormal set of polynomials

{0, %1, ..., da_1} exists where the degree of ¢; 18 7 for 7 < n. The polynomials ¢; are
defined recursively by

Bara(w) = - [(u ;) () - a1y (u)]

2

where a; = (¢;11,u¢;) and b; = (¢,,u¢,;). Here it is assumed that ¢_; = a_, = 0 and
#o(u) = 1/{/n. The following subroutines are available for computing these polynomials.

CALL ORTHOS (¥, m. P,n, R)

-

U is an array containing the values uy, ..., u, and mis an integer such that 1 < m < n.
P is an array of dimension n x m and R an array of dimension 2m — 2. When QORTHOS is
called, ¢, _y(u;) is computed and stored in P(i.7) fori < nand j < . Also the coefficients
ag,bg,a1,b1, . .,am.3,b,_7 are stored in R.

Programmer. Allen V. Hershey.

CALL ORTHOV(MOn,u, R, m, F,DF,DDF)

The argument u is a real number and m an integer such that 1 < m < n. Ris an
array containing the coefficients ag, by, ay, by, ..., am 2,by 2 and F.DF . DDF are arrays of
dimension m.

MO ay take the values 01,2 If MO O then ¢y, ¢y, .. b 1 are cvaluated at

u and the values ¢, (u) stored in F. If MO I then ¢, | and its derivative ¢, | are
computed at u. In this case, ¢, (u) is stored in () and d); 1) s stored in DEF())
for 3y 1, ... me Similarly, if MO 2 then ¢, 1 and its first and second derivatives are

evaluated at u. The values ¢, (u) are stored in F, the first derivatives are stored in DI,

and the second derivatives are stored in DDEF

Note. If MO 0 then DF and DDFE are ignored by the routine. Simlarly, if MO 1 then
DDF 15 gnored.
Programmer. Allen V. Hershey

CALL ORTHOX(ri /2, 11,07)

The arpmment s an wteger sach that T - 0 B 6 oan array containngy Che

cocthorents ag by ay by, v 2 by cand Cancarray of dunension e e The purpose

R

ZEROS OF CONTIMUQUS FUNCTIONS

Let F(z) be a continuous real-valued function defined for 2 < z < b, and assume that
F(a) and F(b) have opposite signs. Then the following functions are available for tinding a
point z in the interval {a,§] for which F(z) = 0.

ZEROIN(F,a,b,AERR,RERR)

F(z) is a user defined function whose arguments and values are assumed to be real
numbers. ZEROIN returns a value z in the interval [a,] for which F{z) = 0.

AERR and RERR are the absolute and relative tolerances tc be satisfied (AERR
> 0 and RERR > 0). One may sext RERR = 10~ % if it is desired that z be accurate to k
significant decimal digits. If RERR = 0 then it is assumed that machine accuracy is desired.

Remark. F must be declared in the calling program to be of type EXTERNAL.

References.

(1) Brent, Richard, Algorithms for Minimization without Derivatives, Prentice-Ilall,
1973.

(2) Forsythe, G.E., Malcolin, M.A., and Moler, C.B., Computer Methods for Mathemat-
teal Computations, Prentice-Hall, 1977,

Programming. ZEROIN s a slightly modified translation of the ALGOL 60 procedure
ZERO given in reference (1), The code was distributed by G. E. Forsythe, M. A. Malcolm,
and C. B. Moler (University of New Mexico), and modified by A. . Morris. The function
SPMPAR is used.

DZERO(F, u,b,AERR,RERR)

The arguments ¢, b, AERR, and RIJRR are double precision nnmbers, and F{x) 15 a user
}y y Vs 1 4 J

defined function whose argumeunts and values are assumed to be double precision numbers.

DZERO returns a double precision value rin the interval {a, b for which F(r) 0

AERR and RERR are the absolute and relative tolerances to be satisfied (AERR
> 0 and RERR ~ 0). One may set RERK 10 % if it s desired that r be accurate to &
significant decimal digits. If RERR 0 then it s assumed that machine accuracy 1s desired

Remarks. F must be declared in the calling program to be of type DOURBLE PRECESTON
and EXTERNAL, and DZERO must be declared to be of Lype boURBLE PRECISION

References.

(1) Brent, Richurd, Algorsthms for Mingmiszation without Dertvatives, Prentive-Hall,
19734

(2) Forsythe, G Eo Maleolm, M A and Moler, OB Computer Methods for Alathemnat

tead Computetsons, Prentwe-Hall, 1677

15

Programming. DZERO is a slightly modified translation of the ALGOL 60 procedure
ZERO given in reference (1). The code was distributed by G. E. Forsythe, M. A. Malcolm,
and C. B. Mcler (University of New Mexico), and modified by A. H. Morris. The function

DPMPAR i3 used.

1H2

SOLUTION OF SYSTEMS OF NONLIMEAR EQUATIONS

Let fi(z) == 0 (f = 1,..,n) denote a system of n equations in n unknowns where
z = (z1,...,2,). Assume that each f;(z) is differentiable and that an initial guess a =
(a1, ...,a,) to asolution of the equations is given. Then the foliowing subroutine is available
for solving the equations to within a specified tolerance.

CALL HBRD(F,n, X ,FVEC,EPS,TOL,INFO, WK ¢)

X and FVEC are arrays of dimension n or larger. On input X contains the start-
ing oint @ = (aj, -..,a,). When HBRD terminates, X contains the final estimate z =
(z1, ..., zn) of the solution vector and FVEC contains the values of the functions fy, ..., fn
at the output point in X.

The argument F is the name of a user defined subroutine that has the format:
CALL F(n,X FVEC,IFLAG)

Here X and FVEC are arrays of dimension n and IFLAG is an integer variable. The array
X contains a point z = (zy, ...,z,). Normally F will evaluate the functions fy, ..., fu
at this point and store the results in FVEC. However, if z does not lie in the domain of
f1, ..., fn then this cannot be done. In this case, the argument IFLAG (which will have
been assigned a nonnegative value by HBRD) should be reset by F to a negative value.
This will signal HBRD to terminate. ¥ must be declared in the calling program to be of
type EXTERNAL.

EPS is an input argument which specifies the relative accuracy of F. If it is estimnated
that the subroutine ¥ produces results accurate to k significant decimal digits then one
may set EPS = 107%. It is required that EPS > 0, If EPS = 0 then it is assumed that F
produces results accurate to machine precision.

TOL is an input argument which specifies the desired accuracy of the solution. The
Buclidean norin ||z|| = /¥,z? is employed. If £ denotes an actual solution of the equations,
then HBRD terminates when an iterate x is generated for which it is estiinated that ||z -
z|| < TOL - ||z]| is satisfied. It is required that TOL > 0. In order for the convergence test
to work properly, it is recommended that TOJ, always be smaller than 105

WK 1s an array of dimension ¢ that is used for a work space. It 18 assumed that the
argument £ is greater than or equal to n(3n | 13)/2.

nates, INFO has one of the following values:

INFO < 0 This occurs when the user terminates the execution of HBRI) by
resetting the argument IFLAG in the subroutine # to a negative
value. Then INFO the nepouve vahie of IFLAG

INFO 0 (Input Brror) no« 1, EPS < 0, TOL < 0, ar £« n(3nt 13)/2.

INFO 1 A solution having the desired accuracy was obtained.

INFO = 2 The number of calls to the subroutine F' has reashed or exceeded
200(n + 1).
INFO =3 TOL is too small. No further improvement in the accuracy of z is
possible.
INFO = 4 The routine is making very poor progress.
When HBRD terminates, if INFO # O then X contains the final iterate that was gener-
ated. Also, if INFO > 1 then FVEC contains the values of the functions fy, ..., f, at this
iterate. If INFO = 2 then it may be heipful to continue the procedure by recalling HBRD
with the current point in X as the new starting point. However, this is not advisable when
INFO = 4. This setting can arise when £ = 0 is a solution or when entrapment occurs.
HBRD searches for a solution to the equations by minimizing), f.(z)?. In doing this, it
can become trapped in a region where the minimum does not correspond to a solution of
the equations. This is what occurs when the equations have no solution. When entrapment
occurs and the equations are known to have a solution, then it is recommended that the
user try a different starting point.

Scaling. If the convergence criterion ||z — || < TOL - |||| is saticfied and TOL = 197k,
then the larger components of the final iterate z may be accurate to k significant digits but
not the smaller components. For example, if TOL = 107° and z = (1.2,.34E-4), then 1.2
may be accurate to 5 significant digits while .34E-4 is accurate to only 1 significant digit.
If 1t is suspected that the smaller components do not have acceptable accuracy, then it is
recommended that the variables in the original problem be rescaled and the problem rerun.

Algorithm. A modified form of the hybrid Powell procedure is employed.

Programniing. HBRD is a slightly iodified version of the MINPACK-1 subroutine HY-
BRDI1. The MINPACK-1 subroutines HYBRD, ENORM, DOGLEG, FDIACI, QIFORM,
QRFAC, RIMPYQ, and R1UPDT are employed. The subroutines were written by Jorge J.
More, Burton S. Garbow, and Kenneth E. Hillstrom (Argonne National Laboratory). The
function SPMPAR is also used.

References.

(1) More, J. J., Garbow, B.S., and Hillstrom, K. BE., User Guide for MINPACK -1,
Argonne Nation Laboratory Report ANL 8074, Argonne, lllinois, 1980.

(2} Powell, M.J.D., A Hybrid Method for Nonlinear Equations,” Numerical Methods

Jor Nonlinear Algebraic Equations, P. Rabinowitz (ed.), Gordon and Breach, Lon-

don, 1970.

SOLUTIONS OF QUADRATIC, CUBIC, AND QUARTIC EQUATIONS

Given a polynomial ag + a1z + -+ + a,2" with real coefficients where a, # 0 and
n = 2,3 or 4. The following subroutines are available for computing the roots zy, ... , Zn Of
the polynomial.

CALL QDCRT(A4, 2)
CALL CBCRT(4, 2)
CALL QTCRT(4,2)

It is assumed that A is a real array and Z a complex array. QDCRT is used if n = 2,
CBCRT is used if n = 3, and QTCRT is used if n == 4. A is the array of coefficients
where A{k) = ax_; for k = 1,2,...,n+ 1, and Z is an array of dimension n. When the
appropriate subroutine is called, the roots 2y, . .., 2,, are stored in Z. The real roots precede
the complex roots. The real roots are ordered so that |2;]| < |z;4;|. The complex roots are
unordered except that complex conjugate pairs of roots appear consecutively with the root
having the positive imaginary part being first.

Programming. Q'i'CRT calls the subroutines CBCRT and AORD, and CBCRT calls the
subroutine QDCRT and function CBRT. The routines were written by A. H. Morris and
CBCRT was medified by Wm. Davis (NSWC). The function SPMPAR is also used.

CALL DQDCRT(A,ZR,ZIj
CALL DTBCRT(A,ZR Z1)
CALL DQTCRT(A,ZR,ZI)

It is assumed that A,ZR, and ZI are double precision arrays. DQDCRT is used if n = 2,
DCB. RT is used if n = 3, and DQTCRT is used if n = 4. A is the array of coeflicients
where 4(k) = ax—y for k= 1,2, ... ,n+1, and ZR and Z] are arrays of dimension n. When
the appropriate subroiitine is calied, the real parts of the roots 21, ..., 2, are stored in ZR
and the imaginary parts are stored in ZI. The real roots precede the complex roots. The
real roots are ordered so that [z, < |z;41]. The complex roots are unordered except that
complex conjugate pairs of roots appear consecutively with the root having the positive
imaginary part being first.

Programming. DQTCRT calls the routines DAORD, DCSQRT, and DCBCRT. DCBCRT
calls the subroutine DQNCRT and function DCBRT. The routines were wiition by A.IL
Morris. The function DUMPAR is also used.

DCUBLE PRECISION ROOTS OF POLYNOMIALS

Given a polynomial ag + a2z -+ - + a, 2™ of degree n > 1. The subroutines DRPOLY
and DCPOLY are available for obtaining the roots zy, ..., 2, of the polynomial. DRPOLY
may be used if the coefficients a; are real, and DCPOLY is applicable if the coefficients wre
complex. These subroutines perform the calculations in double precision.

CALL DRPOLY(A,n,ZR,21 NUM,WK,DWK)

A is a double precision array countaining the coeflicients where A(j) = an-,4; for
i=1,...,n+1. ZR and ZI are double precision arrays of dimension n or larger, and NUM
is an integer variable. When DRPOLY is called, if no ervors are detected then NUM = the
number of roots that are obtained. If NUM >» 1 then the real parts of the roots are stored in
ZR(y) and the imaginary partsin ZI{j) for j = 1, ... ,NUM. The roots are unordered except
that complex conjugate pairs of roots appear consecutively with tie positive imaginary part
being first.

WK is a real array of dimension n + 1 or larger, and DWK is a double precision array
of dimension 6(n + 1) or larger. WK and DWK are work spaces for the routize.

Error Return. NUM = ~1ifn < 1or a, = 0.

Programming. DRPOLY employs the subroutines DRPLY1,FXSHFR.QUADIT,REALIT,
CALCSC, NEXTK, NEWEST, QUADSD, and QUADPL. These routines exchange infor-
mation in a lebelea common block named GLOBAL. The routines were written by M. A.
Jenkins (Queen’s University, Kingston, Ontario), and moditied by A. H. Morris. The func-
tions SPMPAR, DPMPAR, and IPMFAR are also used.

References.

(1) Jenkins, M. A.,“Zeros of a Real Polynomial,” ACM Trans. Math Software 1 (1975),
pp. 178-189.

(2) Jenkins, M. A. and Traub, J. F.,“A Threc-Stage Algorithm for Real Polynomials using
Quadratic Iterations,” SIAM J. Numerical Analysis 7 (1970), pp. 545-566.

CALL DCPOLY(AR,ALg,ZR,Z1NUM,DWK)

AR and Al are double precision arrays containing the real and imaginary parts of the

and ZI are double precision arrays of dimension n or larger, and NUM ig an integer variable.
When DCPOLY s cailed, if no errors are detected then NUM = the number of roots that
are obtained. If NUM > 1 then the real parts of the roots are stored in ZR(j} and the
imaginary parts in ZI(j} for 4 == 1, ... ,NUM.

DWK is a double precision array of dimension [0(n + 1) or larger that is a work space
for the routine.

Error Return. NUM = -1 ifn < 1or a, = 0.

Programming. DCPOLY employs the routines DCPLY1, CAUCHY, NOSHFT, FXSHFT,
VRSHFT, CALCT, NEXTH, POLYEV, CDIVID, and the functions SCALCP, ERREV.
These routines and functions were written by M.A. Jenkinsg (Queen’s University, Kingston,
Ontario) and J. F. Traub (Bell Laboratories), and modified by A. H. Morris. The functions
DPMPAR, IPMPAR, and DCPABRBS are also used.

References.

(1) Jenkins, M. A. and Traub, J. F., “Algorithm 419, Zeros of a Complex Polynomial,”
Comm. ACM 15 (1972), pp. 97-99.

(2) , “A Three-Stage Variable-Shift Iteration for Pelynomial Zeros and its Relation
to Generalized Rayleigh Iteration,” Numer. Math 14 (1970), pp. 252-263.

ACCURACY OF THE ROOCTS OF POLYNOMIALS

Let z1,...,2, be approximations for the roots of a real or complex polynomial p(z) =
ap+a12+ -+ a,z™ of degree n > 1. Then for each z;, the subrcutines RBND and CBND
obtain the radius #; of a disk D; = {z : |z — 2] < r,} centered at z; which contains a
true zero of the polynomial. The radius r; iz an upper hound on the absolute error of the
approximation z;.

For each z;, the subroutines also compute the number k, of disks D, (including the disk
D;) which overlap with D;. The value k; i3 the number of roots of p(z) that are clustered
near z;. If k; = 1 then z; approximates a simple root.

Example. In the figure
kl = 1, k2=3,k3:2,
and k4 = 2.

CALL RBND(n, 4, Z,R RERR, K IERR)
CALL CBND({, 4, Z,R RERR, K JERR)

A 18 a real array if RBND is used, and A is a complex array if CBND is used. A
contains the coefficients ag,ay, ...,a, where A({} =a;,.; (f =1,...,n+ 1), and Z is a
complex array containing the approximate roots z;,... , 2,.

IERR is an integer variable, K a real array of dimension n or larger, and K an integer
array of dimension n or larger. When RBND or CBND ig called, if no input errors are
detected then IERR is assigned the value 0, the radii ry, ..., r, are computed and stored
in R, and the values k;, ..., k, are computed and stored in K.

RERR is a real array of dimension n or larger. If z; - 0 then RERR(1) 1s set, to -1 by
the routine, and if 2, # 0 then RERR(¥) = the estimated maximum relative crror of z,.

Error Return. IKRK - 1 when n < | and IERR - 2 when a,, 0. In these cases no
computation is performed.

Programming. RBND and CBND employ the functions CPABS and SPMPAR. RBND
and CBND were written by Carl B. Bailey and modified by William R. Gavin (Sandia
Laboratories). The formats of the subroutines were modified by A H. Morris.

154

COPYING VECTORS

A copy of a vector X = (zy, ...,z,) can be made and stored in the array Y by the
following subroutines:

CALL SCOPY(n, X, kz, Y, ky)
CALL DCOPY{n, X, kz,Y, ky)
CALL CCOPY(n, X, kz,Y, ky)

The argument kz is an integer which specifies the interval between successive compo-
nents z; of the vector X. If kxz > O then it is assumed that z; is stored in X (1+ (s — 1)kz) for
i =1, ...,n. Otherwise, if kz < 0 then it is assumed that z; is stored in X (1 + (n — }|kz|).
Similarly, the argument ky specifies the spacing of the components of Y.

SCOPY is used if X and Y are real arrays, DCOPY is used if X and Y are double
precision arrays, and CCOPY is used if X and Y are complex arrays. When any of these
routines is called, if n < 0 then the routine immediately terminates. Otherwise, if n > 1
then the components z; of X are stored in Y according to the spacing specified by the ky
paramever.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., “Basic Lin-

ear Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (1979),
pp. 308-323.

161

INTERCHANGING VECTOCRS

The components of two vectors X = (zj, ...,zn) and Y = (y1, ...,yn) can be inter-
changed by the following subroutines:

CALL SSWAP(n, X, kz,Y, ky)
CALL DSWAP(n, X, kz,Y, ky)
CALL CSWAP(n, X,kz,Y, ky)

The argument kz is an integer which specifies the interval between successive compo-
nents z; of the vector X. If kxz > O then it is assumed that z; is stored in X(1+ (i — 1)kz) for
1 =1, ...,n. Otherwise, if kz < C then it is assumed that z, is stored in X (1 + (n -- 1)|kx|).
Similarly, the argument ky specifies the spacing of the components of Y.

SSWAP is used if X and Y are real arrays, DSWAP is used if X and Y are double
precision arrays, and CSWAP is used if X and Y are complex arrays. When any of these
routines is called, if n < O then the routine immediately terminates. Otherwise, if n > 1
then the components z; and y; are interchanged for 1 = 1, ... ,n. Thus, when the routine
terminates X = (y1, ...,yn) and Y = (zy, ..., 2,).

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., “Basic Lin-

ear Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (1979),
pp. 308-323.

143

PLANAR ROTATION OF VECTORS

Let X = (z1,...,z5) and ¥ = (y1, ...,yn) be vectors and ¢ and & be real numbers
such that ¢? +8* = 1. X and Y can be replaced with ¢X + s¥ and —sX + cY by the
following subroutines:

CALL SROT(n, X, kz,Y, ky,c,s)
CALL DROT(n, X, kz,Y, ky,c,9)
CALL CSROT(n, X, kz,Y, ky,c,s)

The argument kx is an integer which specifies the interval between successive compo-
nents z; of the vector X. If kz > 0 then it is assumed that z; is stored in X(1+ (¢ - 1)kz) for
i =1, ...,n. Otherwise, if kz < O then it is assumed that z, is stored in X (1 + (n —¢)|kz|).
Similarly, the argument ky specifies the spacing of the components of Y.

SROT is used if X and Y are real arrays, DROT is used if X and Y are double precision
arrays, and CSRCT is used if X and Y are complex arruys. The arguments ¢ and s are
real numbers when SROT and CSROT are used, and are double precision numbers when
DROT is used. When any of these routines is called, if n < 0 then the routine immediately
terminates. Otherwise, if n > 1 then the components x; and y; are replaced with ez, + sy,
and —sz; +cy, fore =1, ... ,n.

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. .. Lawson, R. J. Hanson, D. R. Kincaid, and F. T'. Krogh. The
routines were written by Jack Dnngarra (Argonne Natioual Laborat-ry)

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., “Basic Lin-

ear Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (1979),
pp. 308-323.

R

MODIFIED GIVENS ROTATIONS

If a; and oy are real numbers where r? = a? + a% # 0, then there is an orthogonal

matrix G = < ¢ i) such that G (Zl> = <r> In this case ¢ = a;/r and 8 = ay/r.
g 2

-8 0
The matrix G represents what is called a Givens rotation. Given A = Z: , the matrix
/
G is uniquely defined up to the sign of r.
Alternatively, assume that instead of having A we are given D = (‘g dO2> and B =

<21> where d; > C (= 1,2) and A = D'/2B. Then thzre exist matrices D = (dl D >
2

0 d,
hi1 ki

and H = (hﬂ By

) where d; and d; are positive values and

~

by
HB =
(M (0>
GDY? =6D'V?H (o = +1).

In this case, GA = GDY2 8 = ¢ DV/?(H B).

If d1b? > 4,82 then H and D can be defined by

dzbg
h | h 2 e
11 1z
bo
2 }121 - .}122 B |
(2) :
u- I hyghy
(71 (1]/“ (22 - 4'12/([,
in which case gl ub; and o sgn(c). Otherwise, it dyb? < dyb2 then i and D can be
defined by
dlbl
h hyy 1
11 dyb, 12
(’)]
({) l‘.‘!l I ,l %3 ("
u i hy ke,
o do/u J ; dy ,."/“\

in which case by by and o spu(s)

In7

Any H which satisfies (1) is called a modified Givens rotation matriz. H is frequently
preferred to & since its use may require fewer multiplications, and square roots are avoided.
For convenience, if b2 = 0 or d3 = 0 then H is defined to be the identity matrix and D= D.
Otherwise, if b; = 0 or d; = 0 then formulas (3) are appliz=d.

It is normally assumed that d; > 0. However, there are applications where it is
convenient to let d; < 0. If d; > 0 and d; < O then D and H can be defined by (2) or (3)
depending on whether |d;b?| > |d3b3| or |d1b%| < |dabZ|. If (3) are used and u # 0, then
(71 < 0, which is not compatible with the requirement d; > 0. Consequently, d2 < 0 is
permitted only when |d163| > |d2bZ|, und we note that 0 < u < 1. Since u can be near 0,

D and H may have to be rescaled to avoid overflow and underflow. Rescaling may also be
needzd when d; > 0 (in this case 1 < u < 2).

The subroutines SROTMG and DROTMG are available for obtaining D and H, and
/
the subroutines SROTM and DROTM are available for computing H \5) for any <;>

CALL SROTMG(Dy, D,, By, B2, Q)
CALL DROTMG(D,, D3, By, B2, Q)

Dy, Dg, By, By are real variables and @ a real array if SROTMG s used, and Dy, D,
Ry, B, are double precision variables and @Q a double precision array if DROTMG is used.
Q is an array of dimension 5.

It is assumed that D; = d; and B; = b; (i = 1,2) on input and that d; > 0. The
argument d; may be negative or nonnegative. If d; < O then it is assumed that |d;b%] >
|dz6%]. When SRO'I'MG or DROTMG is called, Dy and Dy are reset to dy and dy, and B,

is reset to by. B4 is not modified, and { is stored in @ as follows.

Q(1) is an indicator which specifies the elements of H that are stored in Q. 1f Q({1) 1
then all the elements are stored and

Q('ﬁ) h]] Q(4) hlz
Q(:;) /121 Q(‘r)) 1122.
Otherwise, Q(1) has one of the following values:
Q(1) 0 I defined by (2). Q(3) hyy and Q(4) Ay Q(2) and Q(H)
are not defined.
Q(1) I 11 s defined by (3). Q(2) Ay and Q(5) hay Q(3) and Q(4)
are not dehined.
Q1) 21 s the identity matrix, Q(2), .., Q(5) are not detined.

Error Return. If dy - O or [dybi] - Jdybi] when dy + 0, then D and H oare set to the zero

)

madrix and by 00 I this case, Q1] Land Qi) Ofore -2

Programming hese subrontines are part of the BUAS packape of basic Tinear alpeben
subroutines designed by € L0 Lawson, ROJ Hanson, DR Kincaad, and PO Kroph
SROTMG and DROTPNOG were modified v A H Morns,

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., “Basic Lin-
ear Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (1979),
pp. 308-323.

CALL SROTM/n, X, kz,Y, ky, Q)
CALL DROTM(n, X, kz,Y, ky, Q)

Let X = (z1,...,2,) and Y = (y1, ..., yn) be vectors, and Q be the array obtained
by SROTMG or DROTMG. If H is the modified Givens rotation matrix stored in @, then
SROTM and DROTM are available for computing (;') =H (x.) (f=1,...,n).

The argument kz is an integer which specifies the interval between succesive compo-
nents z; of the vector X. If kx > 0 then it is assumed that z; is stored in X (14 (¢ 1)kz) for
¢ =1,...,n. Otherwise, if kz < 0 then it is assumed that z; is stored in X (1 + (n — 1)|kz|).
Similarly, the argument ky specifies the spacing of the components of Y.

SROTM is used if X,Y, and @ are re:xl arrays, and DROTM is used if X,Y, and Q
are double precision arrays. When SROTM or DROTM is called, if n < 0 then the routine
immediately terminates. Otherwise, if n > 1 then the components z, and y,; are replaced
with Z; and g; fori1 =1, ..., n.

Programming. These subroutines are part of the BLAS package of basic linear algebra
subroutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh.

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T.) “Basic Lincar

Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (1979),
pp- 308 323.

1649

DOT PRODUCTS OF VECTORS

The following functions are available for computing the sums), z;y; and 3 . Z,y
where X = (21, ...,7,) and Y = [y, ..., yn) are real or complex vectors.

SDOT(n, X, kz,Y, ky)
DDOT(n, X, kz,Y, ky)
CDOTC(n, X, kz,Y, ky)
CDOTY(n, X, kz,Y, ky)

The argument kz is an integer which specilies the interval between successive compo-
nents z, of the vector X. If kz > 0 then it is assumed that z, is stored in X (14 (¥ —1)kz; for
i =1,...,n. Otherwise, if kx < O thex it is assumed that z, is stored in X(1+ (n - 1)|kz|).
Similarly, the argument ky specifies the spacing of the components of Y.

SDOT is used if X and Y are real arrays, and DDOT is used if X and Y are double
precision arrays. SDOT is 2 real function and DDOT is a double precision function. When
either of these two functions is called, if n < O then the function is assigned the value C.
Otherwise, if n > 1 then the function is assigned the value 3 x;y;.

121

CDOTC and CDOTU are used if X and Y are complex arrays. CDOTC and CDOTU
are complex functions. When either of these two functions is called, if n < 0 then the func-
tion is assigned the value 0. Otherwise, if n > 1 then CDOTC(n, X, kz,Y, ky) is assigned

”n n
the value 3 #,y, and CDOTU (n, X, kz,Y, ky) is assigned the value 3 z,y,.

i1 i1
Remark. DDOT must be declared in the celiing program to be of type DOUBLE PRECI-
SION, and CDOTC and CDOTV must be declared to be of type COMPLEX.

Programming. These functions are part of the BLAS package of basic Linear algebra sub-
routines designea by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R, J., Kincaid, . R and Krogh, F. T., “Basic Lin-
car Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (197%),
pp. 08 323

SCALING VECTORS

If a is a real or complex number and X = (zy, ...,z,) a vector, then the vector X can
be replaced with the vector aX by the fcllowing subroutines:

CALL SSCAL(n,c, X, kz)
CALL DECAL(n,a, X, k2)
CALL CSCAL(n,a, X, kz)
CALL CSSCAL(n,a, X, kz)

The argument kz is a positive integer. It is assumed that the component x; is stored
in X(1+ ({1 —1)kz) fori=1,...,n.

SSCAL is used if ¢ is a real number &nd X a real array, DSCAL is used if = is a double
precision number and X a double precision array, CSCAL is used if a is a cornplex number
and X a complex array, and CSSCAL is used if a is a real number and X a complex array.
When any of these routines is called, if n < 0 then the routine immediately terminates.
Otherwise, if n > 1 then each z, is replaced with az,. Thus when the routinc terniinates
X = (azy, ...,az,).

Programming. These routines are part of the BLAS package of basic lincar algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krozh. The
rouiines were written by Jack Dongarra (Argonne National V.aboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., “Basic [in-
ear Algebra Subprograms for FORTRAN Usage,” ACM 1'vans. Mata Scjtware 5 (1979),
pp. 308-323.

VECTOR ADDITION

If a is a real or complex number and X == (zy, ...,2z,) a vector, then any vector
Y = (y1, ---,yn) can be replaced with the vector aX + Y by the following subroutines:

CALL SAXPY(n,a, X, kz.Y, ky)
CALL DAXPY(n,a, X, kz,V, ky)
CALL CAXPY(n,a, X, kx ¥, ky)

The argument kz is an integer which specifies the interval between stuccessive compo-
nents z; of the vector X. If kx > 0 then it is assumed that z; is stored in X (14 (y - 1)kz) for
¢ = 1,...,n. Otherwise, if kz <2 0 vhen it i~ assumed that z, is stored in X(1+ (n —1}|kz|).
Similarly, the argument ky spec.fes the sp .cing of the components of the vector Y.

SAXPY invsed if 118 a real number aind X, Y are real arrays, DAXPY is used if ¢
is a double precisior namber and X, Y are double precision arrays, and CAXPY is used
if a is a complex number and X, Y are complex arrays. When any of these routines is
called, if n < 0 or a = O then the routine immediately terminates. Otherwise, if n > 1
then y,; is replaced with az; + y; for 1 = 1,...,n. Thus when the routine terminates
Y = (azy + y1, --.,0Tn + Un).

Programming. These routines are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
routines were written hy Jack Dongarra (Argonne National Laboratory).

Referenze. Lawscn, C. L., Hanson, R. J., Kii caid, . R., and Krogh, F. T., “Basic Lin-
ear Algebra Subprograms for FORTRAN Usage,” ACM Tran«. Math Software 5 (1979),
pp. 308-323.

L, NORM OF A VECTOR

The fellowing functions are available for computing the L; norm of a real vector or a
modified L, norm of a complex vector.

SASUM(n, X, kz)
DASUM(n, X kz;
SCASUM(n, X, kz)

X == (21, ... Z,) is a vector and kz a positive integer. It is assumed that z; is stored
in X(1+ ({ - 1)kz)fori=1,...,n,

SASUM 1is used if X is a real array and DASUM is used if X ig a double precision
array. SASUM is a real function and DASUM a double precision function. When either of
these functions is called, if n < 0 then the function is assigned the value 0. Otherwise, if

n

7 > 1 then the function is assigned the value) |x|.
=1
SCASUM is used if X is a complex array. SCASUM is a real function. When SCASUM
is called, if n < O then the function is assigned the value 0. Otherwise, if n > 1 then
SCASUM(n, X, kz) is assigned the value 3 [|[Re(z;)| + |Im(z.)|].
=1
Remarks.
(1) DASUM must be declared in the calling prcgram to be of type DOUBLE PRECISION.
(2} SCASUM(n, X, kz) is the norm of the complex vector X == (zy, .. ,z,) when X is
regarded as a real vector of dimension 2n. This norm is frequently preferred over the
n
standard Ly norm }_ |2,| since it takes less time to compute.
v=1
Programming. These finctions are part of the BLAS package of basic linear algebra sub-
toutines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratery).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., “Basic Lio-
car Algehra Subpregrams for FORTRAN Usage,” ACM Trans. Maih Seftware 5 (1979),
pp. 308-343.

177

L, NORM OF A VECTOR

The following functions are available for computing the Lz norm of a real or complex
vector.

SNRM2(n, X, kz)
DNRM2(n, X, kz)
SCNRM2(n, X, kz)

X = (z1,...,2n) is a vector and kz a pesitive integer. It is assumed that z, is store.
in X(14 {§ - 1)kz) fori =1,...,n.

SNRM?2 is used if X is a real array, DNRMZ is used if X is a double precision. array,
and SCNRM2 is used if X is a complex array. SNRM2 and SCNRM2 are rea! fur ctions
and DNRM? a double precision function. When any of these functions is called, if n < 0
then the function is assigned the value 0. Otherwise, if n > 1 thea the function is assigned

N 1/2
the value [Z {x;!z} .
11

Remark. The function DNRM2 must be declared in the calling program to be of type
DOUBLE PRECISION.

Programming. These functicns are part of the BLAS package of basic linear algebra sub-
routines designed by C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. The
functions were written by Charles Lawson (Jet Propulsion Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R.; and Krogh, F. T. “Basic Lin-

ear Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (1979),
pp. 308-323.

179

L. NORM OF A VECTOR

The following functions are available for finding the largest component z; of a vector
X =(zy, ...,2n).

ISAMAX(n, X, kz)
IDAMAX(n, X, kz)
ICAMAX(n, X, k)

The argument kz is a positive integer. It is assumed that the component z; is stored
in X(1+ (s —1)kz) fori=1,...,n.

ISAMAX is used if X is a real array and IDAMAX is used if X is a double precision
array. ISAMAX and IDAMAX are integer functions. When either of these functions is
called, if n < 0 then the function is assigned the value 0. Otherwise, if n > 1 then the
function is assigned the value 1 where 1 is the smallest index such that |z;| = max{|z;|: j =
1,.. ,n}.

ICAMAX is also an integer function. It is used when X is a complex array. If
n < 0 then ICAMAX(n, X, kz) is assigned the value (1. Otherwise, if n > 1 then the
function is assigned tiie value ¢ where 1 is the smallest index such that |Re(z,)| + |Im(z;)|
== max{|Re(z;)| + |Im{z;)| : 5 =1, ... ,n}.

Note. The majping X —» max{|Re(z;)| + | m(z,)| : 7 = 1, ...,n} is the Lo norm of the
complex vector X = (zy, ...,z,) when X is regarded as a real n x 2 matrix. This norm is
frequently preferred over the standard Lo, norm max{|z;| : 7 = 1, ..., n} since it takes less

time to compute.

Programming. These functions are part of the BLAS package of basic linear algebra sub-
routines desigred by C. L. Lawson, R. J. Hanson, D. E. Kincaid, and F. T. Krogh. The
functions were written by Jack Dongarra (Argonne National Laboratory).

Reference. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., “Basic Lin-

ear Algebra Subprograms for FORTRAN Usage,” ACM Trans. Math Software 5 (1979),
pp. 308-323.

181

PACKING AND UNPACKING SYMMETRIC MATRICES

An n X n symmetric matrix A = (a;;) can be represented by either its lower triangular
elements
211 212z G138
@21 Q22 4azs
G31 Gs2 dss

or its upper triangular elements. If the lower triangular elements are used, then the
packed form for the matrix is an array of dimension n(n + 1)/2 containing the elements
aj1a31a22G31@32a33 - -+ Similarly, if the upper triangular elements are used then the packed
form for the matrix is an array containing a4ji1a@12 ' @1n@22223 - Gzpn - - Currently the
lower triangular elements are used for packing symmetric matrices. The following
subroutines are available for packing and unpacking real symmetric matrices.

CALL MCVFS(A, ka,n, B)
CALL DMCVFS(A4, ka,n, B)

A is an n X n symmetric matrix and B an array whose dimension is equal to or greater
than n{n + 1}/2. The routines store the packed form of A4 in B. MCVFS is used if A and
B are real arrays and DMCVFS is used if A and B are double precision arrays. The input
argument ka has the following value:

ka = the number of rows in the dimension statement for A in the calling program
It is assumned that ka > n.

Note. A and B may begin in the same location.
Programmer. A. H. Morris.

CALL MCVSF(A, ka,n, B)
CALL DMCVSF(A, ka,n, B)

B is an array containing the elements of a packed n x n symmetric matrix and A is an
array of dimensicn ka X n where ka > n. The routines unpack I and store the results in
A. MCVSF is used if A and I3 are real arrays and DMCVSF is used if A and I are double
precision arrays.

Note. A and F may begin ir the same location.

Programmer. A. H. Morris.

CONVERSION OF REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The subroutines MCVRD and MCVDR are available for converting real matrices to
and from double precision form.

CALL MCVRD(m,n, A, ka, B, kb)

A is a real m x n matrix and B a double precision 2-dimensional array. MCVRD stores
the matrix in double precision form in the array B. The input argumerts ka and kb have
the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in thL: czlling program
It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

CALL MCVDR(m,n, A, ka, B, kb)

A is a double precision m X n matrix and B a real 2-dimensional array. MCVDR stores
the matrix in single precision form in the array B. The input arguments ka and kb have
the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling p1ogram
It is assurned that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

STORAGE OF REAL MATRICES IN THE COMPLEX MATRIX FORMAT

The following subroutine is available for storing a real matrix A in the complex matrix
format.

CALL MCVRC(m,n, A, ka, B, kb)

A is & real m X n matrix and B a complex 2-dimensional array. MCVRC stores the
matrix in complex form in the array B. The input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program

kb == the number of rows in the dimension statement for B in the calling prograni
it is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

187

THE REAL AND IMAGINARY PARTS OF A COMPLEX MATRIX

If A= (ei;) is a complex matrix then let Re(A) = (Re(a,;)) and Im(A) = (Imn(a;;))
denote the real and imaginary parts of A. The foilowing subroutines are available for
obtaining Re(A) and Im(A4).

CALL CMREAL(m, n, A, ka, B, kb)

A is a complex m X n matrix and B a real 2-dimensional array. CMREAL obtains
Re(A) and stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

CALL CMIMAG(m, n, A, ka, B, kb)

A is a complex m X n matrix and B a real 2-dimensional array. CMIMAG obtains
Im(A) and stores it in B. The input arguments ka and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka > m and kb > m, and that B contains at least n columns.

Programmer. A. H. Morris.

COPYING MATRICES
'The following subroutines are available for copying matrices.

CALL MCOPY (m, 1, A, ka, B, kb)

A is a real m X n matrix and B a real 2-dimensional array. MCOPY makes a copy of
the matrix A and stores it in B, The input arguments ka and kb have the following values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the nurmnber of rows in the dimension statement for B in the calling program

It is assutned that ka > m and k& > m, and that B contains at least n columns.

Programmer. A. H. Morris.

CALL SMCOPY(n, A, B)

A is a real packed n X n symmetric matrix and B a real array whose dimension is equal
to or greater than n(n + 1)/2. SMCOPY makes a copy of the packed symmetric matrix A
and stores it in B.

Programmer. A. H. Morris.

CALL DMCOPY(m,n, 4, ka, B, kb)

A is a double precision m x n matrix and B a double precision 2-dimensional array.
DMCOPY makes a copy of the matrix A and stores it in B. The input arguments ka and
kb have the following values:

ka = the number of rows in the dimension statemient for A in the calling program

kb = the number of rows in the dimensicn statement for B in the calling prograin
It is assumed that ka > m and kb > s, and that £ contains at least n columus.

Programmer. A. H. Morris.

CALL CMCOPY(m,n, A, ka, B, kb)

A is a complex i x n matrix and B a complex 2-dimensional array. CMCOPY mokes a
copy of the matrix A and stores it in B. The iuput arguments ke and kb have the following
values:

ka == the number of rows in the dimeusion statement for A in the calling program

kb — the number of rows in the dimension statement for B in the calliing program
It 1s assurned that ka > m and kb > m, and that B contains «t least n columns.

Progranmuner. A. H. Morris.

191

COMPUTATION OF THE CONJUGATE OF A COMPLEX MATRIX
If A= (a;)is a complex matrix then let A = (@,;) denote the conjugate of A. The
following subroutine is available for computing the conjugate matrix A:
CALL CMCONJ(m,n, A, ka, B, kb)

A is a complex m X n matrix and B a complex 2-dimensional array. CMCONJ computes
A and stores the results in B. The input arguments ka and kb have the following values:
ka = the number of rews in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka > m and kb > m, and that B ~ontains at least n columns.

Remark. A and B may reference the same storage area when ka = kb.

Programmer. A. H. Morris.

193

TRANSPOSING MATRICES

The subroutines TPOSE, DTPOSE, € [POSE and TIP, DTIP, CTIP are available for
transposing a matrix A. TPOSE, DTPOSE, and CTPOSE are used if the results are to be
stored in a separate storage area B. TIF, DTIP, and CTIP are used if the results are to be
stored in A (i.e., if the transposition is to be done in place).

CALL TPOSE(m,n, A, ka, B, kb)
CALL DTPOSE(m,n, A, ka, B, kb)
CALL CTPOSE(m,n, 4, ka, B, kb)

TPOSE is called if A is a real matrix and B8 a real array, DTPOSE is called if A is a
double precision matrix and B a double precision array, and CTPOSE is called if 4 is a
complex matrix and B a complex array.

A is a matrix having m rows and n columns, and B a 2-dimensional arrary. The routine
transposes A and stores the results in B. The input arguments ka and kb have the following
values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows ir: the dimension statement for B in the calling program
It is assumed that ka > m and kb > n, and that 3 contains at least n columns.

Programmer. A. H. Morris.

CALL TIP(A4,m,n, MOVE, k, MDIM)
CALL DTIP(A, m,n, MOVE, k, MDIM)
CALL CTIP(A, m,n,MOVE, k, MDIM)

TIP is called if A is a real array, DTIP is called if A i3 a double precision array, and
CTIP is called if A is a complex array.

A is an array of dimensi»>n mn which contains an m X n matrix to be transposed. The
routine transposes the matrix and steres the results in A. If m == 5 then the arguments

MOVE, k, MDIM are ignored.

If m # n then &k may be any integer. If £ < 0 then MOVE is ignored. Otherwise, if
k > 1 then MOVE i3 assumed to be an array of dimeusion k. MOVE is a storage area for
saving information that inay belp speed up the transposition process. If no mformation is
saved then TIP, D'TIP, and CTIP may run 2 10 times slower than TPOSE, DTPOSE, and
C'TPOSE. However, the use of & storage area may or may not actually speed up the trans-
position process. This depends entirely on the values of vn and n. MDBIM is a variable that
13 set by the rovtine. After the routine terminates, MDIM will be the estunated optimum
setting for &k for the current values of m and n.

Programming. 'The routines TP, D'TIP, and C'T1P employ the snbroutine INFOTR.
The routines were written by Norman Brenner (Depto of Farth and Planetary Sciences,

Massachusetis Institute of Techinology), and maedified by A H. Morns.

195

Reference. Brenner, Norman, “Algorithm 467. Matrix Transposition in Place,” Comm.
ACM 16 (1973), pp. 692-694.

1OG

COMPUTING ADJOINTS OF COMPLEX MATRICES

If A = (a,;) then let A* = (a;;) denote the adjcint of A. The following subroutines are
available for computing A*.

CALL CMADJ(m,n, A, ka, B, kb)

A is a complex m X n matrix and B a complex 2-dimensional array. CMADJ computces
A* and stores the results in B. The input arguments ka and kb have the following values:
ke = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
It is assumed that ka > m and kb > n, and that B contains at least n columnns.

Remark. CMADJ combines the following operations:
CALL CTPOSE(m,n, A, ka, B, kh)
CALL CMCONJ(n,m, B, kb, B, kb)

It is assumed that A and B are diiferent storage areas.

Programmer. A, H. Morris.
CALL CTRANS(ka,n, A)

A is a complex array of diraension ka xn which contains an n x n matrix. CTRANS
computes the adjoint of the matrix and stores the results in A. It is assumed that ka > n.

Programmer. George J. Davis (Georgia State University)

197

MATRIX ADDITION

The matrix sum C = A + B can be computed by the following subrcutines:
CALL MADD(ra,n, A, ka, B, kb, C, kc)

A and B are real m X n matrices and C a real 2-dimensional array. MADD computes
A+ B and stores the resulis in C. The input arguinents ke, kb, k¢ have the following values:
ke = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
ke = the numb=r of rows in the dimension statement for C in the calling prograin
It is assumed that ka > m, kb > m, k¢ > m, and that C contains at least n columns.

The array C may begin in the same location as A or B. If C begins in the samne lozation
as A theu it is assumed that kc = ka. In this case, the result C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assumed thet kc == kb,
Otherwise, tf C dces not begin in the same location as A or B, then it 1s assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on kc (other than the customary restriction that kc > m).

Programmer. A. H. Morris.
CALL SMADD(n, A, B,C)

A and B are real packed nx n symmetric matrices and C is a real array whose dimension
is equal to or greater than n(n+ 1)/2. SMADD computes A+ B, which is also a symmetric
matrix, and stores the results in packed form in C.

The array C may begin in the same location as A or B. If C begins in the same location
as A then the result C will overwrite the input data A. Similarly, B will be overwritten if
C begins in ithe same location as B. Otherwise, if C' does not begin in the same location
as A or B, then it is assumed that the storage area for C does not overlap with the storage
areas for A a1 ' B.

Programmer. A. 1. Morris.
CALL DMADD(m,n, A, ka, B, kb, C, kc)

A and B are double precicion m x n matrices and C a double precision 2-dimensional
array. DMADD computes 2t + B and stores the results in €. The argumenis ka, kb, ke
have the following values:

ka - the nimber of rows in the dimension statement for 4 in the calling program

kb the numiber of rows m the dunension statement for 4 in the calling program

ke the number of rows in the dimension statement for € the calling program

[t is assumned that ka o kb - iy ke o rn) and that O contains at least o columny

199

R

The array C may begin in the same location as A or B. If C begins in the same location
as A then it is assuraed that kc = ka. In this case, the result C will overwyite the input
data A. Sunilarly, if © beging in the same location as B then it is assumed that kc = k(.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage wrea for C does nat overlap with the storage areas fur A and B. In this case there
is no restriction on ke (other than the customary restriction that k¢ > m).

Programmer. A. H. Morris.
CALL CMADD(m,n, A, ka, B, kb,C, kc)

A aid B are compler m X n matrices and C a complex 2-dimensional array. CMADD
computes A 4+ B and stores the results in €', The arguments ka, kb, kc have the following
vlaes:

%a = the nurnber of rows in the diinension statement for A in the calling program

ki = the number of rows in the dimension statement for B in the calling program

ke = the number of rows in the dimension statement for C in the calling program
it 15 assumed that ka > m, kb > m, ke > m, and that C contains at least n columns.

The array C may begin in the sarne location as A or B. If C begins in the same location
as A chen it ‘¢ assumed that kc = ka. In this case, the result C will overwrite the input
data 4 DBunilarly, If C begins in the same location as B then it is assumed that kc = kb.
Otherwise, if ¢ does not begin in the same location as A or B, then it is assumed that the
slorage area for C does not overlap with the storage areas for A and B. In this case there
is no restriction on ke {other than the customary restriction that kc > m).

Prograt.. ser. A. H. Morris.

200

MATRIX SUBTRACTION

The matrix difference C = A — B can be ~omputed by the following subroutines:
CALL MSUBT(m,n, A, ke, B, ks, C kc)

A and B are real m . n matrices and U a real Z-dirnensional i.ccay. MSUBT cormoutes
A - B and stores the results in C. 'Che mput arguments &, kb, k¢ have the following vaues:
ka = the number . { rows in the dimensio. statement 15r A in the calling program
kb == the number of rows in the dimension statement tur B in the calling prograrm
kc = the number of rows in the dimeusion statement for € in the calling program
It is assumed that ka > n¢, kb > m, ke > m, and that ' contains at least n columns.

The array C may begin i1 the same location as A or B. If C begins in the same location
as A then it is assumed that k¢ = k. In this case, the resuit C will overwrite the input
data A. Similarly, if C begins in the same location as B then it is assurned vhat ke = kb.
Otherwise, if C does not begin in the same location as A or B, then it is assumed that the
storage area for ' does not overlap with the storage areas for A and B. In this case there
i1 no restriction on ke (other than the customary restriction that ke > mi).

Programmer. A. H. Morris.
CALL SMSUBT(n, 4, B,C)

A and # are res! packed nx n syinmetric matrices and € is a real array whase aimension
is equal to or greater than n(n+1)/2. SMSUBT computes A — 3, which is a0 a symmetric
matrix, and stores the results in packed form i C.

The array C may tegin in the zame location as Aor B, If 7 beglis 1n che same location
as A then the result C will overwrite the input data A. Similarly, B will be overwrittern if
C begins in the same location ag B. Otherwize, if C dces nos bogin in the same location
as A or B, then it is assumed that the storage area for £ does not overlap with the storage
areas for 4 and B.

Programmer. A. 1. Morris.
CALL OMSUBT(m,n, A, ka, B, kb, C, kc)

A and B are couble precision m X nomatices and O a deuule precision 2-dimersional
array. DMSUBT vompuies A -~ B and stores the results 10 O The arguents ko, kb, ke
have the Dollowing valuex:

ka = the numbor o rows 1n the dinension sistement for A w the calling program

kb = the nomber of row: 10 the dunension statzment for [in the caliing program

kc = the number of row iu the dirnension statenene for C i the calling program
Tt is assumed that fa >) Lo 0w, be 2o and that C consainsg ab least ncolumnns,

yatl|

The array C may begin in the same location as A or B. I begics in the samne Iocation
as A then it is assumed that ke = ka. In this case, the result C will overwrite th~ input
data A. Similarly, if €' beging in the same location as B then it is assurned that ke = kb.
Otherwise, if C does not, begin in the same location as A or A, then it is assumed that the
storage area for C dees not overlap with the storage areas for 4 and B. In this case there

~.

is no restriction on ke (other than the customary restriction that k¢ > m).

Programmer. A. . Moxris.
CALL CMSUBT(m,n, A, ka, B, kb, C, kc)

A and B are complex rn X nn matrices and € a compiex 2-dimensional array. CMSUBT
compuies A — B and stores the results in C. The input arguments ka, kb, k¢ have the
following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rcws in the dimension statement for B in the calling program

ke == the number of rows in the dimension statement for C in the calling program
It is assumned that ka > m, kb > m, kc > m, and that C has at least n columns.

The array C may begin in the same location as A or B. If C begins in the same iocation
as A then 1t is assumed that k¢ = ka. In this case, the result C will overwrite the input
data A. Sirnilarly, if € beging in the same location as B then it is assumed that kc = kb.
Otherwise, if C' does net begin in the same location as A or B, then it is assumed that the
storage area for C does not overlap with the storage areas for A and B. In this case there
i3 no restriction on kc (other than the customary restriction that ke > m).

Progranuwner. A. H. Morris.

202

MATRIX MULTIPLICATION

The matrix product C == AB may be computed by the subroutines MTMS, DMTMS,
CMTMS or MPROD, DMPROD, CMPROD. MTMS, DMTMS, and CMTMS can be used
if the storage area for C does not overlap with the storage areas for A and 8. Otherwise,
if the components of C are to be stored in the storage area for A or B, then MPROD,
DMPROD, or CMPROD must be used.

CALL MTMS{m, n, £, A, ka, B, kb, C, kc)
CALL DMTMS(m, 1, ¢, A, ka, B, kb, C, kc)
CALL CMTMS(m,n,t, A, ka, B, kb,C, kc)

MTMS is used if A and B are real matrices and C a real array, DMTMS is used if 4
awnd B are double precision raatrices and € a double precisicn array, and CMTMS is used
if 4 and B are combplex matrices and C' a complex array.

A 18 a matrix having m rows and n columns, E' & matrix having n rows and £ columns,
and C a 2-dimensional array. The routine computes the product AB and stores the resuits
in (/. The input arguments ka, kb, kc have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program

k¢ = the number of rows in the dimension statement for C in the calling program
It is assumea that ka > m, kb > n, kc > m, and t.hat C contains at least £ columns.

Remark. It is assumed that the siorage area for ' g separate from the storage areas for A

and B.
Programmer. A. H. Morris.

CALL MPROD(m,n, ¢, A, ka, B, kb, C, ke, WK)
CALL DMPROD(m,n, £, A, ka, B, k%, C, ke, WK)
CALL CMPROD(m, n,¢, A, ka, B, kb, C, ke, WK)

MPROD is used if A and B are real matrices arnd C and WK are real arrays, DMPROD
is used if A and # are double precision matrices and C and WK are double precision arrays,
and CMPROD is used if A and B are complex matrices and C and WK are complex arrays.

A is a matrix having m rows and n columns, B a matrix having n rows and £ columnns,
and C a 2-dimensional array. The rouiine computes the product AB and stores the results
in €. The input arguments ka, kb, kc have the following values:

ka == the number of rows in the dimension statement for A in the calling program

kb == the nember of rows in the dimension statement for # in the calling program

ke o the number of rows iu the dimension statement for (7 in the calling program
It is assumed that ka > m, kb > n, ke 2> my, and that € contains al least € columns.

203

WK is an array that serves as a temporary storage area. The matrix C may begin in
the same location as A or B. If C begins in the same location as A, then it is assumed
that k¢ = ka and that the dimension of WX is equal to or greater than £. In this case. the
result C will overwrite the input data A. Similarly, if C begins in the same location as B
then it is assumed that ke == kb and that the dimension of WK is equal to or greater than
m. Otherwise, if C' does not begin in the same location as A or B, then it is assumed that
the storage area for C' does not overlap with the storage areas for A and B. In this case,
the array WK is not referenced.

Remark. If C begins in the same location as A or B, then it is assumed that the storage
areas for A and B are distinct storage areas.

Programming. MPROD employs the subroutines RLOC and YCHG, DMPROD employs
the subroutines DLOC and DYCHG, and CMPRCD employs the subroutines CLOC and
CYCHG. The routines were written by A. H. Morris.

204

PRODUCT OF A PACKED SYMMETRIC MATRIX AND A VECTOR

Let A denote a packed syrmmetric matrix of order n and z a column vector of dimension
n where n > 1. Then the following subroutines are available for computing the product Az.

CALL SVPRD(A,n,z,y)
CALL DSVPRD(A,n,z,y)

The argument y is an array of dimension n. SVPRD is called when A,z,y are real
arrays and DSVPRD is called when A,z,y are double precision arrays. When either of
these routines is called, Az is computed and stored in y.

Programmer. A. H. Morris.

TRANSPGSE MATRIX PRODUCTS

If A* denotes the transpose of A, then the matrix product €' = A*B can be computed
by the following subroutine:

CALL TMPROD(m,n, 2, A, ka, B, kb, C, kc)

-A 18 a real matrix having m rows and n columns, B a real matrix having m rows and £
columus, and C a real 2-dimensional array. TMPROD computes A*B and stores the results
in €. The input arguments ka, kb, kc have the following values:

ka == the number of rows in the dimension statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program

kc = the number of rows in the dimension statement for C in the calling program
Here it is assumed that ka > m, kb > m, k¢ > n, and that C contaius at least £ columns.
Also it is assumed that the storage area for C does not overlap with the storage areas for
A and B.

Note. All inner products) akbg,; arc computed in double precision and the results stored
k
in single precision.

Programmer. A. H. Morris.

207

SYMMETRIC MATRIX PRODUCTS

If A* denotes the transpose of A, then the matrix product A*A can be computed and
its packed form stored in the array B by the following subroutine:

CALL SMPROD(m,n, A, ka, B)

A is a real m x n matrix and B a real array whose dimension 13 equal to or greater
than n(n + 1)/2. SMPROD computes A*A and stores its packed form in B. The input
argument ka has the following value:

ka = the number of rows in the dimension statement for A in the cailing program
It is assumed that ka > m.

Note. All inner products), ax:ax; are computed in double precision and the results stored
k

in single precision.

Programmer. A. H. Morris.

KRONECKER PRODUCT OF MATRICES

If Aisan m x n matrix and B a k x £ matrix, then the Kronecker product A @ 8 is

defined by
anfd - alnB\

A® B = : : .
am1 B --- a,,mB}

From thiz definition we obiain:

(1) (Trauspose Equality) (A ® B)! = A* @ B.

(2) (A® B)® F = AQ (BQ® E) for any matrix .

(3) (A® B)(C® D) = (AC)®(BD) ii C is a matrix having n rows and D a inatrix having
£ rows.

If A and B are complex aquare matrices of urders m and k respectivealy, then from the Jordan

canonical forms of A and B the determinant equality det (A® B) = (det 4)* (det B)™ can

be verified. Moreover, if A and B are nonsingular then (A® B)™' = A~' @ B! from ().

The following subroutines are availabie for computing C = A ® B.

CALi KPRCD(A, ka,m,n, B, kb, k,?,C, kc)
CALL DXPROD(A, ka,m, n, B, kb, k. £, C, kc)
CALL CKPROUG(A, ka,m, n, B, kb, &, €,C, k)

It is assumed that A is an m X n matrix, B a k x £ matrix, and C' a 2-dimensional
array. KPROD is used if A, B,C are real arrays, DKPROD is used if 4, B,C are double
precision arrays, and CKPROD is used if A, B,C are complex arrays. When the routine is
called, A ® B is computed and stcred in C.

The arguments ka, kb, and ke havz the following values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rcws in the dimensioin statement for B in the calling program
kc = the number of rows in the dimension statement for C in the calling program
It is assumed that ka > m, kb > k, kc > mk, and that C contaius at least nf columus.

Remark. It is assumed that the array C does not overlap with 4 or B.

Programmer. A. H. Morris.

RANK OF A REAL MATRIX

The following subroutines are available for obtaining lower and upper bounds for the
rank of real matrix.

CALL RNK(A, ka,m,n,RERR,AERR,k, ko, WK, IWK)
CALL DRNK(A, ka, m,n, RERR,AERR, k, ko, WK IWK)

A and WK are real arrays and RERR and AERR real values if RNK is used. A and
WK are double precision arrays and RERR and AERR double precision values if DRNK is
used.

A is an m X n matrix where m,n > 1, and ka is the number of rows in the dimension
statement for A in the calling prograrn. It is required that ke > m. A is destroyed by the
routine.

RERR is an argument which specifies that relative accuracy of the data in A. If it
is estimaicd that the elements in A are accurate to u significant digits then one may set
RERR == 107#. It is required that RERR > 0. If RERR = 0 then it is assumed that the
elements in A are accurate tc machine precision.

AERR is an argument which specifies the maximum absolute uncertainty of the data
ir A. For example, if it is estimated that the elements a;; of A have the relative accuracy
RERR except when [a;;] < 1073, ther one may set AERR = 1073°. It is required that
AERR > 0.

The arguments k and kg are variables, When RNK or DRNK is called, the rank of A
is bounded from above and below using the tolerances REKR and AERR. The variable &
is set to the upper bound and k; to the lower bound.

WK is an array of dimension 5 - min{m, n} or larger, and IWK an array of dimension
m + n or larger. WK and IWK are work spaces for the routines.

Remarks. Normally kg =: &, 1a which case k is the rank of A. However, if kg 3¢ & then it
is recommended that the least syuares routine HFTI2 or DHF T2 be used for obtaining the
most appropriate value for the rank. When HFTI2 or DHF7 12 is used, B may be seiected
to bc the m x m identity matriz, aud the size of the elements of the solution matrix X
shouid be constdered (in additicn to the values of the residual norms). Frequently, the iower
bound kg will be found to be the most appropriate value for the rank.

Programming. RNK employs the subrcatines UTILS, UTTUS, ISWARP, SSWAP, SAXPY,
SSCAL ad functions SDOT, SNRM 2, [SAMAX, SPMPAR, IPMPAR. DRNK employs the
subroutines DULILS, DUTiUS, ISWAF, DEWAP, DAXPY, DSCAL and functions DDOT,
DNRM?, IDAMAX, DPMPAR, IPMPAR. KNK and DRNK were written by AL H. Morris,
and L'ILS, UIWUS, DUILLLS, 'UL1LS, were written by T. Manteufle! (Los Alamos).

Reference. Manteuffel, U, An Interval Analysis Approach to Rank Determination

213

in Linear Least Squares Problems, Keport SAND 80-0635, Sandia Laboratories, Albu-
querque, New Mexico, 1980.

INVERTING GENERAL REAL MATRICES AND SOLVING
GENERAL SYSTEMS OF REAL LINEAR EQUATIONS

The subroutines CROUT, KROUT, MSLV, MSLV1, NPIVOT, DMSLV, and DMSLV1
are available for inverting real matrices A and solving systems of real linear equations
AX = B. CROUT, KROUT, MSLV, MSLV1, and NPIVOT solve single precision problems,
and DMSLV and DMSLV1 solve double precision problems.

All the routines except NPIVOT are general-purpose, employing partial pivot Gauss
elimination. NPIVOT can only occasionally be used since it uses Gauss-Jordan elimination
with no pivot search. Normally CROUT and KROUT produce the same results, and M3LV
and MSLV1 produce the same resu.;s. Since many of the calculations are performed in
double precision in CROUT and KR'DUT, these subroutines will be slower than MSLV and
MSLV1, but they may be more accirate.

CALL CROUT(MO, n,n, A, ka, B, kb, D, INDEX, TEMP)

A is a real matrix of order n where n > 1. If MO = 0 then the inverse of A is computed
and stored in A. If MO 3 0 then the 1verse is not computed.

The argument rn is ar integer. If m > 1 then B is a real matrix having n rows and m
columns. In this case the inatrix equ ition AX = B is solved and the solution X is stored
in B. If mm < 0 then there «re no eguations to be solved. In this case the argument B is
ignored.

The argument ka is the .uriber of rows in the dimension statement for A n the
calling program, and kb t! : nu aber of rows in the dimension statement for B in the calling
program. if m < 0 then the argument kb is ignored.

D is a real variable. When CROUT is called, D is assigned the value det(A) where
det(A) is the determinant of A If D is found to have the value 0 then the routine immnedi-

ately terminates.

INDEX 18 an array of dimension n - 1 or larger that 13 used by the routine for keepiug
track of the row interchanges that are made. If MO # 0 then INDEX 18 ignored.

TEMP is a real .rray of dimension n or larger that 1s a work space for the routine. If
MO / 0 then TEMP viignored.

Remarks.

(1} KROUT should be used instead of CROUT when the determinant 1) is not needed.
Underflow or overflow 1o the caleulation of 1) may canse CROUT to termnate premae
turely.

(2} The mateix A s destroyed.

210

Algorithm. The Crout procedure is used. All inner products are computed in double
precision and the results returued in singie precision. Partial pivoting is performed.

Programming. CROUT calls the subroutine CROU'T0. These routines were written by
A. H. Morris.

CALL KROUT(MO,n,m, A, ka, B, kb IERR,INDEX, TEMP)

A is a real matrix of order n where n > 1. If MO = 0 then the inverse of A is computed
and stored in A. If MO # O then the inverae is not computed.

The argument m is an integer. If m > 1 then B is a real matrix having n rows and m
columns. In this case the matrix equation AX = B is sclved and the solution X is stored
in B. If m < 0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the nurnber of rows in the dimension statement for A in the
calling program, and kb the number of rows in the dimension statement for B in the calling
program. If m < 0 then the argument kb is ignored.

INDEX is an array of dimension n - 1 or larger that is used by the routine for keeping
track of the row interchanges that are made. If MO # 0 then INDEX is ignored.

TEMP is a real array of dimension n or larger that is a work space for the routine. If
MO # 0 then TEMP is ignored.

Error Return. IERR is a variable that reports the status of the results. When the routine
terminates IKRR has one of the following values:

IERR = 0 The requested results were obtained.

IERR == -1 Either n, ka, or kb i# incorrect. In this case, A and B have not
been modified.

IERR - &k The k' column of A has been reduced to a column containing

only zeros.

When an error is detected, the routine immediately terminates.
Remark. The matrix A is destroyed.

Algorithm. The CROUT procedure is used. All inner products are computed in double
precision and the results returned in single precision. Partial pivoting s performed.

Programming. KROU'T calls the subroutine KROUTO. These routines were written by
A H Morns,

CALL NPIVOT(n,m_ A ke, 13 kb, D IERR)

As a real matrix of order i where > I When NPIVO'T 15 called the miverse of A s

computed and stored i A

The argument m is an integer. If m > 1 then B is a real matrix having n rows and m
columns. In this case the matrix equation AX == 1} ia solved and the solution X is stored
in B. If m <0 then there are no equations to be solved. In this case the argument B is
ignored.

The argument ka is the number of rows in the dimension statement for A in the
calling program, and kb the number of rows in the dimension statement for B in the calling
program. If m < 0 then kb is ignored.

D) i3 a real variable. On input D must be assigned a value by the user. If the input
value is 7, then when NPIVOT terminates D = rd where d i3 the determinant of A.

Error Return 1ERR is an integer variable. If inversion is successful then IERR is assigned
the value 0. Otherwise, IERR = 1 if NFIVOT cannot invert the matrix.

Algorithm. The Gauss-Jordau procedure is used. However, no pivot searching is done.
NPIVOT terminates (with IERR set to 1) whenever a zero pivot element is encountered.

Remarks. Since pivot search is frequently needed to invert a matrix, and since pivet search
is normally required to obtain accurate resuits, NPIVOT should not be used except on
ti:o8e occasions when pivol search 18 known to be super flsious.

Programmer. A. H. Morris.

CALL MSLV(MO, n, m, A, ka, B, kb, D,RCOND, IERR IWK, WK)
CALL DMSLV(MO, n,m, A, ke, B, kb, D, RCOND,IERR, IWK ,WK)

A 18 a matrix of order n where n > 1. If MO := 0 then the inverse of A is computed
and stored in A. If MO # 0 then the inverse is not computed.

The argument v is an integer. If m > 1 then B is a wmatrix having n rows and m
colurnng. In this case the matrix equation AX = B is solved and the solution X is stored
m B. If m < 0 then there are no equations to be solved. In this case the argument B is
iguored.

The argument ka is the number of rows in the dimension statement for A in the
calilng program, and kb the number of rows in the dimension statement for /3 in the calling
program. If y < 0 then the argument ké 1s ignored.

D is an array of dimension 2. When either routine 1s called the determinant det(A) of
the matrix A s computed. If det{A4) -~ d- 10*¥ where 1 < |d| < 10 and k an integer, then d
18 stored in (1) and the exponent k is stored in Hoating point form in £)(2).

RCOND 15 a variable. When erther routine is called, the rov: e makes an ectimate ¢
of rhe condition number of the matnix A {relative to the Ly norm). RCOND 3 assipned

vhe value 1/¢.
IWK 1+ an array of dimenusion noor larger that s used by the routines for ke ping track

217

of the row interchariges that are made. WK is an array of dimension n or larger that ie
used as & work space,

Remarks.

(1) If MSLV is called then it is assumed that A and B are real matrices,) and WK real
arrays, and RCOND a real variable. Otherwise, if DMSLV is called then it is assumed
that A and B are double precision matrices, D and WK double precision arrays, and
RCOND a double nrecision variable.

(2) RCOND satisfies 0 < RCOND < 1. If RCOND = 10F then one can expect the results
to have approximately k& fewer significant digits of accuracy than the elements of A.
For example, if MSLV is used to invert a matrix in the 14 digit CDC single preacision
arithmetic and RCOND = .4E-3, then the computed coeflicients of the inverse matrix
should normally be accurate to about 11 digits. In general, RCOND characterizes how
well or poorly conditioned the problem is. If RCOND = 1 then one should expect the
results to be almost as accurate as the original data A. How~ver, if RCOND = 0 then
one should expect the results to be nonsense.

(3) The matrix A is destroyed.

Error Return. IERR is an integer variable. If RCOND is sufficiently large so that 1 +
RCOND > 1, then IERR is sei to 0 and the problem is solved. Otherwise, if 1+-RCOND = 1
then IERR is set to 1 and the routine terminates. In this case, A will have heen destroyed
but B will not have been modified. Also the deterininant will not have been computed.

Algorithm. The partial pivot Gauss elininaticn procedure is used.

Programming. MSLV and DMSLV are driver routines for the LINPACK subroutines
SGECO, SGEFA, SGESL, SGEDI and DGECO, DGEFA, DGESL, DGEDI. The subrou-
tines were coded by Cleve Moler (University of New Mexico). The subroutines employ the
vector routines SSWAP, SDOT, SSCAL, SAXPY, SASUM, iISAMAX and DSWAP, DDOT,
DSCAL, DAXPY, DASUM, IDAMAX.

Refeiences.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart. G. W., LINFACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphis, 1979.

(2) Cline, A. K., Moler, C. B., Stewari, G. W_, and Wilkinson, J. H., “An Estimate for the
Condition Number of & Matrix,” SIAM Journal of Numerical Analysis 16 (1979),
pp. 3588--375.

CALL MSLV1(MO,n,m, A, ka, B, kb ILRR,IWK, WK)
CALL DMSLV1(MO,n,n, A, ka, B, kb IERR,IWK, WK)

Ais a matrix of order n where n > 1. If MO = 0 then the inverse of A 15 computed
and stored in A, If MO # 0 then the inverse Is not computed.

The argument i is an integer. If vn > | then B 13 a matrix having n rows and
ricolumns. In this case the matrnix equation AX 13 is solved and the solution X
1s stored in B If rn <0 0 then there are no equaticns to be solved. In this case the

argument 13 is ignored.

The argument ka is the number of rows in the dimensicn statement for A in the
calling prograra, and kb the number of rows in the dimension statement for B in the
calling program. If m < 0 then the argument kb is ignored.

IWK is an array of dimension r or larger that is used by the routines for keeping
track of the row interchanges that are made. WK is an array of dunension n or larger
that is used for a work space. If MO # 0 then WK is ignored.

Femarks.

(1) If MSLV1 is called then it is assumed that A and B are real matrices and WK &
real array. Otherwise, if DMSLV1 is called then it i3 assumed that A and B are
double precision matrices and WK a doubie precision array.

(2) The matrix A is destroyed.

Error Return. IERR is a variable that reports the status of the results. When the routine
terrninates IERR has one of the following values:
IERR = 0 The requested results were obtained.
IERR = -1 Either n, ka, or kb i3 incorrect. In this case, A and B have not been
modified.
IERR = k The k*" column of A has been reduced to a column containing only
Zeros,

Algorithm. The partial pivot Gauss elimnination procedure is used.

Programming. MSLV1 and DMSLV | are driver routines for the LINPACK subroutines SGEFA,
SGESL, SGEDI and DGEFA, DGESL, DGEDI. The subroutines vere coded by Cleve Moler
(University of New Mexico). The subroutines employ the vector routines SSWAP, SDOT, SS-
CAL, SAXPY, SASUM, ISAMAX and DSWAP, DDOT, DSCAL, DAXPY, DASUM, IDAMAX.

References.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK Users’ Guide,
Society for Industrial and Applied Matheiatics, Philadelphia, 1979.

(2) Cline, A. K., Moler, C. B., Stewart, G W., and Wilkinson, J. H., “An Estimate for
the Condition Number of a Matrix,” SIAM Journal of Numerical A: alysis 16 (1979),
pp. 368-375.

SOLUTION OF REAL EQUATIONS WITH ITERATIVE IMPROVEMENT

Given a real n X n matrix A and column vector b. The following siubroutine is available
for selving the equation Az = h. terative iniprovement s performed to cerapute the soluiion
x to machine accuracy.

CALL SLVMP(MQ 0, A, ko, b, X. WK, IWK IND]

MO 1s an input argument which specifizs if SLVMP is being called for ihe iirst time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional real array of dimension ka X n containing the ratrix A, b a real
vector of dimension 1, and X a real array of dimension n. When SLVMF (s called, A4z — ¥
is solved and the solution stored in X. A and b are not modified by the routine.

WK is a real array of dimension n+n or larger, and IWK an integer arruy of dirmension
n or larger. These arrays are for internal use by the routine. On un ipitial call to STV MP,
« + LU decomposition is obtained for 4 and stored in WK and IWK. Then the equation
Az = b is solved.

IND is an integer variable that reports the status of the results. On an initial call to
SLVMP, when the routine terminates IND has one of the following values:

IND == 0 The solutior X was obtained to machine accu: icy.

IND = 1 X was obtained, but not to machine accuracy.

IND = —k The k** column of A was reduced to a columu contaiuing cnly
Zeros.

When IND = —k, no solution is obtained.

After an initial call to SLVMP, if IND == 0 or 1 on output, then the routine may be
called to solve a new set of equations Az = b without having to redecompose the matrix
A. In this case, the input argument MO may be s:t to any nouzern value. When MG # 0
it is assumed that only 4 has been modified. The routine etnploys the LU decomposition
obtained on the initial call to SLYMP to solve the new set of squations Az = b, On output
X will centain the solution to the new sui .f equations. As before, A and b are not modifica
hy the routine.

If SLVMP is recalled with MO # 0, then when the routire terminates IND has one of
the following values:

IND = 0 The sclutior: X was obtained to machine »ccuracy.
IND = 1 X was obtained, but not to machine accuracy.

v

Programming. SLYMP calls the sulroutine LUIMP. These routines were writben by A, H
Morris. The subroutines MCOPY | SGEFA, SGESL, SSCAL, SAXPY and functions S1M.
PAR, SDOT, ISAMAX are alse employed.

SQOLUTION OF ALMOST 8LOCK DIAGONAL SYSTEMS
OF LINEAR EQUATIONS

Consider a system Az == b of linear equations where A is an n X n matrix having the
block structure

0 T

Here 1t 15 assumed that A, is an r; X ¢; matrix for i =1, ...,m, and that A; and A, may

have 8; > 3 columns in common for ¢ < m. Thus :__, r. = n and block A, begins in column
A=l
;——l

o (ek = 6;)t Lior ¢ > 2. It is also assumed that three successive blocks Aoy, A;, Ay
k=1
do not hsve columrns in common. Thus §;_; + 6 < ¢; for § = 2, ..., — 1. f m > 2 then

the following subroutines are available for solving Az = b.

CALL ARCECO(n, S MTR,m,IWK b X IND)

m”m
5 1s an array of dimension) r.¢; or larger. On input S coatains the blocks Ap, ..., A,
el
of the maftrix A. The blocks arc stored in sequence. A, is stored in the first ricy locations
of &, Az is stored in the next rycy locations, etc. For each A, ithe columns of A; are stored

in sequence in S,

Example.

then n = 5§
Gy, @2z, O33,423, A32, 342, 033, %43, 34, Geyq, Asr.

e 3,010 = 2, and &; = (. Also, § i¢ an array containinyz the data ay1,d21,

MTR is an integer matrix of dimension 3 x m containing the bleck information of the
matrix A:

MTR{L,5) = r, (z ~1,...,m)
MTR(Z,1) (w1, m)
MTR(2,1) ,a';,- (=1, m 1)

For convenience, the routine sets M FH(J m) . 0

b

l)ﬁ)‘;

FrTy

X 1 an array of dimension n or larger. When ARCFECO is called, A is decomposed and
then the equations Az = b are solved. The decompaosit.on of A is stored in S, overwriting
the nitial input data A, and the solution z is stored in X. The vector b is destroyed by the
routine.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
irdices involved in the decomposition of A are stored in IWK.

IND is a variable that reports the status of the results. When ARCECO terminates,
IND has one of the following values:

IND == 0 The system of equations was soived.

IND = 1 (Input Error) Either n,m, or MTR is incorrect, or three successive
blocks A,_1, A;, A;+1 of A have columns in common.

IND =—1 A is a singular matrix. The equations cannot be solved.

Usage. After a call to ARCECO, if IND = 0 on output then the subroutine ARCESI. (sce
below) may be called to solve a new set of equations Az = b without having to redecompose
the matrix A. ARCESL employs the decomposition of A obtained by ARCECO.

Algorithm. A modification of the alternate row and column elimination procedure by Varah
is used.

Programming. ARCECO employs the routines ARCEDC, ARCEPR, ARCEPC, ARCESL,
ARCEFS, ARCEFM, ARCEFE, ARCEBS, ARCEBM, and ABRCEBE. These routines were
developed by J. C. Diaz (Mobil Research and Development Corp., Farmers Branch, Texas),
G. Fairweather (University of Kentucky), and P. Keast (University of Torontc).

Reference. Iiiaz, J. C., Fairweather, G., and Keast, P., “FORTRAN Packages for Solving
Certain Almost Block Diagonal Linear Systems by Modified Alternate Row and Column
Elimination,” ACM Trans. Math Software 9 (1983), pp. 358-375.

CALL ARCESL(S,MTR,m,IWK,b,X)

The argument m is the number of blocks A,;, ..., A, in the matrix A. ARCESL
may be used only when IND = 0 on output from ARCECO. In this case, S contains
the decomposition of A obtained by ARCECO and I3VK contains the pivot indices of the
decomposition. The argument b is a vector of dimension n, and X an array of dimension
n or larger. When ARCESL is called, the equations Az = b are sclved and the solution
stored in X. The vector b is destroyed by the routine.

Programming. ARCESL calls the subroutines ARCEFS3, ARCEFM, ARCEFE, ARCEBS,
ARCEBM, and ARCEBE. These routines were developed by J. C. Diaz (Mobil Research
and Development Corp.,Farmers Branch, Texas), G. Fairweather (University of Kentucky),
and P. Keast (University of T¢ onto).

SOLUTION OF ALMOST BLOCK TRIDIAGONAL SYSTEMS
OF LINEAR EQUATIONS

Consider a system 7'z =: b of linear equations where 7' is a square matrix having the

block structure '
Ay B G

Cy Aqg B, O

Cy As B3

T = 0

Cnoa Apy By
Bn Cn A"

Here it is assumed that Ag, Bx,Cx (k= 1,.. ,n) are m x m matrices, and that b is a
column vector of dimension mn. If n > 4 the: o following subroutine is available for
solving Tz = b.

CALL BTSLV(MO, i, n, 4, I#,C, X,IP,IND)

MO is an input argument which specifies if BT'SLV is being called for the first time.
On an initial call, MO = 0 and we have the following setup:

A, B, C are 3 dimensional arrays of dimension m x m x n where the (1,7)~th elements
of the matrices A, Bk, Cx are stored in A(%,7,k), B{(i,5,k), C(i,7,k) for k = 1, ..., n.
A, B,C are modified by the routine,

X is an arvay of lunension mn or larger. Ou input, the vector 4 is stored in X. When
BTSLYV is called, if a sclution z is obtained for T'z = b then the solution is stored in X.

IP is an array of dimension mn or larger that is used by the routine .. listing the row
interchanges that are made.

On an initial call to the routine, a block LU decowposition is performed on T, the
results of which are stored in A, B,C. This decemposition involves row interchanges only
within the diagonal blocks Ag; i.e., no row interchanges are performed between rows of
different blocks Ay and A,. Thus it may occur that the decomposition of a nonsingular
matrix T' cannot be completed. IND i3 a variable that reports the status of the resulis.
When BTSLV terminates, IND has one of the following values:

IND = 0 T was decomposed and the equations Tz = b solved.

IND =--1 (Input Error) Either m < 1 or n < 4.

IND = k The decomposition process failed in the k" diagonal block. The
routine cannot solve the equations in their present form.

After an initial call to BTSLV, if IND - 0 then th- routine may be recalled with MO
/0 and a new b. When MO /£ 0, then it is assumed 1vhat A, B, (', and 1P have not beer
modified and that X contains the new b. The routine retrieves from A, B,C, and 1P th
block decomposition that was chbtained on the initial cali io BTSLV, 1nd solves the new

225

system of equations T’z == b. The solution is stored in X. In this case, IND s not referenced
by the routine.

Prograraming. BTSLV employs the subroutines DECBT, SOLBT, DEC, and SOL. These
subroutines were written by Alan C. Hindmarsh (Lawrence Livermore Laboratory).

Reference. Hindmarsh, A. C., Solutsion of Block-Tridiagonal Systewns of Liviear Alje-
braic Equations, Report UCID-30150, Lawrence Livermore Laboratory, 1977.

iINVERTING SYMMETRIC REAL MATRICES AND SOLVING
SYMMETRIC SYSTEMS OF REAL LINEAR EQUATIONS

The subroutines SMSLV and DSMELV are available for inverting symmetric real matri-
ces A and solving systems of real linear equations AX = B. SMSLV handles singie precision
problems and DSMSLV handles double precision problems. It is assumed that the matrix
A is in packed form. If the inverse of 4 is computed, then the * verse is a symmetric matrix
which will be stored in packed form.

Note. All eigenvalues of a real symmetric mairix A are real. The inertia of A is the ordered
triple (7, v, ¢) where 7 13 the number of positive eigenvalues of A, v the number of negative
cigenvalues of A, and ¢ the number of zero cigenvalues of 4. Thus, if n is the order of A
then m -+ v + ¢ = n. Also A is positive definite (positive semi-definite, negative definite,
negative semi-definite) if r = n (v = 0,v =n,n =0).

CALL SMSLV(M® n . 4, B, kb, D, «;C ND INERT,JERR,IPVT, WK)
CALL DSMSLV(N: 3, m, A, B, kb, D,RCOND, INERT,IERR,IPVT,WK)

A is an array of dimension n(n + 1)/2 containing the elements of a packed n x n
symmetric matrix where n > 1. If MO = 0 then the inverse of A is computed and stored
in A in packed form. If MO # 0 then the inverse of A is not computed.

The argument m is an integer. If m > 1 then B is a rnatrix having n rows and m
columns. In this case AX = B is solved and the solution X is stored in K. If rn < 0 then
there are no equations to be solved. In vhis case B is ignered.

The argument kb is the number of rows in the dimension statement for B in the calling
program. If m < 0 i en kb is ignored.

1> is an array of dimension 2. When either routine is called the determinant det{A) of
the matrix A is cor ipuied. If det(A) =+ d - 10% where 1 < |d| < 10 aud k an integer, then d
is stored in D(1) and the exponent k is stored in floating point form in D(2).

RCOND is a variable. When eithc routine 1s called, the routine makes an estimate ¢
of the condition number of the mairix A (reiative to the L; norm). RCOND is assigned
the value 1/c.

INER'T s an nteger array of dimension 3. When either routine is ¢.d'ed the inertia
of the mainix A is computed. INERT{1) is set to ti - number of positive cigenvibies of A,
INERT(2) 13 set) the number of negative eigenvaluc: and INFET(3) 15 set to the number

of zerio etgenvalie

IPVT s as onveper array of dimension e or rpes bt g used by the routives for

ke pinyg ok of dhie row and column interchanges th at ar wle WHR 1w avray of dinensto

roor b that e used as a work space.

Remarks.

(1) If SMSLV is called then it is assumed that A and B are real matrices, D and WK are
real arrays, and RCOND i: a real variable. Otherwise, if DSMSLYV is called then it is
assumed that A and 3 are double precision matrices, D and WK are doubie precision
arrays, and RCOND is a double precision variable.

(2) RCOND satisfies 0 < RCOND < 1. If RCOND & 107* then one can expect the results
to have approximately k fewer significant digits of accuracy than the elements of A.
For example, if SMSLV is used to invert a matrix in the 14 digit CDC single precision
arithinetic and RCOND == .4E—3, then the computed coefficients of the inverse matrix
should normally be accurate to about 11 digits. In general, RCOND characterizcs how
well or ponrly conditioned the problem is. If RCOND = 1 then one should expect the
results to be almost as accurate as the criginal data A. However, if RCOND = 0 then
ne should expect the results to be nonsense.

(3) 'Lhe data in A is destroyed.

Error Return. IERR is an integer variable. 1f RCOND is sufficiently 'arge so that 1 -+
RCOND > 1, then IERR is set to O and the problem is solved. Otherwise, if 1 4+ RCOND
== 1 then JERR is set to 1 and the routine terminates. In this case, A will have been de-
scroyed but B will not have been modified. Also the determinant and inertia will not have
been computed.

Algorithm. Toe Jiagonal pivoting factorization procedure is used. Partial pivoting is
employed.

Precision. SMSLV and the more general routine MSLV have approximately the same ac-
curacy, and DSMSLV and DMSLV have approximately the same accuracy.

Efficiency. iive: though SMSLV performs approximately half the number of multiplica-
tions and divisions as MSLV, normally one can expect SMSLV to take aiout 70-80% of the
time required by MSLV. However, for sparse matrices SMSLV may be 20-30% slower than

MSLV. Similar comments hold for DSMSLV and DMSLV.

Programming. SMSLV and DSMSLV are driver routines for the LINPACK subroutines
SSPCO, SSPIFA, SSPSL, S5 I and DSPCO, DSPEFA, DSPSL, DSPDL SSPCO and DSCO
were written by Cleve Maoier {(University of New Mexico). The remaining LINPACK subrou-
tines were written by James Banch (University of California, San Diegoj. The subroutiaes
employ the vector routines SCOPY, SSWADP, SDOT, SSCAL, SAXPY, SASUM, ISAMAX
and DSWADP, DDO'T, DSCAL, BAXPY, DASUM, IDAMAX.

References.

(1) Bunch, J. R and Padett, B0 N “Direct Methaods for Selving Symmetric Indefinite
Systems of Line o Fgouaticns” STAM J. Numerseal Analysss 8 {1971), pp. €30 645,

“2) Bunch, J. R “Anaiyses of the Diagonad Bivaii g Methoa,” STAM J. Numerical Anal-
paie 8 (1571), pp. 656 68O,

(3)

Bunch, J. R., Kaufinan, L., and Parlett, B.N., “Decomposition of a Symmetric Matrix,”
Numerische Mathematik 2T (1973), pp. 95-109.

Bunch, J., and Kaufman, L., “Some Stabtle Methods for Calculating Inertia and Solving
Symmetric Linear Systers,” Math. Comp. 31 (1977), pp. 163-179.

Cline, A. K., Moler, C. B., Stewart, G. W, and Wilkinson, J. H., “An Estimate for the
Condition Number of a Matrix,” SIAM Numerical Analysis 16 (1979), pp. 368-375.
Dongarra, J. J., Bunch, J. R., Mol=r, €. B., and Stewart, G. W., LYNPACK Users’
Guide, Society for Inductrial and Zpplied Mathematics, Philadelphia, 1979.

.
220

INVERTING POSITIVE DEFINITE SYMMETRIC MATRICES AND SOLVING
POSITIVE DEFINITE SYMMETRIC SYSTEMS OF LINEAR EQUATICONS

The subroutines PCHOL and DPCHOL are available for inverting positive definite
symmetric real matrices A and solving systems of real linear equations AX = B. PCHOL
handles single precision problems and DPCHOL handles double precision problems. It is
assumed that the matrix A is in packed form. If the inverse of A is computed then the
inverse is a syminetric matrix which will be stored in packed form.

CALL PCHOL(MO 1, m, A, B.kbIERR)
CALL DPCHOL(MOn,m, A, B kbIERR)

A is an array of dimensicn n(n + 1)/2 or larger containing the elements of a packed
n X n positive definite symmetric matrix where n > 1. If MO =: 0 then the inverse of A is
computed and stored in A in packed form. If MO # O then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a matrix having n rows and m
columns. In this case AX = B is solved and the solution X is stored in B. If m < 0 then
there are no equations to be solved. In this case B is ignored.

The argument kb is the number of rows in the dimensicn statement for B in the calling
program. If m < 0 then kb is ignored.

Remarks.

(1) If PCHOL is called then it is assumed that A and B are real arrays, and if DPCHOL
is called then it is assumed that A and B are double precision arrays.

(2) T~ data in A is destroyed.

Error Return. IERR is an integer variable. If A is positive definite then IERR is set to 0
and the problem is solved. Otherwise, IERR = k if the leading k x k submatrix of A is not
positive definite.

Algorithin. The Cholesky procedure is used.

Precision. The results obtained by PCHOL and DPCHOL are occasionally less accurate
(np to 1 s gnificant digit) than the results obtained by SMSLV and DSMSLV.

Prograisaing. PCHOL and DPCHOL are driver routines for the LINPACK subroutiaes
SPPFA, SPPSE PP and DPPFA, DPPSL, DPPDI These subroutines were written by
Cleve Moler (University of New Mexico). The functions SDOT, DDOT and subroutines
SAXPY, =5CAL DAXPY, DSCAL are also used.

Reicrence Dotgarra, J. 0 Bunch a. R Moler, €0 B and Stewart, GO W LINPACK
Us ro’ G sade, Society for bndustriad and Appined Mathematies, Plinladelphia, 1979

to

SOLUTION OF TOEPLITZ SYSTEMS OF LINEAR EQUATIONS

An n x n Toeplitz matrix is a matrix of the form

Qo a_1 d._2 v Gy

ay aop a_y e G2

asg aiy ap cee G_p48
An-1 Qpn-2 Gp-s ... a /

For convenience, we denote this matrix by A, for n > 1. If A, is a real matrix where ag # 0
and b is a real column vector, then the subroutines TOPLX and DTOPLX are available
for solving the system of equations A,z = b. TOPLX is a single precision routine and
DTOPLX a double precision routine.

CALL TOPLX(A,b,z,n,G, H,JERR)
CALL DTOPLX(A,b,z,n,G, H,IERR)

TOPLX is used if A,b,z,G, I are real arrays, and DTOPLX is used if 4,b,z,G, H are
double precision arrays.

A is an array of dimension 2n--1 or larger containing the coefficients A(J) = a,_, (5 =
1, ...,2n — 1) of the matrix A,,. The argument z is an array of dimension n or larger, and
IERR is an integer variable. When the routine is called, if A,z = b is solved then IERR is
set tc 0 and the solution is stored in z. A and b are not modified by the routine.

G and H sre arrays of dimensicn n or larger that are work spaces for the routine.
Error Return. IERR == { if the equations canno. be soived by the routin..

Remarks. The Levinson bo:vring procedure is used. This procedure is inductive, be-
gmning with the solution z; = b,/ay of the equation apz; = b;. Given a solution for
Z‘ff‘la.'_ja:]' = b (1~ 1,...,N)where N < n, then a solution for }'_lﬁ:’lla. jE;=b (1.

1, ..., N +1)isobtained where &y, ..., x5,y is computed from zy, ..., xn. This procedure
fails when some submatrix Ay is singular (e.g , when o -+ 0). Also, the procedure may
yield voor results when some Ap is exceedingly ill-conditioned. In such situations one must
use a more general equation solver. In TOPLX and DTOPLX 4(n 1)* floating additions
and dn{n 1) integer/floating multiplications antt divisions are used when n > 2. Conse-
quently, these routines are considerably more effic 1t than general equation solvers such as
KROUT and PMSLV, but maore restrictive and frequently less accurate.

Programming. TOPLX aud DTOPLX are modifications by A, H. Morris of the subroutine
TOEPLZ, written by George liybicki,

Reference. Puess, W H.| Fiannecy, b P Teukolsky, § A and Vetterling, W T, Nu

‘merical Recipes: The Art of Scientif - Computing, Cambndpe University Proess, 1086

po. 4T L2

AR

INVERTING GENERAL COMPLEX MATRICES AND SOLVING
GENERAL SYSTEMS OF COMPLEX LINEAR EQUATIONS

The subroutines CMSLV, CMSLV1, and DCMSLV are available for inverting complex
matrices and solving systems of complex linear equations. CMSLV and CMSLV1 solve
single precision problems and DCMSLYV solves double precision problems.

CALL CMSLV(MG,n,m, A, ka, B, kb, D,RCOND,IERR,IPVT,WK)

A 18 a complex matrix of order n where n > 1. If MO = 0 then the inverse of A is
computed and stored in A. If MO # 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a complex matrix having n rows
and m columns. In this case the matrix equation AX = B is solved and the solution X is
stored in E. If m < 0 then there are no equations to be solved. In this case the argument
B is ignored.

The argument ka is the number of rows in the dimension statement for A in the calling
program, and the argument kb is the number of rows in the dimension statement for B in
the calling program. If m < 0 then the argument kb is ignored.

D 18 a complex array of dimension 2. When CMSLV is called the determinant det(A)
of the matrix A is computed. If det(A) = d - 10* where 1 < [Re(d)| + |!m(d)| < 10 and k
an integer, then d is stored in D(1) and the exponent k is stored as a complex number in
D{2).

RCOND is a real variable. When CMSLV is called, the routine makes an estimate
c of the condition number of the matrix A (relative to the modified L, norm where each
). RCOND is assigned the value 1/c.

absolute value |z] i replaced with |Re(2)] + [Im(z)

IPVT is an integer array of dimension n or larger that is used by the routine for keeping
track of the row interchanges that are made. WK is a complex array of duneasion noor

larger that is used as a work space.

Remarks.

(1} RCOND satisfies 0« RCOND -~ 1 1f KCOND 2 10 * then one can expect the results
to have approximately k fewer sigmticant digits of accuracy than the elements of A
For example, if CMSLV i3 nsed to invert a matnix in the 14 digit CHC single precision
arithmetic and RCONIY 487 3 then the conputed coetlicients of the inverse niatris
should normally be accurate to about T digits. In general, RCOND characterizes how
well or poorly conditioned the problem s, If RCOND 2 | then one should expoct the
results to be almost as acenrate as the original data A However af RCONDY - 0 then
one should expect the results to be nonsense

(2) The matrix A s always desteoyed

Error Return. 1FKR s an inteper varable 1T RCOND 14 snthicrently larpe so that |

RCOND > 1, then IERR is set to 0 and the problem is solved. Otherwise, if 1-++RCOND = 1
then IERR 1s set to 1 and the routine terminates. In this case, A will have been destroyed
but B will not have been modified. Alsc the determinant will not have been computed.

Algorithm. The partial pivot Gauss elimination procedure is used. The pivots ax; are
selected so that |Re{ak;)! -+ |Im(ak,)| = max {{Re(a,;)| + [Im(ay;)| :¢ =7, ..., n}.

Progiamming. CMSLV calls the LINPACK subroutines CGECO, CGEFA, CGESL, and
CGEDI. These subroutines were written by Cleve Moler (University of New Mexico). The
subroutines CSWAP, C5CAL, CSSCAL, CAXPY and functions CDOTC, SCASUM, ICA-
MAX are also used.

References.

(1) Dongarra, J. J., Bunch, J. R., Moler, C. B, and Stewart, G. W., LINPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.

(2) Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinscn, J. H., “An Estimate for the
Condition Number of a Matrix,” SIAM Journal of Numerical Analysis 16 (1979),
pp. 368-375.

CALL CMSIV1(MO,n, m, A, ka, B, kb JERR,IPVT,WK)

A is a complex matrix of order n where o > 1. If MO = 0 then the inverse of A 1s
computed and stored in A. If MO # 0 then the inverse is not computed.

The argument m is an integer. If m > 1 then B is a complex matrix having n rows
aud m columns. In this case the matrix egquation AX = B 1s solved and the soiution X is
stored in B. If n < 0 then there are no equations to be soived. In this case the argument
B 1s ignored.

The argument ka is the number of rows in the dimension statement for 4 1n the calling
program, and the argument kb is the number of rows in the dimension staternent for B in
the calling program. If mn < 0 then the argument kb is ignored.

IPVT s an integer array of dimension n or larger that 1s used by the routines for
keeping track of the row interchanges that are made.

WK is & complex array of dimension n or larger that 18 a work space for the routine.

If MO # 0 then WK 1s ignored.

Error Return. 1ERR is & variable that reports the status of the results. When CMSLVI
terirnnates I1KRR has one of the following values:
HERR (0 The requested resulis were obtamed.
[ERR I Nither n,ka, or kb is incorrect. In this case, A wnd # have not
been moditied.
IKRR & The k™ colimm of A has been reduced to s colnmn containing

reros. The requested results cannot be obcarea,

S M N TR

Remarks.

(1) The matrix 4 is destroyed.
(2) CMSLV and CMSLV1 produce the same resulis for X and the inverse of A.

Algorithm. The partial pivot Gauss elimination procedure is used. The pivots a, are
selected so that |Re(as,)| + [Im{a;)| = max {|Re(ai;)| + |Im{a,;)| ¢ =7, ... ,n}.

Programming. CMSLV1 calls the LINPACK subroutines CGEFA, CGESL, and CGEDI
These subroutines were written by Cleve Moler (University of New Mexico). The subrou-
tines CSWAP, CSCAL, CAXPY and functions CDOTC, ICAMAX are also used.

Reference. Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W., LINPACK
Users’ Gusde, SIAM, 1979.

CALL DCMSLV(MO,n, m,AR Al ka,BR BIkb IERR,IPVT WK)

AR and AI are double precision matrices of order n > 1. AR and Al are the real and
imaginary parts of the complex matrix A whose inverse is to be computed or for which
AX = B is 10 be solved. If MO = 0 then the inverse of the complex matrix is computed
and the results stored in AR and AL If MO # O then the inverse is not computed.

The argument m is an integer. If m > 1 then BR and Bl are double precision matrices
having n rows and m columns. In this case, BR and BI are the real and imaginary parts
of the complex matrix B for which AX = B is to be solved. When DCMSLYV 13 called, the
real and imaginary parts of the solution X are computed and stored in BR and BL. f m < 0
then there are no equaticns to be solved. In this case BR and BI are ignored.

The argument ka is the number of rows in the dimension staterments for AR and Al in
the calling program, and the argument kb is the number of rows in the dimension statements
for BR and BI in the calling program. If m < 0 then the argument kb is ignored.

IPVT is an integer array of dimension n or larger that is used by the routine for keeping
track of the row interchanges that are made.

WK is a double precsion array of diniension 2n or larger that is a work space for the
reutine. If MO # 0 then WK is ignored.

Error Return. KRR 1s a variable that reports the status of the results. When DCMSLV
termmnates ITKRR has one of the following values:
IERR 0 The requested results were obtained.
IERR i Either n ka, or kb s incorrect. In this case, AR, AL BR, Bl have
not been maodified
IERR k The k" colunme of AR and Al have been reduced to colummns

contamning zeros, Fhe reguested results were not obtamed

Remark. The matrices AR and Al are destroyed.

FYE

Algorithm. The partial pivoi. Gauss elimination procedure is used. The pivots Ay, are
selected so that |Re(ak;)| + {Im(ax,)| — max {|Re(a;)] + [Im{as)| :d =7, ...,n}.

Programming. DCMSLV calls the subroutines DCFACT, DCSOL, and DCMINYV. These
routines were written by A. H. Morris. The functions CDIViis and DPMPAR are also
used.

SOLUTION OF COMPLEX EQUATIONS
WITH ITERATIVE IMPROVEMENT

Given a complex n x n matrix A and a complex column vector . The [ollowing routine
1s available for solving the equation Az == b. Iterative improvement is performed to compute
the solution z to machine accuracy.

CALL CSLVMP!MO n, A, ka, b, X, WK IWK,IND)

MO is an nput argument which specifies if CSLVMP is being called for the first time.
On an initial call, MO = 0 and we have the following setup:

A is a 2-dimensional complex array of dimension ka X n containing the matrix A, b a
cornplex vector of dimension n, and X a complex array of dimension n. When CSLVMP
is called, Ax = b is solved and the solution stored in X. A and b are not modified by the
routine.

WK is a complex array of dimension n? + n or larger, and IWK an integer array of
dimension n or larger. These arrays are for internal use by the routine. On an initial call
to CSLVMP, an LU decomposition is obtained for A and stored in WK and IWK. Then the
equation Az = b is solved.

IND is an integer variable that reports the status of the results. On an initial «all to
CSILVMP, wien the routine terminates !ND has one of the following values:

IND = 0 The solution X was obtained to machine accuracy.
IND = 1 X was obtained, but not to machine accuracy.
IND == -k The kt* columi of A was reduced to a column containing only

zeros. In this case no solution can be obtained.

After an ipitial call to CSLVMP, if IND == O or | on output, then the routine may be
called to solve a new set of equations Az b withont having to redecnimpose the matrix
A. In thns case, the input argument MO may be set to any nonzero vaiue. When MO £ 0
.t s assumed that only & has been modified. The routine employs the LU decomposition
obtained on the initial call to CSLVMP to solve the new set of equations Ar = b On
output X will contain the solution to the new set of equations. As biefore, A and b are not
modified by the routine.

If CSLVMPY s recalled with MG /0, then when the routine terminates INID has one
of the following values:

iND 0 'Lhe salutien N was obtained 1o machine wecuracy,

IND X was obtained, bot not o mackme aceuracy,

Programimirg CSLVMEP calls the sabroutine CLUIMEL These rouGnes were watten by
A H Morns The subrontines COMOOPY) COEFA L CGQESH) UoCAL CAXPY aad fun
Cona SEUMPAR . CDOYYC) TOAMANX are adso craployed

SINGULAR VALUE DECOMPOSITION OF A MATRIX

If 4 1is a complex m x n matrix then there exists an mm X m unitary matrix U and an
n X n unitary matrix V such that D = U*AV is a diagonal matrix!. Let dy, ...,dx be
the diagonal elements of D where & = min{m,n}. Then U and V can be selected so that
the diagonal elements are real numbers and dy > dy > .-+ > di > 0. The nonnegative
diagonal elements d; are unique, and if A is a real matrix then U and V' can be chosen to
be real orthogonal matrices. The decomposition D == U* AV is called the singular value
decomposition of A. The elements dy, ...,d; are the stngular values of A, the columns
of U are left singular vectors, and the columns of V' are right singuiar vectors.

Remark. For m > n, D = (%’) where Dy = diag(d,, ...,dn). Consequently, if U is
partitioned into U = (Uy,Uz) where U has n columns, then it follows that A = UDV* =

U,D,V*. The decomposition A = Uy D, V" is frequently also called the singular value
decomposition, and in many applications it suffices.

The following subroutines are available for finding the singular value decomposition
D = U*AV of a matrix A.

CALL. SSVDC(A4, ka,m,n, D, F,U, ku,V, kv, WORK JOB,INFO)
CALL DSVDC(A, ka,m,n, D, E,U, ku,V, kv, NORK,JOB,INFO)
CALL CSVDC(A4,ka,m,n, D, E,U, ku,V, kv, NORK,JOB,INFO)

A is a 2-dimensional array of dimension ka x n containing the m x n matrix whose
singular value decomposition is to be computed. D is an array of dimension min{m+ 1,n}.
When any of the routines is called, the singular values of A are computed and stored in
descending order of magnitude in D(1), ..., D(k) where k ~= min{m,n}.

JOB is an integer that controls the computation of the singular vectors. It is assumed
that JOB = I-10+ J when I,J == 0,1, ...,9. I and J have the following meaning.

I = 0 Do not compute the left singular veciors.

1 == 1 Compute all m left singular vectors

I > 1 Compute the first min{ri, n} left singular vectors. (Here we com-
pute the decomposition A - Uy DV*.)

J 0 Do not compute the right singular vectors.

J > 0 Compute the right sincular vectors.

U is a 2-dimensional array which containg the left singular vectors that are requested,
anct ku is the number of rows in the duvension stavement for 7 the callivg prograns. 1t
i assumed that ku > e I no left singular vectors are requested (he 2 JOB < 10) then U
is ipnored by the rostmes. Ovherwise, U must be of dimeresien dw ool adb o feft singnaar
vectors are requestad, and Y must be of dinieosion kw < raindm o} of chie first non e, o)

left aingular vectors are requested,

oo enores the adivint oo of £

V is a 2-dimensional array which contains the right singular vectors that are requested,
and kv is the number of rows in the dimension statement for V in the calling program. It
is assumed that kv > n. If no right singular vectors are requested then V i3 ignored by
the routines. Otherwise, V must be of dimension kv x n if the right singular vectors are
requested.

FE is an array of dimension n or larger, and WORK 1is an array of dimension m or
larger. E and WORK are storage areas for the routines.

Remarks.

(1) If SSVDC is called then it is assumed that the arrays A, D, E,U,V ,WORK are real
arrays, if DSVDC is called then it is assumed that the arrays are double precision
arrays, and if CSVDC is called then it is assumed that the arrays are complex arrays.

(2) The contente of A are destroyed by the routines. If left singular vectors are requested
and there is sufficient storage in A to hold the vectors (there will be sufficient storage if
m < n or JOB > 20), then one may set U = A. Similarly, if right singular vectors are
requested and m > n then one may set V' = A. However, only one of the two arrays U
and V may be identified with A.

Error Return. INFO is an iteger variable. If all the singular values are found then INFO
will be set to 0 and the array E will contain zeros. However, if the 7* singular value cannot
be found then INFO is set to 5. In this case, if 7 < k where k = min{m, n} then the singular
values d;41, ...,di will have been computed and stored in D. A will have been reduced to
an upper bidiagonal matrix B with D as its diagonal and E its super diagonal. If U and V'
have been requested then B = U* AV will be satisfied.

Programming. SSVDC, DSVDC, and CSVDC are part of the LINPACK package of matrix
subroutines released by Argonne National Laboratory. The routines were coded by G. W.
Seewart {University of Maryland). The routines employ the vector subroutines SSWAP,
SROT, sDOT, SSCAL, SAX™V, SNRM2, DSWAP, DROT, DDOT, DSCAL, DAXPY,
DNRM2, and CSWAP, CSROT, CDOTC, CSCAL, CAXPY, SCNRM2. Also the subrou-
tines SROTG and DROT'G are called.

Reference. Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewdrt, G. W., LINPACK
Users’ Guide, Society for Industrial and Applied Mathematic -, Philadelphia, 1979,

EVALUATION OF THE CHARACTERISTIC POLYNOMIAL OF A MATRIX

The following functions are available for computing the determinant of A — zI where
A is an n X n mairix, a number, and I the n X n identity matrix.

DET(A,ka,n,z)
DPDET(A, ka,n,z)
CDET(A, ka,n,z)

DET is a real function that is used when A is a real matrix and z a real nurmnber,
DPDET is a double precision function that is used when A is a double precision matrix
and z a double precision number, and CDET is a complex function that is used when A is
a complex matrix and z a complex number.

The value of the appropriate funciion is the determinant of the matrix A — zf. The

argument ka has the value:
ka = the number of rows in the dimension statement for A in the calling program

It is assumed that ka > n > 1.

Note. A is destroyed during computation.

Algorithm. Gauss artial pivoting is performed to reduce A — zI to upper triangular
form. In CDET the pivots aj; are selected so that |Re(ai;)| + |Im(ax;)| = Max{|Re(a,;)| +

lIm(a;,)| : 4 = j, ...,n} rather than |ak;| = max{|a;;] : ¢ =7, ..., n}.

Programmer. A. H. Morris.

SOLUTION OF THE MATRIX EQUATION AX + XB = C

Given an m X m matrix A, n X n matrix B, and m x n matrix C. The subroutines
ABSLV and DABSLV are available for obtaining the m X n matrix X which solves the
equation AX + X B = C. ABSLV yields single precision results and DABSLV yields double
precision results.

CALL ABSLV(MO,m, n, A ka, B, kb, O, ke, WK,IND)
CALL DABSLV(MO,m,n, 1,ka, B, kb, <", ke, WK, IND)

It ABSLV is called then it is assu:ned that A4, B,C, and WX are real arrays. Otherwise,
if DABSLV is called then it is assum :d that A, B, C, and Wh are doubie precision arrays.

It is assumed that m > 1 and n 1. The input argume.its ka, kb, kc have the following
values:

ka = the number of rows in the limension staternent for A in the calling program

kb - the number of rows in the dimension statement for B in the calling program

ke = the number of rows in the dimension statement for C in the calling program
It is required that ka > m, kb > n, kc > m.

WK is an array of dimension m? 4 n? + 2k or larger where k = max{m,n}. WK is a
general storage area for the routine.

MO 15 an input argument which specifies if the routine is being called for the first time.
On an initial call MO == 0. In this case, A is reduced to lower real Schur form, B 1s reduced
o uoper real Schur form, and then the transformed system of equations i3 solved.

ND is & variable that reports the status of the results. When the routine terminates,
IND catcae of the following values:

YD 1) The solution was obtained and stored in (.
IND ! "The equations are inconsistent for A and 3.
1N ¢ .t ceuld not be reduced to luwer Schur forny,
IND 2 # could ot be reduced to upper Schur form.

I IND £ 0 then no solutio + is obtained.

When IND 0, A coatains the lower Sehur forrn of the matrnix A, B containy the
upper sobur form of the morix 1 and WK contaings the orthogonal matnces involved 1n
the decompasitions of A and 8 The Jormation can be reused to solve o pew set of

caguations. The following options are available:
! 8 O}

MO i New matrices A and Care given. The data foe 2 s reused
Olving the new set of equations

NO .. New onatrices foand € are given. The data Lo crorotried 1n
soaviny the new set of equations

Ny 20 12 A new anatrix O s given, The data for 4 and 00 onedn
b the rew set of equiatoons,

B Y

When the voutine ie recailed, it 13 assumed that m, n, and Wi have not been modiiied.

Programming. ABSLV employs the subrouti~ 3 ABSLV1, ORTHES, ORTRN1, SCHUR,
SHRSLV,SLV, and DABSLV eruploys che rout - : DABSV1, DORTH, DRTRN1, DSCHUR,
DSHSLV, DPSIYV., ABSLV and DABSLVY are adaptations by A. H. Morris of the subroutine
AXPXB written by R. H. Burtels and G, W. Stewart (University of Texas at Austin).

Reference. Buoctels. B, H. and Stewart, G. W., “Algorithm 432, Solution of the Maitrix
Equ: tion AX - X B .-) Comm. ACH 15 (1972), pp. 820-826.

M

SOLUTION CF THE MATRIX EQUATION A*X + XA =C
WHEN C IS SYMMETRIC

Given matrices A and C of order n where C is symmetric. Then :he subroutines
TASLV and DTASLY are available for obtaining the symn:etric matrix X which solves the
equation A*X+ X 1: C. TASLV yields single precision results and DTASLV yields double
precision resuits.

CALL TASLV(MO,n, 4, ka, ¢, ke, WK,IND)
CALL DTASLV(MO n, 4, ka,C, ke, WK,IND)

If TASLV is called then it is assamed that A, C' and WK are real arrays. Otherwise,
if TASLV is called then it i3 assuined that A, C, and WK are double precision arrays.

It is a sumed .aat n > .. The input arguments ke and ke have the following values:
ka = the numbe: of rows in the dimeusion statement for A ir the calling program
kc = the number »f rows in the dimension statement for C in the calling program

It i3 requircd that ka > n and k¢ > n.

WK is an array of dimensior. n? + 2r: or larger that is a general storage area for the
routine.

MO is an input argument, which sj:ecifies if the routine is being called for the first time.
On an initial call MO = 0. In this case, A is reduced to upper real Schur form and then
the transformed system of equations 15 solved.

IND is a variable that reporis the status of the results. When the routine terminates,
IND has one of the following values:

INID == O 'The solution was obtained and stored in (.
IND = 1 The equations are inconsistent.
IND . -1 A could not be reduced to upper Schur form.

I IND / 0 then no solution is obtained.

When IND - 0, 4 contains the upper Schur form of the matrix .1 and WK contains
the orthogonal matrix involved in the decomposition of A, 'This data can he reased to wolve
a new set of equations A'X + XA ¢, In this case, MO can be set to auy nonzero value.
Woen MO / 0t as assumed that only € has been modified. When the 00 - terminates,
toe solution for the new set of equations is sto,od in
Proyramming. TASLV employs the subroutines PASEVT, ORTHES, ORTRNIE, SCHUR,
SYM SLV, SLV and DTASLV employs the routine DTASVEDORTH DRERM L DSCHER,
DSY SV DPSEV.TASLY and DTASTY are adagtations by AL H Morns of tie subroutine
ATXRPYXA wnitten by R.HL Bartels and «« W vowart (Dmiverty of Texas it Austin).

Referen-e. Bartels, ROH and Stewary, (00 W Alpoaithm (32 e of the Matnx
caquation AN XNB O C Vo, ACM LS (4), pp 820

rZ
-3

SOLUTION OF THE MATRIX ETUATION AX?2 + BX + C =0

Given complex n X n matrices A, B, and C. The following subroutine is available for
obtaining a complex n X n matrix X which <olves the equation AX? + BX + C = 0.

CALL SQUINT(m,n, A, B,C,IND,X,WK,¢,r MAX,IERR)

It is assumed that A, B,C, and X are 2-dimensional complex arrays of dimension mxn
where sn > n. When SQUINT is called, the n x n complex matrix solution cbtained for
AX? 4+ BX 4 C =:0is stored in X. A, B, and C are modified by the routine.

IND is an integer variable. On input, if IND # 0 then it is assumed that an initial
approximation for the desired solution is provided in X by the user. Otherwise, if IND
= 0 then the routine provides its own initial approximation. Then Newton iteration is
performed. On output, IND = the number of iterati:;as that were performed to compute X.

WK is a complex array of dimension £ that is a work space for tue routine. It is
assumed that £ > Tn? + n. When SQUINT terminates, WK(1) is a complex number whose
real part is the norm ||AX? + BX + C|| .

The argument 7 is a real number. If r < O then X is computed to machine precision.
Otherwise, if 7 > 0 then iteration terminates when ||AX? + BX + C|| < r.

MAX is a variable. If MAX > 0 then MAX is the maximum number of iterations that
may be performed. If MAX < 0 then it i3 reset by the routine to 30, the default maxirnum
nuvmber of iterations.

Error Return. IERR 1s a variable that 1s sev by the routine. If a solution X is obtained,
then IERR is assigned the value 0. Otherwise, IERR has cne of the following values:

IERR == 1 MAX iterations were performed. More iterations are
needed.
IERR - 2,3 Factorization of the equations could uot be couyleted.

X cannot be computed.

IERR 10 ¢ n Newton iteration failed on iteration n. Possibiy v ol
accuracy was requested. X cannot be computed.

IKRR — 999 (Input Error) Eithern« 1« n,or £ Tn? 4 n

When IERR . 1 occurs, X contains the most recent value obtamed for the solution and
WK(1) is a complex number whose real part is the latest value obtaned fir the norm
HAX? L BX 4 Ol
Programming, SQUINT employs the subroutines SQUIN2 | CQZHES, CQZIT THISLY,
and CTRANS. These routines were designed by fieorge J Davis {Georgia State Universaty,
Atlanta, Georgla), CQZHES and CQAIT are modifications of the EISPACK subrontine
Q/ZHES and Q21T developed st Argenne National Laboratory The function SPAMPAR ©

also used.

References.

(1) Davis, G. J., “Algorithin 598. An Algorithm to Ccmpute Solvents of the Matrix
Equation AX? + BX +C =0,” ACM Trans. Math Software 9 (1983), pp. 246-254.

(2) Garbow, B. S, et al., Matriz Eigeicystems Routines - EISPACK Guide Extesision,
Springer-Verlag, 1977.

250

EXPONENTIAL OF A REAL MATRIX

Let A be a real matrix of order n > 1. Then the subroutines MEXP and DMEXP
o0 .
are available for ccrmputing the exponential matrix e4 = Y A*/il. MEXP yields single
1=0
precision results and DMEXP yields double precision results.

CALL MEXP(A, ka,n, Z, kz, WK JERR)

A is a real matrix of order n > 1 and Z a real 2-dimensional array. MEXP computes
e? and stores the results in Z. The arguments ka and kz have the following values:

ka = the number of rows in the dimension statement for A in the cailing program

kz = the number of rows in the dimension statement for Z in the calling program
It is assumed that ka > n, kz > n, and that A and Z are different storage areas. If n > 1
then A is destroyed.

WK is a real array of dimension n(n -+ 8) or larger that is a work space for the routine.

IERR is a variable that reports the status of the results. When MEXP terminates,
IERR is assigned one of the following values:
IERR = 0 The exponential was computed.
IERR — 1 The norm [|A]l} = max;) . |a,;| is too large. e
puted.
IERR - 2 The Pade denominator matrix is singular. (This should never

4 cannot be com-

occur.)

Algorithm. A is balanced, vielding a matrix 2 " 'PYAPD where I is a diagonal matrix,
7 a permutation matnix, and [|Bl]y < ||All;. Next rn is set wo the smallest nonnegative
‘ ¥ | 1 | 1 2

integer such that min{ B HBILLY < 2™ and the 8% diagonal Pade approximation for
?‘; Y ‘ y L I 3 xs i}

¢ is used to compute exp(B/2™) Then e - Jexp(B/2™)1* is obtained by ra squarings,

and et PDAD TP s applied.

Programming. MBEXDP calls the subroutines BALANC, BALINV, and SLV The function
IPMPAR 15 also used. MEXP was written by A. H. Morris

Reference. Ward, Robert. € "Numerical Computation of the Matnix Exponential with
Accuracy Estimate” SIAM J. Numericad Analysis 14 (1977), pp 600 610

CALL DMEXP{A ka,n, 7 kz WK IERR)

A s a double precision mtrix of order o - U and 2 a donble preaision 2 dinnensionad
array. DMEXP computes ¢ and stores the results in 70 The arpuments Aa and b2 bave
the Tollowing values:

ka the number of rows i the diunemaon statement 0 25 the calling procran

Az the number of rows e the dimension statement foo /2 the cadling prognan

ISR AVOREGSIEAR. . WA ICN S IR, VAR L G0 BN KA AR ER TN X SR SRV T LN AL SN R S ELL VLN Al SO M AL

It s assumed that ka > n, kz > n, and that A and Z a-e different storage areas. If n > 1
then A is destroyed.

WK is a double precision array of dimension n(n + 12) or larger that is a work space
for the rontine.

IERR is a variable that reports the status of the results. When DMEXP terminates,
IERR is assigned one of the following values:

IERR = 0 The exponential was computed.

IERR = 1 The norm || 4||; is too large. e# cannot be computed.

IERR = 2 The Pade denominator matrix is singular. (This should never
occur.)

Programming. DMEXP calls the subroutines DBAL, DBALNYV, and DPSLV. The function
IPMPAR is also used. DMEXP was writtzn by A. H. Morris.

Reference. Ward, Robert C., “Numerical Computation of the Matrix Exponential with
Accuracy Estimate,” SIAM J. Numerical Analysis 14 (1977), pp. 600-610.

SOLVING SYSTEMS OF 200-400 LINEAR EQUATIONS

For n > 1, let A denote an n X n matrix and b a column vector of dimension n. Then
the subroutines LE, DPLE, and CLE are available for solving the equations Az = b where A
is not stored in-core. For large n, these routines require a work space of dimension ~ n?/4.
This permits the solvtion of systems of equations of double the order permitted by the
standard solution procedures.

CALL LE(ROWK n,b, X, WK IWK IERR)
CALL DPLE(ROWK 1, b, X,WK,IWK IERR)
CALL CLE(ROWX n,5, X,WK,IWK IERR)

X is an array of dimension n and IERR an integer variable. When the equaiions are
solved, then IERR is set to O and the solution is stored in X.

ROWK ir the na 2 of a user defined subroutine that has the format:
CALL ROWK(n,k, R)
R is an array of dimension n and & = 1, ...,n. When ROWK is called, the k** row of the
matrix A is stored in R. ROWK must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension [n?/4] 4 n + 3 or larger,! and IWK is an integer array of
dimension max{1,n — 1} or larger. WK and IWK are work spaces for the routines.

Error Return. IERR = k when the first k rows of A are found to be linearly dependent.

Remarks.

(1) When LE is called then it is assumed that b, X, WK and the array R in ROWK are real
arrays. When DPLE is called then it is assumed that these arrays are doubie precision
arrays, and when CLE is called then it i3 assumed that the arrays are complex.

(2) When the equations are solved, ROWK is called to attach the first row of A4, then the
secend row, etc. Kach row of A is attached only once.

(3) The array b is not modified by the routines.

Algorithm. The partial pivot Henderson-Wassyng procedure is used.

Programming. LE, DPLE, and CLE are modified versions by A. . Mcrria of the subrou-
tine TE, written by A. Wassyng (University of the Witwatersrand, Johaunesburg, South
Africa).

Example. Consider a system of n = 300 real hinear equations 4 b where the rows of A
are stored, one row per logical record, in sequence in an unformatted file (say file 4). Then
the following code can be used to solve the equations:

"Here [n?/4] denotes the largest integer < n?/4,

-
ard

REAL B(300),X(300), WK (22803)
INTEGER IWK(300)
EXTERNAU GETROW

DATA N/300/

REWIND 4
CALL LE(GETROW N,B, X, WK, IWK IERR)

Here GETROW may be defined by:

SUBROUTINE GETROW(N,I,R)
REAL R(N)

READ(4) (R(J),J=1,N)
RETURN

END

Reference. Wassyng, A., “Solving Az = b A Method with Reduced Storage Require-
ments,” SIAM J. Numerical Anelysis 19 (1982), pp. 197-204.

BAND MATRIX STORAGE

For an m X n matrix A == (aiy), let m, be the number of diagonals below the main
diagonal centaining nonzero elements, and m,, the number of diagonals above the main
diagonal containing ronzero elements. Then mg and my are called the lower and upper
band widths of A, an. my+m, + 1 the total band width of A. It is clear that 0 < my < m
and 0 < m, < n, and that a,; 5 0 only when ¢ ~ my < 7 < ¢ + m,,. If the band width
my -+ my -+ 113 sufficiently small, then it is also clear that a considerable savings in storage
can occur by storing only the nonzero diagonals of 4. In the adopted band storage scheme,
the nonzero diagonals are the columns of an m x (mg +my, + 1) matrix B = (b;;). For each
nonzero a;;, by = ay; where k = j — ¢ -+ my + 1. The remaining b,,’s are zeros.

Example. Consider the matrix

ayy 12 4ajps 0 0 0 0
Gz1 a2 azz aze O 0 0
0 a3z azz azq azs O 0

0 a43 a4 ags aqs O

0 asq asg ass asy
G 0 ays aes aar
§] 0 G Qrg ag7
4] 0 0 0 azr

OO o DO

0
0
Q
0

where m, == 1 and m, = 2. Then A will be stored in band form as follows:

0 air a2z aps
dz1 ag2 Q423 dag
Q32 G3s Q34 G35
B - Q43 Q44 Q45 Q46
54 dss Ggg aAsy
ags agg asr
drg Ary 0 0
. ARy 0 0 0

Remark. The first 7n, colurpus of B contain the nonzero diagonals of 4 below the rnain
diagonal, the (m¢ 4+ 1)* column of B contains the main diagonal, and the last m,, columns
of B contain the ronzero diagonals of A above the main diagonal.

CONVERSION OF BANDED MATRICES TO AND FROM
THE STANDARD FORMAT

The following subroutines permit one to convert matrices to and from the standard
format.

CALL CVYBR(A, ka,m,n, m,,my, B, kb)
CALL CVBD(A, ka,m,n,my,m., B, kb)
CALL CVBC(A, ka,m,n,my, m,, B, kb)

A is an m x n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < ms; < m,0 <
my, < n, and ka > m.

B is a 2-dimensional array of dimensicn kb x n where kb > m. CVBR is used if A and
B are real arrays, CVBD is used if A and B are double precision arrays, and CVBC is used
if A and B are complex arrays. When the routine is called, the matrix A is stored in the
array B in the standard format.

Remark. B may begin in the same location as A. If B begins in the same location then it is
assumed that kb = ka. In this case, the result B will overwrite the input data A. Otherwise,
if B does not begin in the same location as A, then it is assumed that the storage areas A
and B do not overlap.

Programmer. A. H. Morris.

CALL CVRB(A, ka,m,n,m¢,m,, B, kb)
CALL CVDB(4, ka, m,n,my, my, B, kb)
CALL CVCB(A, ka,m,n, my, my, B, kb)

A is an m X n matrix stored in the standard format, and m, and m, are integers
such that 0 < m, < m and 0 < m, < n. The arguinent ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that ka > m.

B is a 2-dimension array of dimension kb x £ where kb6 > m and € > my, + my 4 1.
CVRB i1s used if A and B are real arrays, CVDB is used if A4 and 13 are double precision
arrays, and CVCDB 15 used if A and B are complex arrays. When the routine is called, the
m, diagonals of A himmediately below the mauin dicgenal, the main diagonal, and the m,
diagonals immediately above the main diagonal are stored in band form in 8.

Remarks.
(1) Given a matris A (a,,), then these routines may be used to convert. A to band form

when the lower and upper bandwidihs vy and my, of A are known. H o, and iy are

not known, then the subroutines CVRI31, CVDBI, and CVCBI1 described below can
be used to convert A to band form.

B may begin in the same location as A. If B begins in the same location then it is
assumed that kb = ka. In this case, the result B will overwrite the input data A.
Otherwise, if B does not begin in the same iocation as A, then it is assumed that the
storage areas A and B do not overlap.

Programmer, A. H. Morris.

CALL CVRB1(A, ka,m,n, my, my, B, kb, €,IERR)
CALL CVDB1(4, ka,m, n,my, my, B, kb, £,[ERR)
CALL CVCB1(A4, ka,m,n, my,m,, B, kb, ¢ JERR)

A 1s an m X n matrix stored in the standard format. The argument ka is the
number of rows in the dimension statement for A in the calling program. It is assumed
that A 1s to be stored in band form in B. B is a 2-dimensional array of dimension kb x ¢
where kb > m. The argument £ is an estimate of the maximum number of diagonals
of A that will have to be stored.

CVRB1 is used if A and B are real arrays, CYDBI is used if A and B are double
precision arrays, and CVCB1 is used if A and B are complex arrays. IERR, m,, and
m,, are integer variables. When the routine is called, if £ specifies sufficient storage for
B then A 1s stored in band form in B. Also IERR is assigned the value 0, m, = the
number of diagonals of A below the main diagonal containing nonzero elements, and
m, = the number of diagonals above the main diagonal containing nonzero elements.

Error Return. If £ does not specify sufticient storage for B, then IERR is assigned the
value ms + m, -+ 1. Reset £ > IERR.

Remark. I may begin in the same location as A. If B begins in the same location
then it is assumed thal kb == ka. In this case, the result B will overwrite the input
data A. Otherwise, if B does not begin in the same location as A, then it is assumed
that the storage areas A and B do not overlap.

Programming. CVRBI calls the subroutine CVRB, CVDBI calls the subroutine
CVDEB, and CVCBI calls the subroutine CVCB. These routines were written by A.
H. Morris.

CONVERSION OF BANDED MATRICES
TO AND FROM SPARSE FORM

The following subroutines permit one to convert matrices to and from sparse form.

CALL MCVBS(A, ka,m,n,m,,m,, B,I8,J BNUM,JERR)
CALL DMCVBS(A, ka, m, n, my, my, B,1B,J B,NUM,IERR)
CALL CMCVBS(A, ka, ra,n, my, m,, B,IB,J B,NUM,IERR)

A is an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nouzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statment for A in the calling program. It is assumed that 0 < m, < m,0 <
m, < n, and ka > m.

It i1s assumed that A is to be stored in sparse form in the arrays B,IB,JB. NUM is
the estimated maximum number of elements that will appear in B and JB. It is assumed
that B and J B are of dimension max{1,NUM} and that i/ B is of dimension m + 1.

MCVES is used if A and B are real arrays, DMCVBS is used if A and B are double
precision arrays, and CMCVBS is used if A and B are complex arrays. IERR is an integer
variable. When the routine is called, if NUM specifies sufficient storage for B and J B, then
IERR is assigned the value 0 and A is stored in sparse form in B, IB, JB.

Error Return. If there is not sufficient storage in B and J B for the 1** row of A, then IERR
is set to 1 and the routine terminates. In this case, if ¢ > 1 then the first 1 — 1 rows of A
will have been stored in B and JB. Also IB(1), ..., IB(s) will contain the appropriate row
locations.

Programmer. A. H. Morris.

CALL MCVSB(A,[A,J Am,n, B, kb, ¢,m,,m, JERR)
CALL DMCVSB(A,IA,JAm,n, B kb, £, m,, m,]JERR)
CALL CMCVSB(A,TA,JA,m,n, B, kb, £, mq, my,(ERR)

A i3 an m X n sparse matrix stored in the arrays A, IA, JA. It is assumed that A is to
be stored in band form in B. B is a 2-dimensional array of dimension kb x £ where kb > m.
The argument £ is an estirnate of the maximum number of diagonals of A that will have to
be stored.

MCVSB is used if A and B are real arrays, DMCVSB is used if A and 8 are double
precision arrays, and CMCVSB is used if A and B are complex arrays, IKRIR, my,, and m,,
are integer variables. When the routine is called, if £ specifies sufficient storage for £ then
A is stored in band form in B. Also IERR 1s assigned the value O, m, - the number of
diagonals of A below the main diagonal containing nonzero elements, and my, -~ the number
of diagonals above the main diagonal containing nonzero elements,

259

Error Return. If £ does not specify sufficient storage for B, then IERR is assigned the value
me + my + 1. Reset £ > IERR.

Programmer. A. H. Morris.

260

CONVERSION OF BANDED REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The foliowing subroutines are available for converting banaed real matrices to and from
double precision form.

CALL BCVRD(A, ka,m,n, my, my,, B, kb)

A is an m x n real matrix stored in band form, m, the number of diagonals below
the main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in
the dimension statement for A in the calling program. It is assumed that 0 < m, < m,
0<m, <n,and ka > m.

B is a 2-dimeunsional double precision array of dimension kb x £ where kb > m and
£>my+my+ 1. When BCVRD is called, A is stored in band form: in B.

Programmer. A. H. Morris.
CALL BCVDR(A, ka,m,n, my, m,,, B, kb)

A is an m x n double precision matrix stored in band form, m, the number of diagonals
below the main diagonal containing nonzero elements, and m, the number of diagonals
above the main diagonal containing nonzero elements. The argument ka is the number of
rows in the dimension statement for A in the calling program. It is assumed that 0 < m, <
m,0<m, <n,and ka > m.

B is a 2-dimensional real array of dimension kb x £ where kb > m and £ > m,+m + 1.
When BCVDR is called, A is stored in band form in B.

Programmer. A. H. Morris.

261

THE REAL AND IMAGINARY PARTS OF A BANDED TOMPLEX MATRIX

If A = (ai;) is a complex matrix then let Re(A) = (Re(a,;)) and Im(4) = (Im(a,;))
denote the real and imaginary parts of A. If the matrix A is stored in band form, then the
following subroutines are available for obtaining Re(A) and Im(A) in band form.

CALL BREAL(A,ka,m,n,my,m,, B, kb, {,n,n, IERR)

A is an m X n complex matrix stored in band form, m, the number of diagonals below
the main diagonal containing nonzero elements, and m,, the number of diagonals above the
main diagonal containing nonzerc elements. The argument ke is the number of rows in
the dimension statement for A ix the calling program. It is assumed that 0 < m,; < m,
0<my < n,and ka > m.

B is a 2-dimensional real array of dimension kb x £ where kb > m. The input argument
£ is an estimate of the maximum number of diagonals of Re(A) which will have to be stored
(¢ € my+ my +1). IERR, n4, and n, are integer variables. When BREAL is called, if
£ specifies sufficient storage for B then Re(A) is stored in band form in B. Also, IERR
is assigned the value 0, n, = the number of diagonals of Re(A) below the main diagonal
containing nonzero elements, and n, = the number of diagonals of Re(A) above the main
diagonal containing nonzero elements.

Error Return. If £ does not specify sufficient storage for B, then IERR is assigned the value
v where v is the number of colurnns needed for B. Reset £ > v.

Programmer. A. H. Morris.
CALL BIMAG(A,ka,m,n,my,my, B, kb,£,ns,n, IERR)

A is an m x n complex matrix stored in band form, m, the number of diagonals below
the main diagonal containing nonzero elements, and m,, the nuinber of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in
the dimension statement for A in the calling program. It is assumed that 0 < m, < m,
0<my <n,and ka > m.

B 1s a 2-dimensional real array of dimension ké x £ where kb > m. The input argument
€ 1s an estimate of the maximum number of diagonais of Im(A) which will have to be stored
(£ < m¢+ my +1). IERR, n, and n, are integer variables. When BIMAG is called, if
2 specifies sufficient storage for I3 then Im(A) is stored in band form in B. Also, IKRR
is assigned the value 0, ng = the number of diagonals of Im(A) below the main diagonal
conbaining nonzero elements, and ny, = the number of diagonals of fm{A) above the main
diagonal containing nonzero elements.

Error Return. If £ does not specify suflicient storage for £, then 1KRR 15 assigned the value
v where v 13 the number of columns needed for B. Reset £ > v,

Programmer. A. H. Morris.

263

COMPUTING A + Bi FOR BANDED REAL MATRICES A AND B

Given the real m x n matrices A and B stored in band forin. Then the subroutine
BCVRC is available for obtaining the complex matrix A + Bs where { = \/—1.

CALL BCVRC(m,n, A,ka,my,my, B, kbng,n,,C ke, b vy, vy, JERR)

A and B are real m x n matrices stored in band formm, m, the number of diagonals
of A below the main diagonal containing nonzero elements, m, the number of diagonals of
A above the main diagonal containing nonzero elements, n, the number of diagonals of B
below the main diagonal containing nonzero elements, and n,, the number of diagonals of B
above the main diagonal containing nonzero elements. The argument ka is the number of
rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling program.

It is assumed that A + Bi is to be stored in band form in C. C is a 2-dimensional
complex array of dimension k¢ x £ where k¢ > » The input argument £ is an estimate of the
maximum number of diagonals of A + Bi which will have to be stored (£ > max{mg,n.} +
max{m,,n,} + 1). IERR, v, and v, are integer variables. When BCVRC is called, if £
specifies sufficient storage for C then A + Br is stored in band form in C. Also IERR is
assigned the value 0, v, == the number of diagonals of A + Bi below the main diagonal
containing nonzero elements, and v, = the number of diagonals of A + Bi above the main
diagonal containing nonzere elements.

Error Return. If £ does not specify sufficient storage for C, then IERR is assigned the value
v where v is the number of columns needed for C'. Reset £ > v

Programmer. A. H. Morris.

265

TRANSPOSING BANDED MATRICES
The following subroutines are available for iransposing banded matrices.

CALL BPOSE(A, %a,m,n, me, my, B, kb)
CALL DBPOSE(A, ka,m,n,mq,m,,, B, kb)
CALL CBPOSE(A, ka,m,n,my, my, B, kb)

A is an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m, < m,0 <
m, < n, and ka > m.

B is a 2-dimensional array of dimensior kb x £ where k6 > nand £ > m,+ m, + 1.
BPOSE is used if A and B are real arrays, D3POSE is used if A and B are double precision
arrays, and CBPOSE is used if A and B are complex arrays. When the routine is called,
the transpose A! of A is stored in band form in B.

Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A, H. Morris.

ADDITION OF BANDED MATRICES

Let A and B be m X n matrices stored in band form. The following sub outines a:
available for computing the sum C = A + B.

CALL BADD(m,n, A,ka,ms,my, B, kb,n_,n,,C, kc,,v,,v,,JERR)
CALL DBADD(m,n, A, ka,my, m,, B, kb,ns,n,,C ke, €, vy, vy, JERR)
CALL CBADD(m,n, A, ka,my,m,, B, kb ng,n,,C, ke, 8 ve, vy, JERR)

A and B are ' X n matrices stored in band form, m, the number of diagonals of A
below the main diagonal containing nonzero elements, m, the number of diagonals of 4
above the main diagonal containing nonzero elements, n, the number of diagonals of B
below the main diagonal containing nonzero elements, and n, the number of diagonals of £
above the main diagonal containing nonzero elements. The argument ka is the number of
rows in the dimension statement for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling program.

It is assumed that A + B is to be stored in band forin in C. C is a 2-dimensionasl
array of dimension k¢ x € where k¢ > m. The input argument € i1s an estimate of the
maximum number of diagonals of A + B which will have to be stored (€ < max{rig, ne} i
max{my,n,} 1), BADD is used if A and B are real arrays, DBADD is used if A aud 12
are double precision arrays, and CBADD is used if A and B are complex arrays. KRR,
vy, and v, are integer variables. When the routine is called, if € specities suflicient storage
for C then A B s computed and stored in band forin in €. Also 1ERR 1s assigned the
value 0, v, the number of diagonals of A t+ I3 below the main diagonal containing nonzero
clements, and v, the number of diagonals of A + B above the main diagonal containing,

noazero vlements.

Error Return. If ¢ does not specily sullicient storage for ¢ then IERR s assigned the value

1 where v ig the number of columns needed for €0 Reset £ 70 v,

Remarks 1f riy, - ny then ¢ may beyin i the saane location as A 1 ¢ begins in the sane
focation as A, then it s assumed that ke KA and that the arrays A and 8 do not overlag
In this case, the result ¢ will overwrite the mmput data A Sialarly if iy o 1 then ¢ may
begin in the same Deavon as 84 when Ae Ab and A and B do not overlap. Otherwise, i«

does not begin an the same location as A or B, then 1t s assumed that the torave arec b,

' does not overlap with the storape arcas Tor A and B0 Do this case there mno restie to

o ke (other than the customary restrction that Ae)
Example If /¢ A then £ oay be weened any value o 1 T thos case, ¢ will oo
ocly the mun diagoaal of the corommes 4 o B oand e, e, 0

Prograommmaer A L Moo

5UBTRACTION OF BANDED MATRICES

Let A and B be m X n matrices stored in band form. The following subroutines are
avallable for computing the ditference C == A - B,

CALL BSUBT(m,n, A ka,my,my, B, kb, ne, n,,C, ke, 2, vy, vy JERR)
CALL DBSUBT(m,n, A, ka,ms,my, B, kb, ny,n,,C, ke, vy, v,,JERR)
CALL CBSUBT(m,n, A, ka, m¢,my, B, kb,nyn,,C, ke, €, v, v, ,JERR)

A and B are m x n matrices stored i; band form, m, the number of diagonals of A
bLelow the main diagonal containing nonzero elements, m, the number of diagonals of A
above the main diagonal containing nonzero elements, n, the number of diagonals of B
below the main dizgonal containing nonzero elements, and n, the number of diagonals of B
above the main diagonal containing nonzero elements. The argum 'nt ka is the number of
rows in the dimension staterment for A in the calling program, and kb the number of rows
in the dimension statement for B in the calling prograra.

It is assumed that A — B is to be stored in band form in C. C is a 2-dimensional
array of dimension k¢ x € where k¢ > m. The input argument £ is an estimate of the
maximum number of diagonals of A -- B which will have to be stored (¢ < max{m, n¢} +
max{my,n,} +1). BSUBT is used if A and B are real arrays, DBSUBT is used if A and
B are double precision arrays, and CBSUBT is used if A and B are complex arrays. IERR,
ve, and v, are integer variables. When the routine is called, if £ specifies sufficient storage
for C then A — B is computed and stored ir band form in C. Also [ERR is assigned the
value 0, v, = the number of diagonals of A- B below the main diagonal containing nonzero
elements, and v, = the number of diagonals of A ~ B above the main diagonal containing
nonzero elements.

Error Return. If € does not specify sufficient storage for C, then IERR is assigned the value
v where v 18 the number of coluinns needed for C. Reset £ > v.

Remarks. If m; > n, then C' may begin in the same location as A. If C begins in the same
location as A4, then it 1s assumed that kc = ka and that the arrays A and 3 do not overlap.
In this case, the result C will overwrite the input data A. Sunilarly, if mg < n, then C may
begin in the same location as B when ke -~ kb and A and B do not overlap. Otherwise, if
does not begin in the same location as 4 or B, then it 1s assumed that the storage area for
C does not overlap with the storage areas for A and B. In this case there is no restriction

on k¢ (other than the customary restriction that ke > m).

Example If 3 A then € may be assigned any value > 1. 1o this case, € will contain only
the main diagonal of the zero matrnix A B and vy v, 0.

Programmer. A. H. Morns

[S
-3
—

MULTIPLICATION OF BANDED MATRICES

Let A and B be matrices stored in band form. The following subroutines arce availao:
for computing the product C == AB.

CALL BPROD(m,n 2 A ka,me, my, 13,kb ng,ng,C, ke, nc, vy, vy JERR)
CALL DBPROD(m,n, ¢, A, ka,my,my, B, kb, ng,ny, C,kc,ne,ve, vy, IERR)
CALL CBPROD(m,n, ¢t A, ka,my,my, B, kb, iy, ny,C, ke, ne,ve, vy, JERR)

A is an m X n matrix stored in band form, m, the number of diagonals of A below the
main diagonal containing nonzerc elements, and m,, the number of diagonals of A above the
main diagonal containing nonzerc elements. B is an n x £ matrix stored in band form, n,
the number of diagonals of B below the main diagonal containing nonzero elements, and n,
the number of diagonals of B above the main diagonal containing nonzero ele. ients. The
argument ka is the number of rows in the dimension statement for A in the calling program,
and kb the number of rows in the dimension staterment for 8 in the calling progran:. I. is
assumed that ka > m and kb > n.

It is assumed that AR is to be stored in band form in C. C i3 a 2-dimensional array of
dimension k¢ x nc where ke > m. The input argument nc is an estimate of the maximuin
number of diagonals of AB which will have to be stored (nc < min{n — i,m,+ n,} +
min{f - 1,my + ny} -+ 1). BPROD is used if A,B, and C are real arrays, DBPROD is
used if A,B, and C are double precision arrays, and CBPROD is used if A,B, and ¢ are
complex arrays. IERR, v, and v,, are integer variables. When the routine is called, if nc
specifies sufficient storage for C' then AB is computed and stored in band form in C. Also,
TERR is assigned the value 0, v, = the number of diagonals of AB below the main diagonal
containing nonzero elerments, and v, == the number of diagonals of AB above the main
diagonal containing nonzero elements.

Error Return. If nc does not specify suflicient storage for C, then IERR is assigned the
value v where v is the number of columns needed for C. Reset nc > v.

Note. 1t is assumed that the storage area for C' does not overlap with the storage areas for
A and B.

Programmer. A. . Morris.

PRODUCT OF A REAL BANDED MATRIX AND VECTOR

Let A be a real m % n matrix stored in band form. Then the following subroutines are
available for muliiplying A with a real vector.

CALL BVPRD(m,n, A ka,m,, my, z,y)

A is an m X n matrix stored 1n band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A 1 the calling program. It is assumed that 0 < m; < m,0 <
my < n, and ka > m.

The argument z is a column vector of dimension n and y an array of dimension m.
When BVPRD is called, the product Az is computed and stored in y.

Nemark. [t 1s zssumed that the arrays A, 2, y do not overiap.
Programmer. A. H. Morris.

CALL BYPRD1(m,n, A, ka,mg, m,,, z,y)

A is an m x n matrix stored in band form, m, the number of diagonals below the
main diagonal contalning nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m, < m,0 <
my < n, and ka > m.

The arguments z and y are column vectors of dimension n and m respectively. When
BVPRDI is called, Az + y is computed and stored in y.

Remark. It is assumed that the arrays A, z, y do not overlap.

Programmer. A. H. Morris.

CALL BTPRD(m,n, A, ka,my, mn,, z,y)

A i8 an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the

dimension statement for A In the calling progratn It is assumed that 0 < rn, <
my, <2 n, and ka > m.

m, 0 <

The argument z 1s a row vector of dimension m and y an array of dimension n. When
BTPRD is called, the product £A 1s computed and stored in y.

Remark. It Is assumed that the arrays A, 7, y do not overlap.

Programmer. A. H. Morris.

CALL BTPRD1i(m,n, A, ka,my,my, x,y)

Als an m X ny stored in band form, vn, the number of diagonais below the
main diagonal contai. ymzero elements, and m, then number of diagonals above the
main diagonal ccntan nzoro elements. The argument ke is the number of rows in the
dimension statement . n the calling program. It is assumed that 0 < m, < m,0 <

my < n, and ka > m.

The argurments 1 21y are row vectors of dimension m and n respectively. When
BTPRDI1 is called, z4 + computed and stored in y.
Remark. It is assumed '11. the arrays A, z, y do not overlap.

Programmer. A. H. 11/

276

PRODUCT OF A DOUBLE PRECISION BANDED MATRIX AND VECTOR

Let A 2 a double precigion m x n matrix stored in band form. Then the following
shroutines are available for multiplying A with a double piecision vector.

CALL DBVPD(m,n, A ka,mq,my,z,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzerc elements, and m, the number of diagonals above the
main diagonal centaining nonzero elements. The argument ka is the number of rows in the
dimension staternent for A in the calling program. It is assumed that 0 < my < m,0 <
m, < n, and ka > m.

The argument x is a column vector of dimension n eznd y an array of dimension m.
A, z,y are double precision arrays. When DBVPD is called, Az is computed and stored
in y.

Remark. (t is agsumed that the arrays A, =, y do not overlap.
Programmer. A. H. Morrns,

CALL DBVPDi(m,n, A ka,me,m,, 2,y)

A i3 an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension staternent for A in the calbing program. It is assumed that 0 < m, < m,0 <
m, < n, and ka > m.

The arguments z and y are column vectors of dimension n and m respectively. A,z y
are double precisivn arrays. When DBVPDI is called, Az + y is computed and stored in y.

Remark. 1t is assumed that the arrays A, r, y do not overlap.
Programmer. A. 1. Morris.

CALL DBTPD(m,n, A ka,m¢, my,z,y)

A an m X nomatrix stored in band form, m,; the number of diagonals below the
main diagonal contaiming nonzero elements, and my, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A i the calling program. 1418 assumed that 0 < my, < m, 0 -

my, << n, ard ka > m

The argument z 13 a row vector of dimension i and y an array of dimension n. A, ry
are double precision arrays. When DRTPD is called) 74 is computed and stored in y

re
~3
-3

Remark. It is assumed that the arrays A, z, y do not overlap.

Programmer. A. H. Morris.

CALL DBTPDi(m,n, A ka,m¢, my,z,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
‘dimension statement for A in the calling program. It is assumed that 0 < m, < m,0 <
m, < n, and ka > m.

The arguments = and y are row vectors of dimension m and n respectively. A, z,y are
double precision arrays. When DBTPDI is called, 2A + y is computed and stored in y.

Remark. It is assumed that the arrays A, z, y do not overlap.

Programmer. A. H. Morris.

278

PRODUCT OF A COMPLEX BANDED MATRIX AND VECTOR

Let A be a complex m x n matrix stored in band form. Then the following subroutines
are available for multiplying A with a complex vector.

CALL CBVPD(m,n, A, ka,ms,my, z,y)

A is an m X n malrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elemnents. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m, < m,0 <
my < n, and ka > m.

The argument z is & column vector of dimension n and y an array of dimension m.
A, z,y are complex arrays. When CBVPD is called, Az is computed and stored in y.

Remark. It is assumed that the arrays A, z, y do not overlap.
Programmer. A. H. Morris.

CALL CBVPDI1(m,n, A, ka,ms,my, z,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m, < m,0 <
my < n, and ka > m.

The arguments z and y are column vectors of dimension n and m respectively. A, z,y
are complex arrays. When CBVPDI is called, Az + y is computed and stored in y.

Remark. It is assumed that the arrays A, z, y do not overlap.
Programmer. A. H. Morris.

CALL CBTPL/m,n, A ke, my,my, 7,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagnnal containing nonzero elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m,; < m, 0 <
m, < n, and ka > m.

The argument x is a row vector of dumension m and y an array of dirnension 1. A, z,y
are complex arrays. When CBRTPD 19 called, A4 18 computed @ ad stored in y.

Remark. It is assumed that the arrays A, r, y do not overlap.

279

Programmer. A. H. Morris.

CALL CBTPD1(m,n, A, ka,m,, my, z,y)

A is an m X n matrix stored in band form, m, the number of diagonals below the
main diagonal containing nonzero elements, and m, the number of diagonals above the
main diagonal containing nonzcro elements. The argument ka is the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < m, < m,0 <
m, < n, and ka > m.

The arguments z and y are row vectors of dimension m and n respectively. A, z,y are
complex arrays. When CBTPD1 is called, A4 + y is computed and stored in y.

Remark. It is assumed that the arrays A, z, y do not overlap.

Programmer. A. H. Morris.

280

L, NORM OF A REAL BANDED MATRIX

If A = (ay;) is a real banded matrix then the following functions are available for
computing the £; norm ||A||; == max; Z;|ay;| of A.

BINRM(A, ka,m,n,m;,m,)
DBINRM(A, ka, m,n, me, m,)

BINRM is used if A is a real array and DBINRM is used if A is a double precicion
array. BINRM is a real function and DBINRM a double precision function.

The function has the value ||A||; for any m x n matrix A stored in band form. The
argument my is the number of diagonals below the main diagonal containing nonzero ele-
ments, m, the number of diagonals avove the main diagonal containing nonzero elements,
and ka the number of rows in the dimension statement for A in the calling program. It is
assumed that 0 < my < m, 0 < my, < n,and ka > m.

Remark. DBINRM must be declared to be of type DOUBLE PRECISION in the calling
program.

Programming. BINRM calls the function SASUM and DBiNRM calls the function DASUM.,
BINRM and DBINRM were written by A. H. Morris.

281

L. NORM OF A REAL BANDED MATRIX

If A = (ay) is a real banded matrix then the following functions are available for
computing the €, norm ||A||co = max, ¥;|a,;| of A.

BNRM(A, ka,m,n,my,my)
DBNRM(A, ke, m, n, me, my)

BNRM is used if A is a real array and DBNRM is used if A is a double precision array.
BNRM is a real function and DBNRM a double precision function.

The function has the value ||A||, for any m X n matrix A stored in band form. The
argument my is the number of diagonals below the main diagonal containing nonzerc ele-
ments, m,, the number of diagonals above the main diagonal containing nonzero elemnents,
and ka the number of rows in the dimension statement for A in the calling program. It is
assumed that 0 < my < m, 0 < m, < n, and ka > m.

Remark. DBNRM must be declared to be of type DOUBLE PRECISION in the calling
program.

Programmer. A. H. Morris.

SOLUTION OF BANDED SYSTEMS OF REAL LINEAR EQUATIONS

Let A be a nonsingular n X n real matrix stored in band form and b a real column vector
of dimension n. The subroutine BSLV is available for solving the systemn of equations Az = b,
and the subroutine BSLV1 is available for solving the transposed system of equations A*z ==
b. On an initial call to either routine, partial pivot Gauss elimination is first employed to
obtain an LU decomposition of A, and then the equations are solved. BSLV and BSLV1
always generate the same LU decomposition of A. After the decomposition is obtained on
an initial call to BSLV or BSLV1, either routine may be called to solve a new system of
equaticns Az = r or A*r = r without having to redecompose the matrix A.

CALL BSLV(MO,A4, ka,n,my, my, X,IWK,IND)
CALL BSLV1I(MO,A, ka,n,m,, m,, X, IWK,IND)

BSLV is called for solving Az = & and BSLV1 is called for sclving A*z = b. The
argument my, is the number of diagonals below the main diagonal of A containiag nonzero
elements, and m, the number of diagonals above the main diagonal contairing nonzero
elements. It 1s assumed that n > 1, 0 < my < 5, and 0 < my < n. MO 18 an 1nput
argument which specifies if BSLV or BSLV1 is being called for the first time. On an initial
call, MO = 0 and we have the following setup:

A i1s a 2-dimensional array of dimension ka x m where ka > nand m > 2m, +my + 1.
On input, the first m, + m, + 1 columns of the array contain the matrix A in band form.
When the routine terminates, the array A will contain the upper triangular matrix U of
the LU decomposition and the multipliers which were used to obtain it.

X is an array of dimenston n or larger. On input, X contains the vector b. On output,
X will contain the solution of the systemn of equations.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in [IWK.

On an initial call to BSLV or BSLV1, IND 1s an integer variable that reports the status
of the resulis. When the routine terminates, IND has one of the following values:

INDD v 0 The system of equations was solved.

IND = -1 Either n << 0 or ka < n.

IND = -2 Either my < 0 or my > n.

IND - -3 Either m, < 0or m, > n.

IND -k Column k of A has been reduced to a column containing only

Z€ros.

After an inal call to BSLY or BSLVI O IND 0 on ontput then either routine may
be called with MO /A0 When MO / 0 it 1s assumed that only & may have been moditied
BSLV is called for solving the new set of equations Ar b and BSEV T s calied for solviny,
the new et of equations A'r b The routine employs the LU decomposition obianed on
the mitial call to BSLY or BSLVI to solve the new set of equations On mput, X contaan:

285

the new vector b. On output, X will contain the solution to the new set of equations. In
this case, IND is not referenced by the routine.

Programming. BSLV and BSLV1 employ the subroutines SNBFA ,SNBSL ,SAXPY,SSCAL,
SSWAP and the {unctions ISAMAX and SDOT. SNBFA and SNBSL were written by E. A.
Voorhees (Los Alamos Scientific Laboratory) and modified by A. H. Morris. The original
versions of SNBFA and SNBSL are distributed by the SLATEC library.

ReT

COMPUTATION OF THE CONDITION NUMBER
OF A REAL BANDED MATRIX

If A is a real n X n banded matrix then the following subroutine is available for esti-
mating the ¢; condition number cond;{A) of A.

CALL B1CND(A, ka, n, m¢, m,,COND,IWK, WK, IND)

A is a real n X n matrix stored in band form. A,ka,m,, m,, and IWK are the same
arguments used for the subroutines BSLV and BSLV1, the only exception being that IWK
now is an array of dimension 2n or larger.

COND is a real variable. When BICND is called, then the subroutine BSLV ig first
invoked to obtain an LU decomposition of A which is stored in A and IWK. Then COND is
assigned the value 0 if A is singular and an approximation of the condition number cond (4)
if A is nonsingular.

WK i3 an array of dimension 2n or larger that is a work space for the routine.

IND 1s an integer variabie that reports the status of the results. When BICND termi-
nates, IND has one of the following values:

IND == 1 A s singular and COND . 0.

IND - 0 A s nonsingular and COND 18 an approximation of the condition
number of A.

IND - -1 Either n < 0or ka < n.

IND 2 Either my < Qor m, > n.

IND 3 Kither iy, < 0O or my > n.

When an error is detected, the routine immediately terminates,

Usage. After BICND terminates, if IND 0 then BSLV or BSLVI may be called with
MO /0 to solve a system of equations. To this ciase A ka,nomyg, my, and IWHR are used by
BSLV and BSLVI and must not be modified by the user.

Algorithm. A modification of the Hager procedure by Nicholas J. Hhgham {University of
£ § I Y k \ A

Muanchester, England) s used.

Programming. BICND emnploys the subrontimes SONEST, BSLV, BSLVE SNBEFA | SNBsL,
SCOPY) SAXPY, SsCALL and SSWAEP . and the functions BINRM, SDOT, SASUN and
ISAMANX. BIOND was woitten by A H Morris, SONEST was written by NoJo Higham

and modified by AL Lorns.

References.

(1) Higham, N T CFORTERAN codes for Bstimating the One Norm of o Real or Congples
Matrix, with Appheations to Condition Fatination,” ACM Trans. Math Software 14
(1988} pp 381 396

(2) L“Algorithm 674: “FORTRAN codes for Estimating the One-Neorm of a Real
or Complex Matrix, with Applications to Condition Estimation,” ACM Trans. Math
Software 15 (1989), p. 168.

At

DOUBLE PRECISION SOLUTION OF BANDED SYSTEMS
OF REAL LINEAR EQUATIONS

Let A be a nonsingular n X n double precision matrix stored in band form and b a
double precision column vector of dimension n. The subroutine DBSLV is available for
solving the system of equations Az == b, and the subroutine DBSLV1 ig available for solving
the transposed system of equations A*x = . On an initial call to either routine, partial
pivot Gauss elimination is first employed to obtain an LU decomposition of A, and then the
equations are solved. DBSLV and DBSLV1 always generate the same LU decomposition
of A. After the decoimposition is obtained on an initial call to DBSLV or DBSLV1, either
routine may be cailed to solve a new system of equations Az = r or Atz = r without having
to redecompose the matrix A.

CALL DBSLV(MO, A, ka, n, my, my, X, JWK,IND)
CALL DBSLV1(MO, A, ka,n, m¢, m,, X JWK IND)

DBSLYV is called for solving Az = b and DBSLV1 is called for solving A'z = b. The
argumeni m, is the number of diagonals below the main diagonal of A containing nonzero
elements, and m, the number of diagonals above the main diagonal containing nonzero

-~

elements. It 1s assumed that n > 1, 0 < my < n, and 0 < m, < n. MO is an input

argument which specifies if DBSLV or DBSLV1 is being called for the first time. Cn an
initial call, MO = 0 and we have the following setup:

A 1s a double precision 2-dimensional array of dimension ka x m where ka > n and
m > 2my+ my+1. On input, the first mg+ m, +1 columns of the array contain the matrix
A in band forrn. When the routine terminates, the array A will contain the upper triangular
matrix U of the LU decomposition and the multipliers which were used to obtain it.

X is a double precision array of dimension n or larger. Cn input, X contains the
vector 6. On ouwput, X will contain the solution of the system of equations.

IWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in IWK.

On an initial call to DBSLV or DBSLV1, IND is an integer variable that reports the
status of the resuits. When the routine terminates, IND has one of the following values:

IND == 0 The system of equations was solved.
INID == -1 Either n < 0or ka < n.
IND - -2 Fither mny < Qor my > n.

At
IND = -3 Either m, < Qorm, > n.
IND -k Colimn k of A has been reduced te a column containing only

LeTUS,

After an initial call to DBSLY or DBSLVi if IND 0 on output then either routine
may be called with MO / 0. When MO/ 01t s assumed that only b may have been mod-
iiied. DBSLV s called for solving the new set of equations Ax b and DBSLVE is called

249

for solving the new set of equations A'z = b. The routine employs the LU decomposition
obtained on the initial call to DBSLV or DBSLV1 to solve the new set of equations. On
input, X contains the new vector . On output, X will contain the solution to the new set
of equations. In this case, IND is not referenced by the routine.

Programming DBSLV and DBSLVI1 employ the subroutines DBFA, DBSL, DAXPY,
D3CAL, DSWAP and the functions IDAMAX and DDOT. DBFA and DBSL are adap-
taticns by A. H. Morris of the subroutines SNBFA and SNBSL, written by E. A. Voorhees
(Los Alamos Scientific Laboratory). SNBFA and SNBSL are distributed by the SLATEC
library.

290

COMPUTATION OF THE CONDITION NUMBER OF A
DOUBLE PRECISION BANDED MATRIX

If A is a double precision n x n banded matrix then the following subroutine is available
for estimating the £; condition number cond;{A) of A.

CALL DB1CND(A, ka, n, mg, m,,COND,IWK,WK,IND)

A 1s a double precision n x n matrix stored in band form. A,ka,m,m,, and IWK
are the same arguments used for the subroutines DBSLV and DBSLV1, the only exception
heing that IWK now is an array of dimension 2n or larger.

COND is a double precision variable. When DBI1CND is called, then the subroutine
DBSLV is first invoked to obtain an LU decomposition of A which is stored in 4 and IWK.
Then COND is assigned the value 0 if A ig singular and an approximation of the condition
number cond; (A) if A is nonsingular.

WK is a double precision array of dimension 2n or larger that is a work space for the
routine.

IND is ar integer variable that reports the status of the resulis. When DB1CND
terminates, IND has one of the following values:

IND = 1 Aissingular and COND = 0.

IND = 0 A is nonsingular and COND is an approximation of the condition

number of A,

IND = —1 Either n < 0 or ka < n.

IND = -2 Either m¢ < 0 or my > n.

IND = -3 Either m, < 0 or my > 2.

When an error is detected, the routine immediately terminates.

Usage. After DBICND terminates, if IND == 0 then DBSLV or DBSLVI may be called
with MO z 0 to solve a system of equations. In this case A ka,n, my, my and WK are
used by DBSLV and DBSLV1, and must not be modified by the user.

Algorithm. A modificatic of the Hager procedure by Nicliolas J. Higham (University of

Manchester, England) is v d.

Programming. DBICND employs the subroutines DONEST, DBSLV, DBELVI, DBFA,
DBSL, DCOPY, DAXPY, DSCAL, and DSWAY, and the functions DIBINRM, DDOT,
DASUM, and IDAMAX. Di3ICND was written by A. . Morris. DONEST is the double
precision form of the subroutine SONEST, written by N. J. Highwn and modified by AL 1L
Morris.

References.

(1) Higham, NJ. “FORTRAN codes for Estimating the One Norm of 1 Real or Conples
Matriz. with Appheations to Condition Estimation,” ACM Trans. Math Scftware 14
(1988), pp. a1 396.

{

(2)

___“Algorithm 674: “FORTRAN codes for Estimating the One-Norm of a Real
or Complex Matrix, with Applications to Condition Estimation,” ACM Trans. Math
Software 15 (1983), p. 168,

SOLUTION OF BANDED SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n x n complex matrix stored in band form and & a complex
column vector of dimension n. The subroutine CBSLV is available for solving the system
of equations Az = b, and the subroutine CBSLV1 is available for solving the transposed
system of equations A’z = b. On an initial call to either routine, partial pivot Gauss
elimination is first empioyed to obtain an LU decomposition of A, and then the equations
are solved. CBSLV and CBSLV1 uslways generate the same LU decomposition of A. After
the decornposition is obtained oa an initial call to CBSLV or CBSLV1, either routine may be
called to solve a new system of equations Az = r or A*z = r without having to redecompose
the matrix A.

CALL CBSLV(MO,4, ka,n, m,, m,, X, IWK,IND)
CALL CBSLV1(MO,4, ka,n, my, m,, X,IWK,IND)

CBSLV is called for solving Az = b and CBSLV1 is cailed for solving Atz == b. The
argument my is the rumber of diagonals below the main diagonal of A containing nonzero
elements, and m, the number of diagonals above the main diagonal containing nonzero
elements. It is assumed that n > 1,0 < my < n, and 0 < m, < n. MO is an input
argument which specifies if CBSLV or CBSLV1 is being called for the first time. On an
initial call, MO = 0 and we have the following setup:

A is a complex array of dimension ka x m where ke > n and m > 2m, + m, + 1. On
input, the first m,+m, + 1 columns of the array contain the matrix A m band form. When
the routine terminates, the array 4 will contain the upper triangular matrix U of the LU
aecomposition and the multipliers which were used to obtain it.

X i3 a complex array of dimension » or larger. Cn input, X contains the vector b. On
output, X will contain the solution of the system of equations.

JWK is an array of dimension n or larger for internal use by the routine. The pivot
indices involved in the LU decomposition are stored in [WK.

On an initial call to CBSLV or CBSLV1, IND is an integer variable that reports the
status ol the results. When the routive terminates, IND has one of the following values:

IND = 0 The system of equations was solved.

IND == -1 Either n <0 or ka < n.

IND = --2 Either m, < 0 or m; > n.

IND == -3 Either my, < 0 or my, > n.

IND ==k Column k of A has been reduced to a column containing only
Zeros,

After an initial cali to CBSLV or CRSLVI, if IN = 0 on output then either routine
may be called with MO/ 0. When MO # 0 it is assumed that only & may have been mod-
tfied. CBSLV is called for solving the new set of equations Az == b, and CBSLVI is called
for solving the new set of equations Alz = 6. The routine employs the LU decamposition

293

obtained on the initial call to CBSLV or CBSLV1 to solve the new set of equations. On
input, X contains the new vecter b. On output, X will contain the soluticn to the new set
of equations. In this case, IND is not referenced by the routine.

Programming. CBSLV and CBSLV1 employ the subroutines CBFA, CBSL, CAXPY,
CSCAL, CSWAPF and the functions ICAMAX and CDOTU. CBFA and CBSL are adapta-
tions by A. H. Morris of the subreutines SNBFA and SNBSL, written by E. A. Voorhees
(Los Alamos Scientific Laboratory). SNBFA and SNBSL are distributed by the SLATEC
library.

294

STORAGE OF SPARSE MATRICES

A matrix is said tc be sparse if it contains sufficiently many zero elements for it to be
worthwhile to use special techniques that avoid storing and operating with the zeros. The
scheme adopted for storing a sparse m X n matrix {a;) requires three 1-dimensional arrays
A, TA, JA. The array A contains the nonzerc elements of the matrix, stored row by row.
The array JA contains the column numbers of the corresponding elemeuts of the A array;
ie., if A(k) contains {a,;) then JA(k) = j. The elements of a row of the matrix may be
given in any order in A.

IA is an array containing m+1 integers which specify where the rows of the matrix are
stored in A. For ¢ < m, I A(t) is the index of the location in A where the 1** row information
begins. It is assumed that the rows are stored sequentially; i.e., that J4(1) < --- < TA(m).
IA(m+1) is set so that JA(m+1) — I A(1) = the number of elements stored in A. For i < m,
if TA(Y) < TA(i + 1) then A(¢) is the first entry of the i** row of the matrix in A where
£ = TA(7). Otherwise, if TA(¢) == TA(f + 1) then no entries for the 1** row of the matrix are
stored in A. This can occur only if the i** row of the matrix consists entirely of zeros. If
this occurs then the £** row is called a null row of A. For any § < m, TA(s + 1) — TA(i) is
the number of entries for the 1** row of the matrix that are stored in A. For convenience,

TA(s + 1) — TA{¢) is called the length of the 1** row.

Example. The matrix

ayy Gy 0 0 0 0 0 ais
0 0 0 O 0 0 0 0

0 0 0 0 0 0 as7 asg
0 0 Q43 0 0 0 0 0

can be stored as follows:

A: an[aw[a12[as7]ass [ass]
Ja: []sl2]7][8]3]
1a: [t aflafe]7

The storage of the elements a;y a;2 ais in the order aj; ayg a;z is permissable. The
clements of a row of the matrix may be given in any order desired.

Remark. it is not required that each a,; in A be nonzero.

205

CONVERSION OF SPARSE MATRICES TO AND FROM
THE STANDARD FORMAT

The following subroutines permit one to convert sparse matrices to and from the stan-
dard format.

CALL CVRS(A, ka,m,«, B,IB,JB NUM,ERR)
CALL CVDS(A, ka,m,n, B, IB,JB NUM,ERR)
CALL CYCS(A,ka,m,n,B,1B,JBNUM,ERR)

A is an m X n matrix stored in the standard format. The argument ka is the number
of rows in the dimension statement for A in the calling program. It is assumed that A is to
be stored in sparse form in the arrays B, IB, JB. CVRS is used if A is a real matrix and
B a real array, CVDS is used if A is a double precision matrix and B a double precision
array, and CVCS is used if A is a complex matrix and B a complex array.

The input argument NUM is the estimated maximum number of elements that will
appear in B and JB. It is assumed that B and JB are of dimension max{1, NUM} and
that IB is of dimension m + 1. IERR is an integer variable. When the routine is called, if
NUM specifies sufficient storage for B and JB, then A is stored in B, IB, JB and IERR
is assigned the value 0.

Error Return. If it is found that there is not sufficient storage in B and J B for the it* row
of A, then IERR is set to ¢ and the routine terminates. In this case, if £ > 1 then the first
t — 1 rows of A will have been stored in B and J B, and IB(1), ..., IB(i) will contain the
appropriate row locations.

Remark. No zero elements of A are stored in B, and the elements of each row of B are
ordered so that the column indices of the elements of the row are in ascending order.

Example. If A is the m x n zero matrix then NUM can be set to 0. In this case the result

Note. It is assumed that the storage areas A and B do not overlap.

Programmer. A. . Morris.

CALL CVSR(4,1A,JA, B, kb1 n)
CALL CVSD(A, A, JA, B, kb m, n)
CALL CVSC(A,IA,JA, B, kb,m,n)

A8 an m X n sparse matrix stored in the arrays A, [A, JA, and B s a 2-dimensional
array of dimension kb x nn where kb > m. CVSR 18 used if A and I} are real arrays, CVSD
s used 1 A and I are double precision arrays, and CVYSC s vsed if A and B are complex
ari ys. When the routine is called, the matrix A 1s stored 1 the array B in the standard

format.

297

Note. It iz agsumed that the storage arcas A and B do not overlap.

Programmer. A. H. Morris.

248

CONVERSION OF SPARSE REAL MATRICES
TO AND FROM DOUBLE PRECISION FORM

The following subroutines are available for converting sparse real matrices io and from
double precision form.

CALL SCVRD(A,JA,JA, B,[B,JB,m)

A is a sparse real matrix stored in the arrays A, A, JA. A is a real array and B a
double precision array. If A and JA contain k elements then it is assumed that B and JB
are arrays of dimension k. It is also assumed that the matrix A has m > 1 rows and that
IB iz an array of dimension m + 1. SCYRD stores the matrix A in double precision form
in B, IB, JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays I A, JA and IB, J B reference different storage areas.

Programmer. A. H. Morris.
CALL SCVDR(A,IA,JA,B,IB,JB,m)

A is a sparse double precision matrix stored in the arrays A, IA, JA. A is a double
precision array and B a real array. If A and JA contain k elements then it is assumed that
B and J B are arrays of dimension k. It is also assumed that the matrix 4 has m > 1 rows
and that I B is an array of dimension m+1. SCVDR stores the matrix A in single precision

formin B, [B, JB.

Remarks.
(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays 1A, JA and IB, J B reference different storage areas.

Programner. A, H. Morrie,

204

THE REAL AND !IMAGINARY PARTS OF A SPARSE COMPLEX MATRIX

If A = (ai;) is a complex matrix then let Re(A) = (Re(a,y)) and Im(A) = (Im(a;))
denote the real and imaginary parts of A. If the matrix A is stored in sparse form, then
the following subroutines are available for obtaining Re(A) and Im(A) in sparse form.

CALL CSREAL(A,IA,JA,B,1B,JB,m)

A 18 a sparse complex matrix stored in the arrays A, A, JA. A is a complex array
and B a real array. If A and JA contain k elements then it is assumed that B and JB are
arrays of dimension k. It is also assnmed that the matrix A has m > 1 rows and that IB
is an array of dimension m + 1. CSREAL stores Re(A) in sparse form in B, IB, JB.

Remarks.

(1) No zero eiements of Re(A) are stored in B.
(2) It is assumed that the arrays IA, JA and IB, J B reference different storage areas.

Programmer. A. H. Morris.

CALL CSIMAG(A,IA,JA, B, IB,J B, m)

A is a sparse complex matrix stored in the arrays A, A, JA. A is a complex array
and B areal array. If A and JA contain k elements then it is assumed that # and J B are
arrays of dimension k. It is also assumed that the matrix A has m > | rows and that /B
is an array of dimension m + 1. CSIMAG stores Im(A) in sparse form in B, IB, JB.

Remarks.
(1) No zero elements of Im(A) are stored in B.
(2) It is assumed that the arrays i A, JA and 18, J B reference different storage areas.

Programmer. A, H. Morris.

301

COMPUTING A + B: FOR SPARSE REAL MATRICES A AND B

Given the real m x n matrices A and B stored in sparse form. Then the subroutine
SCVRC is available for obtaining the complex matrix A + Bf where ¢ = /=1,

CALL SCVRC(A,TA,JA,B,IB,JB,C,IC,JC m,n,NUM,WK IERR)

A and B are real m X n matrices stored in the arrays A,JA,JA and B,IB,JB. 1t is
assumed that A + Bs is to be stored in sparse form in the arrays C,IC,JC. A and B are
real arrays and C a complex array. NUM is the estimated maximmum number of elements
that will appear in C and JC. It is assumed that C and JC are arrays of dimension
max{1, NUM} and that IC is an array of dimension m + 1.

WK is a real array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When SCVRC is called, if NUM specifies sufficient storage
for C and JC then A + Bi is stored in C, IC, JC. Also IERR is assigned the value 0.

Error Return. If there is not sufficient storage in C and JC for the k** vow of A + Bi,
then IERR is set to k and the routine terminates. In this case, if & > 1 then the first k — 1
rows of A + Bi will have been stored in ' and JC. Also IC(1),...,IC(k) will contain the
appropriate row locations.

Remark. No zeros are stored in C.

Programmer. A. H. Morris.

COPYING SPARSE MATRICES
The following subroutines are available for copying sparse matrices.

CALL RSCOPY(A,TA,JA,B,IB,J B,m)
CALL DSCOPY(A,/A,JA,B,IB,J B,m)
CALL CSCOPY(A,7A,JA,B,IB,J B,m)

RSCOPY is used if A and B are reai arrays, DSCOPY is used if A and B are double
precision arrays, and CSCOPRY is used if A and B are complex arrays.

A is a sparse matrix stored in the arrays A, TA,JA. If A and JA contain k elements
then it is assumed that B and JB are arrays of dimension k. It is also assumed that the
matrix A has m > 1 rows and that IB is an array of dimension m + 1. The routine copies
the matrix A and stores the copy in B,IB,JB.

Remarks.

(1) No zero elements of A are stored in B.
(2) It is assumed that the arrays A, /A, JA and B, IB,JB reference different storage
areas.

Programmer. A. H. Morris.

ST

COMPUTING CONJUGATES OF SPARSE COMPLEX MATRICES

If A = (a,;) is a complex matrix stored in sparse form, ther the following subroutine
is available for computing the conjugate matrix A = (a,,).

CALL SCONJ(A,IA,JA, B, IB,JB,m)

It is assumed that the sparse comnplex matrix A is stored in the arrays A, [A, JA. If A
and J A contain k elements, then it is also assumed that B and J B are arrays of dimension
k. A and B are complex arrays. It is assumed that the matrix A has m > 1 rows and that
IB is an array of dimension m + 1. When the routine is called, the conjugate matrix A is
stored in B, IB, JB.

Remark. The user may let B = A, IB = IA, and JB = JA when 14(1) = 1.

Programmer. A. H. Morris.

TRANSPOSING SPARSE REAL MATRICES

The subroutines RPOSE and RPOSE! are available for transposing a sparse m x n real
matrix A. RPOSEL1 is more general than RFOSE. For any permutation # = {1y, ..., 1, }
of {1, ...,m} let P denote the correspouding rn x m permutation matrix. Then RPOSE1
computes the matrix (PA)%.

CALL RPOSE(A,IA,JA,B,[B JB,mn)

It is assumed that the sparse matrix A is stored in the arrays A, JA, JA. If A and JA
contair k elements, then it is also assumed that B and JB are arrays of dimension k and
that IB is an ariay of dimensicn n + 1. When RPOSE is called, the transpose A! is stored
in B, IB, JB.

Remarks. RPOSE orders the elements of each row of 4* so tliat the column indices of the
elements of the row are in ascending order. However, it does no chacking for zerc elements
in A. if zero elements appear in the array A, then the zero elements will also appear in B,

Restriction. It is assuined that the storage arcas B, i B, J3 do not averlap with the storage
areas A, [A, JA.

Programmes. A. H. Morris.

Reference. Gustavson, F. G., “I'wo Fast Algorithrms for Sparse Matrices: M. tiplicatior.
and Permuted Transposition,” ACM Trans. Math Software 4 (1078), vp. 250-269.

CALL RPOSE1(r, A, IA, A, B, [B,JB, m,n)

It is assumed that x is an integer array of dimension m containing the data {¢;, ...,1,,},
and that the sparse matrix A is stored in the arrays A, I'A, JA. If 4 and JA contawn k
elements, then it is also assumed that B and J B are arrays of dimension k and thayv I B is
an array of d'mension n 4 I. When RPOSEL is called, (PA4)" is computed and the results
are stored in B, IB, JB.

Remarks. RPGSE! orders the elements of cach row of (P A)" so that the colomn indices
of the elements of the row are in asceuding order. However, it does no checking for zero
elements in AL If zero elements appear in the array A, then the zero elements will also
appear it}

Restriction. It is assumed that the storage areas 13, 1B, J 3 do not overlap with the storage
areas A, JA, JA

Programmer. A i Morrns.

Reference. Gustavson, F. G “T'wo Fast Algonthns for Sparse Matrices: Multipheation
and Permnuted Transposition,” ACM Trans. Math Sofiware 4 (1978), pp. 250 209,

SR

TRANSPOSING SPARSE DOUBLE PRECISION MATRICES

The subroutines DPOSE and DFOSEL are available for transposing a sparse m > n
double precision matrix 4. DPOSEL is more general than DPOSE. For any permutation
*={i1,...,im} of {1, ...,m} let P denote the corresponding m X m permutation matrix.
Then DPOSEL computes the matrix (PA).

CALL DPOSE(A, 4, JA,B.IB,J 3, m,n)

It is assumed that the sparse matrix A is stored in the arrays A, 4, JA. 4 and B
are dovble precision arrays. If A and /A contain k elements, then it is also assumed that
B and JB are arrays of dimensicn » and that /B is an array of dimension n + 1. When
DPOSE is calied, the transpose At is stored '+ B, IB, JB.

Ramarks DPOSI orders the elements of each row of 4* so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zerc elements
in A. If zerc elements appear in the array A, then the zero elements will also appear in B.

Restriction. !t is assumed that the storage areas B, B, J B do not overlap with the storage
areas A, A, JA.

Programmer. A. H. Morris.

Reference. Gustavson, F. G., “Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition,” ACM Trans. Math Software 4 (1978), pp. 250-269.

CALL DFOSEL{n, A, iA,JA,B,IB,J3,m,n)

It is assumed that = iz an integer array of dimension m containing the data {11, ..., {;x },
and that the sparse matrix 4 is stored in the arrays A, IA, JA. A and B are double precision
arrays. If A and J A contain k elements, then it 18 also assuined that BB and J 23 are arrays
of dimension k and that /B is an array of dimension n 1 1. When DPGSE! is called, (P A)*
is computed and the results are stored in B, I B, JB.

Remarks. DPOZEI orders the elements of each row of (PA)* so that the column indices
of the elements of the row are in ascending order. However, it, does no checking for zero
elements in A. if zcro elements appear in the array A, then the zero elemnents will also
appear in B.

Restriction. It is assumed that the storage areas 8, [B, J B ao not overlap with the storage
arcas A, 1A, JA.

Programimer. A. il. Morns.

Reference. Gusiavson, I G, “Two Fast, Algorithims for Sparse Matrices: Multiplication
and Permuted Transposition,” ACM Trans. Math Software 4 (1478), pp 260 259

311

TRANSPOSING SPARSE COMPLEX MATRICES

The subroutines CPOSE and CPOSEL are available for transposing a sparse m x n
cotplex matrix A. CPOSE! is more general than CPOSE. For any permutation x =
iy, .. .ytm} of {1, ...,m} let P denote the corresponding m x m permutation matrix.
Then CPOSE1 computes the matrix (PA).

CALL CPOSE(A,IA,JA, B, IB,JB,m,n)

it is assumed that the sparse mairix A is stored in the arrays A, IA, JA. A and B
are complex arrays. If A and JA contain k elements, then it s also assumed that B and
J B are arrays of dimension k and that 7B is an ariay of dimension n + 1. When CPGSE
is cclled, the transpose A° is stored in B, IB, JB.

Remarks. CPOSE orders the elements of each row of A® so that the column indices of the
elements of the row are in ascending order. However, it does no checking for zero elements
in A. If zero elements appear in vhe array A, then the zers elements will also appear in B.

Rastriction. It is assumed that the sterage areas B, I B, J B do not overlap with the storage
areas A, 1A, JA.

Programmer. A. H. Morris.

Reference. Custavson, F. G., “Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition,” ACM Trans. Math Software 4 (197&), pp. 250-269.

CALL CPOSEL(n, A,IA, JA, B, IB,JB,m,n)

It is assumed that = is an integer array of dimension m containing the data {s;, ...,1,.},
and that the sparse matrix A is stored in the arrays 4, [A, JA. A and B are complex
arrays. If A and J A contain k elements, then it is also essumed thut B and J B are arrays
of dimension k and that IR is an array of dimension n+ 1. When CPOSE1 is called, (P A)*
13 computed and the results are stored in 8, IB, JB.

Remarks. CPOSEL orders the elernents of each row of (PA)* so that the column indices
of the elements of the row are in ascending order. However, it dues no checking for cero
clements in A, If zero elements appear in the array A, vhen whe zero elements will also
appeasr in 1.

Restriction. 1t 1y assumed that the storage areas B, I B, J 3 do not overlap: with the storage
arcas A, [A, JA.

Programmer. A. H. Morris.

Reference Gustavson, I (i, “Two Fast Algorithuss for Sparse Matrwees: Muoltiphestion
and Permuted Trensposition,” 4CM Tvans. Aath Software 4 (1978}, pp. 250 169,

J13

ADDITION OF SPARSE MATRICES

The following subroutines are available for adding sparse matrices.

CALL SADD(A,IA,J4 B,IB,JB,C,IC,JC,m,n,NUM,WK IERR)
CALL DSADD(A, IA,JA, B,iB,JB,C,IC,JC, m,n,NUM,WK,IERR)
CALL CSADD(A, IA,JA, B,IB,JB,C,IC,JC,m, n NUM,WK,IERR)

A and B are sparse m X n matrices stored in the arrays A,/A,JA and B,IB,JB.
is assumed that A 4- B is to be stored in sparse form in the arrays C,IC,JC. NUM s the
estimated maximurn number of elements that will appear in C and JC'. It i3 assumed that
C and JC are arrays of dimension max{1,NUM} and that IC is an array of dimension
m o+ 1.

SADD is used if A,B,C, and WK are real arrays, DSADD is used if A,B,C, and WK
are double precision arrays, and CSADD is used if A,B,C, and WK are complex arrays.

WX is an urray of dimension n or larger that is a work space for the routine.

IERR is an integer variabla. When the routine is called, if NUM specifies sufficient,
storage for C and JC' then A 4 B is computed and stored in C,JC,JC. Also IERR is
assigned the value O.

Error Return. If there is not sufficient storage in C and JC for the it row of A + B, then
IERR is set to 1 2nd the routine terminates. In this case, if + = 1 then the first ¢ — 1 rows
of A+ B will have been computed and stored in C and JC. Also IC(1),...,IC(s) will
contain the appropriate row locations.

Remarks.

(1) No zeros are stored in C.
(2) It is assumed that C,IC,JC reference different storage areas than A,TA,JA and
B,IB,JB.

Programimer. A. H. Moriis.

SUBTRACTION OF SPARSE MATRICES
The following subroutines are availabie for subtracting sparse matrices.

CALL SSUBT(A,IA,JA, B, IB,JB,C, IC,JC, m n,NUM,WK,IERR)
CALL DSSUBT(A,{A,JA, B,IB,JEB,C, IC,JC,m,n NUM, WK, IERR)
CALL CSSUBT(A,14,JA, B,IB,JB,C,IC,JC,m,n,NUM,WK,IERR)

A and B are sparse m X n matrices stored in tne arrays A,JA,JA and B,IB,JB. It
i3 assumed that A - B is to be stored in sparse form in the arrays C,IC,JC. NUM is the
estimated maximum number of elements that will appear in C' and JC. 1t is assumed that
C and JC are arrays of dimension max{1,NUM} &nd that IC is an array of dimension
m+ 1.

SSUBT is used if 4,B,C, and WK are real arvays, DSSUBT is used if A,B,C, and WK
are double precision arrays, and CSSURBT is used if 4,B,C, and WK are complex arrays.

WK is an array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When the routine is called, if NUM specifies sufficient
storage for C and JC then A — B is computed and stored in C,IC,JC. Also IERR is
assigned the value O.

Ervor Return. If there is not sufficient storagr in C ard JC for the s** row of A — B, then
IERR is set to 1 and the routine terminaies. In this case, if + > 1 then the first § — 1 rows of
A — B will have been computed and stored in C and JC'. Also IC(1), ...,C(5) will contain
the appropriate row locations.

Remarks.

(1) No zeros are stored in .
{(2) It is assumed that C,IC,JC reference different storage areas than A,IA,JA and
B, IB,JE.

Programmer. A. H. Morris.

317

MULTIPLICATION OF SPARSE MATRICES
The following subroutines are available for multiplying sparse matrices.

CALL SPROD(A,IA,JA, B, IB,JB,C,IC,JC,¢t,m n,NUM,WK,IERR)
CALL DSPROD(A,I4,JA, B, 1B, JB,C, IC,JC, ¢ m, n,NUM,WK IERR)
CALL CSPROD(A,IA,JA,B,IB,JB,C,IC,JC, ¢,m,n NUM,WK,IERR)

A 1s a sparse £ X m matrix stored in the arrays A,JA,J A, and B a sparse m X n matrix
stored in the arrays B, I B, J B. It is assumed that AB is to be stored in sparse form in the
arrays C,/C,JC. NUM is the estimated maximum number of elements that will appear in
C and JC. It is assumed that C and JC are arrays of dimension max{1, NUM} and that
IC is an array of dimension £+ 1.

SPROD is used if A,B,C, and WK are real arrays, DSPROD is used if A,B,C, and WK
are double precision arrays, and CSPROD is used if 4,B,C, and WK are complex arrays.

WK is an array of dimension n or larger that is a work space for the routine.

IERR is an integer variable. When the routine is cailed, if NUM specifies sufficient
storage for C and JC then AB is computed and stored in C,IC,JC. Also IERR is assigned
the value 0.

Error Return. If there is not sufficient storage in C and JC for the it* row of AB, then
IERR is set to ¢ and the routine terminates. In this case, if 1+ > 1 then the first 1 — 1 rows of
AB will have been computed and stored in C and JC. Also IC(1), ..., IC{1) will contain
the appropriate row locations.

Remarks.

(1) No zeros are stored in C.
(2) It is assumed that C,JC,JC reference different storage areas than A,IA,JA and
B,1B,JB.

Programmer. A. H. Morris.

PRODUCT OF A REAL SPARSE MATRIX AND VECTOR

Let A be a real m X n sparse matrix stored in the arrays A, [A, JA. Then the following
subroutines are available for multiplying A with a real vector.

CALL MVPRD(m,n, A, 1A, JA,z,y)

The argument z is a column vector of dimension n and y an array of dimension m.
When MVPRD is called, Az i3 computed and stored in y.

Remark. It is assurned that the arrays A, z,y do not overlap.

Programmer. A. H. Morris.

CALL MVPRD1(m,n, A,IA,JA, z,y)

The arguments z and y are column vectors of dimension n and m respectively. When
MVPRDL1 is called, Az + y is computed and stored in y.

Remark. It is assumed that the arrays A,z,y do not overlap.
Programmer. A. H. Morris.

CALL MTPRD(m,n, A, IA,JA,z,y)

The argument z is a row vector of dimension m and y an array of dimension n. When
MTPRD is called, zA is computed and stored in y.

Remark. It is assumed that the arrays A, z,y do not overlap.
Programmer. A. H. Morris.

CALL MTPRD1(m,n, A,IA,J A, z,y)

The arguments z and y are row vectors of dimension m and n respectively. When
MTPRDI1 is called, 24 + y is computed and stored in y.

Remark. It is assumed that the arrays A, zr,y do not overlap.

Programmer. A. H. Morris.

PRODUCT OF A DOUBLE PRECISION SPARSE MATRIX AND VECTOR

Let A be a double precision m X n sparse matrix stored in the arrays A, /A, JA. Then
the following subroutines are available for multiplying A with a double precision vector.

~ CALL DVPRD(m,n, A, IA,JA,z,y)

The argument z is a column vector of dimension n and y an array of dimension m. A,
z, y are double precision arrays. When DVPRD is called, Az is computed and stored in y.

Remark. It is assumed that the arrays A, z,y do not overlap.
Programmer. A. H. Morris.

CALL DVPRD1(m,n,A,TA,JA,z,y)

The arguments z and y are column vectors of dimension n and m respectively. A, z, y
are double precision arrays. When DVPRDI1 is called, Az + y is computed and stored in y.

Remark. It is assumed that the arrays A, z,y do not overlap.
Programmer. A. H. Morris.

CALL DTPRD(m,n, A,IA,J A, z,v)

The argumeut z is a row vector of dimension m and y an array of dimension n. A4, z,
y are double precision arrays. When DTPRD is called, A is computed and stored in y.

Remark. It is assumed that the arrays A, z,y do not overlap.
Programmer. A. H. Morris.

CALL DTPRD1(m,n, A, TA, JA,z,y)

The arguments = and y are row vectors of dimension m and n respectively. A, z, y are
double precision arrays. When DTPRDI is called, 2A 4 y is computed snd stored in y.

Remark. It is assumed that the arrays A, z,y do not overlap.

Programmer. A. H. Morris.

323

PRODUCT OF A COMPLEX SPARSE MATRIX AND VECTOR

Let A be a complex m x n sparse matrix stored in the arrays A, [A, JA. Then the
following subroutines are available for multiplying A with a complex vector.

CALL CVPRD(m,n, A, IA,JA z,y)

The argument z is a column vector of dimension n and y an array of dimension m.
A, 7,y are complex arrays. When CVPRD is called, Az is computed and stored in y.

Remark. It is assumed that the acrays A, z,y do not overlap.
Programmer. A. H. Morris.

CALL CVPRD1(m,n,A,[A,JA,z,v)

The arguments z and y are column vectors of dimension n and m respectively. A,z,y
are complex arrays. When CVPRD1 is called, Az + y is computed ard stored in y.

Remark. It is assumed that the arrays A, z,y do not overlap.
Programmer. A. H. Morris.

CALL CTPRD(m,n, A, [A,JA, z,y)

The argument z is a row vector of dimension m and y an array of dimension n. A,z,y
are complex arrays. When CTPRD is called, zA4 is computed and stored in y.

Remark. It is assumed that the arrays A, z,y do not overlap.

Programmer. A. H. Morris.

CALL CTPRD1(m,n, A, IA,J A, x,y)

The arguments z and y are row vectors of dimeunsion m and n respectively. A, z,y are
complex arrays. When CTPRDU is called, A4 + y is computed and stored in y.

Remark. Ii is assumed that the arrays A, z,y do not overlap.

Programmer. A. H. Morris.

325

L, NORM OF A SPARSE REAL MATRIX

If A = (a,,) is a sparse real matrix then the following subroutines are available for
computing the Z; norm ||Al]}; = max; X;|a;| of A.

CALL S1NRM(A,IA,J A,m,n,ANGRM,WK)
CALL DSINRM(A,IA,J A;m,n,ANORM,WK)

S1INRM is used if A and WK are real arrays and ANORM a real variable, and DSINEM
is used if A and WK are double pre-ision arrays and ANORM a double precision variable.

A is a sparse m X n matrix stored in the arrays A, A, JA. When the routine is called,
the variable ANORM is assigned the value ||Al};.

WK is an array of dimension n or larger that is a work space for the routine.

Programmer. A. H. Morris.

327

L. NORM OF A SPARSE REAL MATRIX

If A = (a,;) is a sparse real m x n matrix then the following functione are available for
computing the £y, norm [|A{|o = max; £;|a;;| of A.

SNRM(A,IA,J A,m,n)
DSNRM(A.TA,JA,m,n)

SNRM is used if A is a real array and DSNRM is used if A is a double precision array.
SNRM is a real function and DSNRM a double precision function.

A is a sparse m X n matrix stored in the arrays A, JA, JA. When either of these
functions is called then the function is assigned the value || A||oo.

Remark. DSNRM must be declared tc be of type DOUBLE PRECISION in the calling
program.

Programmer. A. H. Morris.

329

ORDERING THE ROWS OF A SPARSE MATRIX
BY INCREASIMN G LENGTH

Let A be a sparse mx n matrix stored in the arrays A, I A, J A. The {ollowing subroutine
is available for ordering the rows of the matrix by increasing length.

CALL SPORD(m,n, A, RIWK)

R is an integer array of dimension m. When SPORD 1s called, the rows of the matrix
are ordered by increasing length. The row ordering is given in R.

IWK is an integer array of dimension m + n + 1 or larger that is used for a work space.

Remark. If rows 17, ...,1; are the rows of length £, then the indices 1q, ... ,1 are listed in
R in increasing sequence.

Programmer. A. H. Morris.

331

REORDERING SPARSE MATRICES INTO BLOCK TRIANGULAR FORM

ct A Le a sparse n X n matrix stored in the arrays A, /A,JA. Then the subroutine
SLKORD is available for reordering the rows and columns of A so that one has a lower
block triangular matrix

A O
Azp Az

(*) . . .
Apr Ag2 ... Ak

where the blocks A,; are square and cannot themselves be reordered into lower block trian-
gular form.

CALL BLKORD(n,IA,JA, R,C,IB, kWK IERR)

R and C are integer ar-ays of dimension n, and IERR is an integer variable. When
BLKORD is called, the rows of the matrix are first ordered so that the main diagonal
contains a maximum number of nonzeros. After this is done then IERR = the number of
zeros that appear on the diagonal. If IERR = O then the rows and columns of the matrix
are ordered into block triangular form (*). The row ordering is given in R and the column
ordering is given in C.

IB is an integer array of dimension n and k is an integer variable. When the matrix has
been ordered into block triangular form () then k = the number of blocks A,;. Also IB(1) -
the row number in the block trianguiar matrix of the beginning of block Ay (v =1, ..., k).

IWK is an integer array of dimension 5n or larger that is used for a work space by the
routine.

Error Return. If [EFRR # O then the routine terminates. In this case, R contains the row
ordering that gives the main diagonal with the maximurm number of nonzeros.

Remark. 1A, J A, and n are not modified by the routine.

Programming. BLKORD employs the subroutines MC21A, MC21B, MCL13D, MCI3E de-
signed by I. S. Duff and J. K. Reid (AERE Harwell,England).

References.

(1) Duff, I. 5., “On Algorithins for Obtaining a Maximum Transversal,” ACM Trans.
Math Software 7 (1981), pp 315 330.

(2) Duff, LS. and Reid, J. K., “An Implementation of Tarjan’s Algorithm for the Block
Triangularization of a Matrix,” ACM Trans. Math Software 4 (1978), pp. 137 147,

SOLUTION OF SPARSE SYSTEMS OF REAL LINEAR EQUATIONS

Let A be a nonsingular 1. X n sparse real matrix stored in the arrays A,IA, JA and let b
be a real column vector ¢ smension n. The subroutines SPSLV and RSLV are available for
solving the system cof eq ations Az = b, and the subroutine TSLV is available for solv..g
the transposed system cf equations A'z = b. These routines employ partial pivot gauss
elimination with column interchanges to first obtain an LU decomposition cf A. If SPSLV
is called then only the off-diagonal nonzero elements of U are stored, and thien the equations
are solved. However, if RSLV or TSLV is called then the off-diagonal nonzero elements of
both L and U are stored. Thus RSLV and TSLV will frequently require at least double the
amount of storage needed by SPSLV, but they can be recalled to solve other systems of
equations Az = r and A'xz = r without having to redecompose the matrix A. Moreover,
since RSLV and TSLV will always generate the same LU decomposition of A, RSLV can
be called to decompose A and solve a system of equations Az = b, and then TSLV can be
called .o solve a transposed system of equations A*z = r using the decomposition obtained
by RSLV.

CALL SPSLV(n, A, IA,JA,b, R,C MAX X IWK WK IERR)

It is assummed that n > 1 and that X is an array of dimension n. The sclution of the
system of equations Az = b Is computed and stored in X. A,TA, JA and b are not modified
by the routine.

R 15 an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains ‘he entries 1y, .., f, then the
algorithm first performs operations on row 1y, next on row 1z, ete. I is well known that the
order in which the rows of a sparse matrix are processed can have a significant lmpact on
the overall performance of a subroutine such as SPSLV. Thus R must be chosen judiciously.
R s not modified by the routine.

Cas an integer array of nentries which plays a role similar to 120 Onanput, ¢ speaifies
a suggested order tn which the nocolumns of A should be ordered for sclection of the pivot
clements. For example, if €7 contains the entries 7y, ..., 5, then it s suggested that the
first. pivot element may be from column yy, the second pivot element from column ja) ete
However, since partial pivoting with column mterchange s performed, on output ¢ may
have been modified. On output, € will contain the actual order of the n columns from

which the pivot elements were selected, This order will depend on A and B and not on b

IWK and WK are arrays for internal vse by the routine, and MA X s an mput argumem
When SPSLV s culled, an LU decomposition of A s tirst obtaired where Uas aounit npper
triangnlar matrix. The otf-diagonal portion of Uhs stored i sparse forcrm TWEK and WK
MAX is an estunate of the maxirmaon number of off=diagonal eloments of U that narht be
nonzero and bave to be stored (MAX ~ n(n 1)72) TWHR s nsteger array of dimensaon
3n ot MAX 4 2 or farper, and W 15 a real arcay of dimenion i 8 MAX or darper

IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IEE 2 > 0 Az = b was solved. IERR = max{1,m} where m is
the nurober of ofi-diagonal nonzero elements of U,

IERR =0 'The argument n is nonpositive.

IERR = -k Row R(k) of A is null.

IERR = - n — & Row R(k) of A has a duplicate entry.

IERR = —2n — k£ Row R(k) of A has been reduced to a row containing
only zeros.

IERR = --3n — k Row k of the upper triangular matrix erceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates.

Remarks. The amount of stcrage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

An 0

A1 A2z

Akl 1‘1k2 - Akk

then the subroutine BLKORD should first be tried. This subroutine will specify an ordering
for lower block triangular form if one exists. However, if such an ordering does not exist
and one is uncertain how to order the rows then the row ordering given by the subroutine
SPORD frequently yields good results In any case, the selection of an initial column or-
dering C is never bothersome since partial pivoting with cclumn inverchanges is performed.
The initial ordering C(1) == ¢ (f = 1, ..., n) always suffices.

Programming. SPSLYV is a modification by A. H. Morris of the subroutine NSPIV. SPSLV
employs the subroutine NSPIV1. NSPIV and NSP1VI weve written by Andrew H. Sherman
(University of Texas at Austin).

Reference. Sherman, Andrew H.,“Algorithins for Sparse Gaussian Elimination with Partial
Pivoting,” "M Trans. Muth Sojftware 4 (1978), pp.330--338.

CALL RSLV(MO,n, A, 14, JA,b, R,C,MAX X IWK WK IERR)
CALL TSLV(MOn, A, [A, JA, b R,C MAX, X JWK WK IERR)

ESLV is called for solving Az = b, and TSLV is called for solving Alz -~ 6. MO is an
imput argument which specifies if RSLV or TSLV i3 being called for the first time. On an
initial call, MO - 0 and we have the following setup:

It 18 assumed that no» 1 and that X s an array of ditmension ni. ‘Che solution of the
system of equations i3 stored in X. A, 1A, JA are not modilied by the routines. X and b
may share the same storage area. If X is a separate siorave area then b is not modified by

the routines.

336

R is an integer array of n entries specifying the order in which the n rows of 4 are
to be examined and processed. For example, if R contains the entries ¢;, ... 1, then the
algorithm first performis operations on row €, next, on row 13, etc. It is well known that the
orer in which the rows of a sparse matrix are processed can have a significant impact ow
the overall performance of subroutines such as RSLV and TSLV. Thus R must be chosen
iudiciously. R is net modified by the routine.

¢’ 8 an integer array of v« entries which plays a role similar to B. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if € contains the entries j;, ...,7, then it is suggested that the
first pivat element may be frem columu 7y, the second pivot element from column jy, etc.
Howevor, since partial pivoting with colnmn interchange is periormed, on cutput C' may
have bsen modified. On output, C will contain the actual order of the u columns from
which 1l pivot elements were selected. This order will depend on A and R, and not on &.

iWK and WK are arrays for interna! use by the routines, and MAX is an input ar-
gument. On an initial call to RSLV or TSLV, an LU decomposition of A is first obtained
where I is 4 lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L and !/ arc stored in sparse form in IWK and WK. MAX is an estimate of
the maximum nomber of off-diagonal elements of L and U that might be nonzero and have
to be stored (MAX < n(n — 1)}. IWK is an integer array of dimension 4n + MAX + 2 or
larger, and WK I8 a real array of diraension 2n + MAX or larger.

On an inttial call to RSV or TSLV, JERR is an integer variable that reports the status
of the results. When the routine terminates, IERR has cne of the following values:

IERR > 0 The system of equations was solved. IERR=max{1,m}
where m is the total number of off-diagonal nonzero
eleraents of L and U.

IERR =0 The argument n is nonpositive.

IERR = -k Row R(k) of A is null.

IERR = ~ n -k Row R(k) of A has a duplicate entry.

[ERR = ~2n — k Row R(k} of A has been reduced to a row containing

only zeros.
IKRR = -3n — k Row k of L or U exceeds storage. MAX must be in-
creased,

When an error is detect»d, the routine immediately terminates.

After an initial call to RSLV or TSLV, if IERR > 0 on output then either routine may
be called with MO # 0. Whan MO # 01t 1s assumed that only b may have been modified.
RSLV 19 called for solving the new set of equations Az = b, and TSLV ig called for solving
the new set of squations A’z = b, The routine employs the LU decomposition obtained
on the mitial call to RSLV or TSLV to solve the new systern of equations. The solution 13
stored in X. As before, X and b may sharc the same storage area. I MO £ 0 then only
n, B, C,IWK, and WK sre used. A, T4, JA, MAX, and IERR are not referenced by the
routine.

Note. The remarks concerning the ordering of thie rows and columns of A when SPSLV is

a37

used hold also for RSLV and TSLV.

Programming. RSLV calls the subroutines RSLV1 and SPLU, and TSLV calls the subrou-
tines TSL.V1 and SPLU. These routines were written by A. H. Morris.

“r

338

COMPUTATION OF THE CONDITION NUIMBER
OF A REAL SPARSE MATRIX

If A is a real nxn sparse matrix then the following subroutine is available for estimatirg
the £, condition number cond;(4) of A.

CALL S1CND(n, A,I4,J A, R,C MAX,COND IWK WK, IERR)

A 13 a sparse matrix stored in the arrays A, IA J.i. The arguments R, C, MAX,
IWK, and WK are the same arguments used for the subroutines RSLV and TSLV, the only
exceptions being that IWK now is an array of dimension 5n -- MAX + 2 or larger, and
WK i3 an array of dimension 4n + MAX or iarger.

COND is a real variable. When S1CND is called, then the subroutine RSLV 1is first
invoked to obtain an LU decomposition of A, which is stored in the arrays IWK and WK.
Then COND is assigned the value O if A is singular and an approximation of the condition
number condy(A) if A is nonsingular.

IERR is an integer variable that reports the status of the results. When SiCND
terminates, [ERR has one of the following values:
JERR > 0 A is nonsingular. COND = an approximation of the condition
nu:nber of A, and IERR = max{i, m} where m is the number of
off-diagonal nenzero elements of L and U

IERR = 0 A is singular and COND = 0,
IERR = —% Row R{k) of A has a duplicate entry.

IERR < -n Row R(k) of L or U exceeds storage where IERR = —(n + k).
MAX must be increased.

When an error is detected, the routine immediately terminates.

Usage. Afier SICND terminates, if IERR > 0 then RSLV or TSLV may be cailed with MO
0 to solve a system of equations. In this case n, R, C WK, and IWK are used by RSLV
and TSIV, and must not be modified by the user.

Algorithm. A mcdification of the Hager procedure by Nicholas J. Higham {(University of
Manchester, England) is used.

Programming. SICND employs the subroutines SINRM, SONEST, SCOPY, RS1V, TSLV,

RSLVI, TSLVI, and SPLU, and the functions SASUM and ISAMAX. S1CND was written
by A. H. Morris. SONEST was written by N. J. Higham and modified by A. . Morris.

References.

(1) higham, N J “FORTRAN Codes for Fstimating the One Norrt of a Real or Complex
Matrix, with Applications to Condition Estination” ACM Tren. Math Software 14
(1988), 1op. U81-386,

| ,“Algorithm 674; FORTRAN Codes for Estimating the One-Norm of a Real
or Complex Matrix, with Applications to Condition Estimation,” ACM Trans. Math

Saftware 15 (1989), p. 168.

(2

340

DOUEBLE PRECISION SOLUTION OF SPARSE SYSTEMS
OF REAL LINEAR EQUATIONS

Let A be a nonsingular n x n sparse double precision matrix stored in the arrays
A, TA,JA and let b be a double precision column vector of dimension n. The subroutines
DSPSLV and DSLV are available for solving the system of equations Az = b, and the
subroutine DTSLV is available for solving the transposed system of equations A'z = b.
These routines employ partial pivot Gauss elimination with column interchanges to first
obtain an LU decomposition of A. If DSPSLV is called then only the off-diagonal nonzero
elements of U are stored, and then the equations are solved. However, if DSLV or DTSLV is
called then the off-diagonal nonzero elements of both L and U are stored. Thus DSLV and
DTSLV will frequently require at least double the amount of storage needed by DSPSLV, but
they can be recalled to sclve other systems of equations Az = r and A*z = r without having
to redecompose the matrix A. Moreover, since DSLV and DTSLV will always generate the
same LU decomposition of A, DSLV can be called to decompose A and solve a system of
equations Az = b, and then DTSLV can be called to solve a transposed system of equations
Az = r using the decomposition obtained by DSLV.

CALL DSPSLV(n, A,14,JA,b, R,C MAX X ,IWK,WK,IERR)

A, b, and X are double precision arrays. It is assumed that n > 1 and that X is an
array of dimension n. The solution of the system of equations Az = b is computed and
stored in X. A,JA. JA and b are not modified by the routine.

R is an integer array of n entries specifying the order in which the n rows of A are
ts be examined and processed. For example, if R contains the entries 11, ...,{, then the
algorithm first performs operations on row 1y, next on row 12, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on the
overall performance of a subroutine such as DSPSLV. Thus R must be chosen judiciously.
R is not nicdified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elerments. For example, if C' contains the entries j;, ..., 7, then it is suggested that the
first pivot element may be from column j;, the second pivot element from column j,, etc.
However, since partial pivoting with column interchange is performed, on cutput C may
have been rodified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an input argument.
When DSPSLV ig called, an LU decomposition of /. is first obtained where U is a unit upper
iriangular matrix. The off-diagonal portion of U is stored in sparse form in IWK and WK.
MAX is an estimate of the mwaximum number of eff-diagonal elements of U that might be
nenzero and have to be stored (MAX < n(n - 1)/2). WK is an integer array of dimension
In 4+ MAX + 2 or larger, and WK 13 a double precision array of dimension n + MAX or
larger.

341

IERR is an integer variable that reports the status of the resuits. When the routine
terminates, IERR has one of the following values:

IERR > 0 Az = b was solved. IERR = max{1,m} where m is
the number of off-diagonal nonzero elements of 1.

IERR =0 The argument n is nonpositive.

IERR = -k Row R(k) of A is null.

IERR = — n — k Row R(k) of A has a duplicate entry.

IERR = —2n - k Row R(k) of A has been reduced to a row containing
only zeros,

IERR = —3n — k Row k of the upper triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

Au 0 3

Az Aaz

Ary A2 ... Agx)

then the subroutine BLKORD should first be tried. This subroutine will specify an ordering
for lower block triangular form if one exists. However, if such an ordering does not exist
and one is uncertain how to order the rows, then the row ordering given by the subroutine
SPORD frequently yields good results. In any case, the selection of an initial column or-
dering C is never bothersome since partial pivoting with column interchanges is performed.
The initial ordering C(¢) =4 (1 = 1, ..., n) always suffices.

Programming. DSPSLV an adaptation by A. H. Morris of the subroutine NSPIV written
by Andrew H. Sherman (University of Texas at Austin). DSPSLV employs the subroutine
DNSPIV.

Reference. Sherman, Andrew H.,“Algorithms for Sparse Gaussian Elimination with Partial
Pivoting,” ACM Trans. Math So ftware 4 (1978), pp.330-338.

CALL DSLV(MO,n, A, [A,J A, b, R,C,MAX,X IWK, WK IERR)
CALL DTSLY(MO,n, A, [A, JA, b, R,C MAX, X IWK, WK JERR)

DSLYV is called for solving Az = b, and DTSLV is called for solving A*z = b. MO is an
input argument which specifies if DSLV or DTSLV is being called for the first time. On an
initial call, MO == 0 and we have the following setup:

A, b, and X are double precision arrays. 1t 1a assumed that n > 1 and that X is an
array of dimension n. The solution of the system of equations is stored in X. A, IA, JA are
not modified by the routines. X and b may share the same storage area. If X is a separate
storage area then b 18 not modified by the routines.

342

R iz an integer array of n entries specifying the order in which the = rows of A are
to be examined and processed. For example, if R contains the entries ¢y, ...,1, then the
algorithm first performs operations on row sy, next on row i3, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as DSLV and DTSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C' is an integer array of n entries which plays a role similar to K. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C contains the entries j;, ..., 7. then it is suggested that the
first pivot element may be from column j;, the second pivot element from column j., etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routines, and MAX is an input argu-
ment. On an initial call to DSLV or DTSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L and U are stored in sparse form in IWK and WK. MAX is an estimate of
the maximum number of off-diagonal elements of L and U that might be nonzero and have
to be stored (MAX < n(n — 1)). IWK is an integer array of dimension 4n + MAX + 2 or
larger, and WK is a double precision array of dimension 2n + MAX or larger.

On an initial call to DSLV or DTSLV, IERR is an integer variable that reports the
status of the results. When the routire terminates, IERR has one of the following values:
IERR > 0 The systern of equations was solved. IERR=max {1, m}
where m is the total number of off-diagonal ronzero

elements of L, and U,

IERR =0 The argument n is nonpositive.

IERR = —k Row R(k) of A is nuil.

IERR = — n — k Row R(k) of A has a duplicate entry.

IERR = —2n k Row P(k) of A has been reduced to a row containing
only zeros.

IERR = —3n — k Row k of L or U exceeds storage. MAX must be in-
creased.

When an error is detected, the routine immediately terminates.

After an initial call to DSLV or DTSLV, if IERR > 0 on output then either routine may
ve called with MO # 0. When MO # 0 it is assumed that only b may have been modified.
DSLV is called for solving the new set of equations Az = b, and DTSLV is called for solving
the new set of equations A*z = b. The routine emplcys the LU decomposition obtained on
the initial call to DSLV or DTSLV to solve the new system of equations. The solution is
stored in X. As before, X and b may share the same storage area. If MO # O then only
n, B, C, IWK, and WK are used. A, IA, JA, MAX, and IERR are not referenced by the
routine.

Note. Tie remarks concerning the ordering of the rows and columns of A when DSPSLV

343

18 used hold also for DSLY and DTSLV.

Programming. DSLVY calls the subroutines DSLV1 and DSPLU, and DTSLV calls the
subroutines DTSLV1 and DSPLU. These routines were written by A. H. Morris.

344

COMPUTATION GF THE CONDITION NUMBER OF A
DOUBLE PRECISION SPARSE MATRIX

If A is a double precition n x n sparse matrix then the following subrouiine is available
for estimating the ¢; condition number cond;(A) of A.

CALL DS1CND(n, A, IA,JA, R,C,MAX,COND IWK, Wi IERR)

A is a sparse matrix stored in the arrays A, /A, JA where 4 is a double precision
array. The arguments R, C, MAX, IWK, and WK are the same arguments used for the
subroutines DSLV and DTSLV, the only exceptions being that IWK now is an array of
dimension 5n + MAX + 2 or larger, and WK is an array of dimension 4n -+ MAX or larger.

COND is a double precisicn variabtle. When DS1CND is called, then the subroutine
DSLYV is first invoked io obtain an LU decomposition of A, which is stored in the arrays
IWK and WK. Then COND is assigned the value 0 if A is singular and an approximation
of the condition number cond,(4) if A is nonsingular.

IERR is an integer varizble that reports the status of the resnlts. When DS1ICND
terminates, IERR has vne of the following values:

IERR > 0 A is ucnsingular. COND = an approximation of the conditicn
number of A, and IERR = max{1,m} where m is the number of
oil-diagonal nonzero elements of L and U.

IERR = 0 A issingular and COND = 0.

IERR == —k Row R(k) ol A has a duplicate entry.

IERR < -n Row R(k) of L or U exceeds storage where IERR = ~(n + k).
MAX must be increased.

When an error is detected, the routine immaediately terminaces.

Usage. After DSICND terminates, if IER > 0 then DSLV or DTSLV may be called wiith
MO # 0 to sclve a system of equations. In this case n, R,C', WK, and IWK are used by
DSLV and DTSLV, and must not be modided by the user.

Algorithm. A modification of the Hager procedure by Nicholas J. ‘{igham (University nf
Manchester, England) is used.

Programming. DSICND employs the subroutines DSINRM, DONEST, DCOPY, DSLV,
DSLV1, DTSLV, DTSLV1, and DSPLU, and the functions DASUM and IDAMAX. DSICND
was written by A. H. Morris. DONEST is the double precision form of the subroutine SON-
EST, written by N. J. Higham and modified by A. . Morris.

References.

(1) Higham, N.J.,“FORTRAN Codes for Estimating the One-Norm of a Real or Complex
Matrix, with Applications to Condition Estimation,” ACM Trans. Math Software 14
(1988}, pp. 381-396.

(2) ,“Algorithm 674: FORTRAN Codes for Estimating the One -Norm of a Real
or Complex Matrix, with Applications to Condition Estimation,” ACM Trans. Math
Software 15 (1989), p. i68.

SCLUTION OF SPARSE SYSTEMS OF COMPLEX LINEAR EQUATIONS

Let A be a nonsingular n x n sparse complex matrix stored in the arrays A, IA,J A and
let b be a complex column vector of dimension n. The subroutines CSPSLV and CSLV are
available for solving the system of equations Az = b, and the subroutine CTSLYV is available
for solving the transposed system of equations A*z = b. These routines employ partial pivot
Gauss elimination with column interchanges to first obtain an LU decomposition of A. If
CSPSLV is called then only the off-diagonal nonzero elements of U are stored, and then the
equations are solved. However, if CSLV or CTSLV is called then the off-diagonal nonzero
elements of both L and U are stored. Thus CSLV and CTSLV will frequently require at
least double the amount of storage needed by CSPSLV, but they can be recalled to solve
other systems of equations Az = r and A'z = r without having to redecompose the matrix
A. Morecver, since CSLV and CTGLV will always generate the same LU decomposition
of A, CSLV can be called to decompose A and solve a systern cf equations Az = b, and
then CTSLV can be called to solve a transposed system of equations A'z = r using the
decomposition obtained by CSLV.

CALL CSPSLV(n, 4,14,J A,b, R,C,MAX,X,IWK,WK IERR)

A, b, and X are complex arrays. It is assumed that n > 1 and that X is an array of
dimension n. The solution of the svitem of equations Az = b is computed and stored in X.
A,[A, JA and b are not modified by the rcutine.

K is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if R contains the entries 11, ...,1, then the
algorithm first performs operations on row 1, next on row t2, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on the
overall performance of a subroutine such as CSPSLV. Thus & must be chosen Judiciously.
R is not modified by the routine.

C'1s an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, ii C contains the entries Jis -+ »Jn then it is suggested that the
first pivot element may be from column j;, the second pivot element from column 34, etc.
However, since partial pivoting with column interchange is performed, on output C may
have been modified. On output, C will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on A and R, and not on b.

IWK and WK are arrays for internal use by the routine, and MAX is an input argument.
When CSPSLV is called, an LU decomposition of A is first obtained where U is a unit upper
triangular matrix. The off-diagonal portion of U is stored in sparse form in IWK and WK.
MAX is an estimate of the maximum number of off-diagonal elerients of U that might be
nonzero and have to be stored (MAX < n(n - 1)/2). IWK is an integer array of dimension
3n 4+ MAX + 2 or larger, and WK is a complex array of dimension n MAX or larger.

347

IERR is an integer variable that reports the status of the results. When the routine
terminates, IERR has one of the following values:

IERR > 0 Az = b was solved. IERR = max{1,m} where m is
the number of off-diagonal nonzero elements of U.

IERR =0 The argument n is nonpositive.

IERR = —&k Row R(k) of A is null.

IERR = — n - k Row R(k) of A has a duplicate entry.

IERR = —2n — k Row R(k) of A has been reduced to a row containing
only zeros.

IERR = —-3n—k Row k of the upner triangular matrix exceeds storage.

MAX must be increased.

When an error is detected, the routine immediately terminates.

Remarks. The amount of storage MAX depends critically on the row ordering given in R.
If it is suspected that the rows and columns of A can be reordered so that one has a lower
block triangular matrix

,/Au O

Ay Az

Ar1 Axg o0 A

then the subroutine BLI ORI shou'd first be tried. This subroutine will specify an ordering
for lower block triangular form if .ne exists. However, if such an ordering does not exist
and one 13 uncertain how to order :he rows, then the row ordering given by the subroutine
SPORD frequently yields gc. 4 re ults. In any case, the selection of an iaitial column or-
dering C is8 never bothe some sin.¢ partial pivoting with column interchanges is performed.
The initial ordering C(«) ==« { .- 1, ..., n) always suflices.

Programming. CSP3LV 1s an adaptation by A. H. Morris of the si.broutine N3PV written
by Andrew H. Sherman (University of Texas at Austin). CSPSLV employs tae :ubroutine
CNSPIV.

Reference. Sherman, aAadrew H.,“Algoritl ns for Sparse Gaussian Elimination with Partial
Pivoting,” ACM Trans. Math Software 4 (1978), pp.330 338.

CALL CSLV{MO n, A, 1A, JA b I, C MAX X IWK WK, IERR)
CALL C- SLV(MOn, A, TA, JA b R, C MAX X IWK WK IERR)

CSLV is called for solving Az . 6, and CTSLV 15 called for solving A*x . MO i3 an
mput argament which speafies iff CSLV or CTSLY 13 being called for the first time. On an
inttial call, MO - U and we have the following setup:

A, b and X are complex arrays U s assumed that o Fand that X s an array of
dimension o The solutioir of the system of equations s stored 1o X A, A, JA are not
modified by the routines. X and b may share the sane storage areas X 18 o separate

storage area then b s nei moditied by the rontines.
14 J

348

R is an integer array of n entries specifying the order in which the n rows of A are
to be examined and processed. For example, if B coutzins the entries 1,, ...,1,, then the
algorithm first performs operations on row ¢, next on row 13, etc. It is well known that the
order in which the rows of a sparse matrix are processed can have a significant impact on
the overall performance of subroutines such as CSLV and CTSLV. Thus R must be chosen
judiciously. R is not modified by the routine.

C is an integer array of n entries which plays a role similar to R. On input, C specifies
a suggested order in which the n columns of A should be ordered for selection of the pivot
elements. For example, if C' contains the entries 71, ..., then it is suggested that the
first pivot element may be from column j;, the second pivot element from column j,, etc.
However, since partial pivoting with column interchange is performed, on output C' may
have been modified. On output, C' will contain the actual order of the n columns from
which the pivot elements were selected. This order will depend on 4 and R, and not on b.

IWK and WK are arrays for internal use by the routines, and MAX is an input argu-
ment. On an initial call to CSLV or CTSLV, an LU decomposition of A is first obtained
where L is a lower triangular matrix and U a unit upper triangular matrix. The off-diagonal
portions of L and U are stored in sparse form in IW¥ and WK. MAX is an estimate of
the maximum number of off-diagonal elements of L and U that might be nonzcro and have
to be stored (MAX < n(n - 1)). IWK is an integer array of dimension 4n + MAX + 2 or
larger, and WK is a complex array of dimension 2n + MAX or larger.

On an initial call to CSLV or CTSLV, IERR is an integer variable that reports the
status of the results. When the routine terminates, IERR has one of the following values:

IERR >0 The system of equations was sclved. IERR—max {1, m}
where m is the total number of off-diagoral nonzero
elements of I, and U.

IKRR ~ 0 The argument n is nonpositive.

IKRR ~ -k Row (k) of A is null.

IERR - n - k Row R(k) of A has a duplicate entry.

IERR 2n k Row R(k) of A has been reduced to a row containiag
only zeros

IKRR 3n kRow k of I, or U exceeds storage. MAX must be in-

creased.

When an error s detected, the routine inunediately ternnnates,

After an inital call to CSLV or CTSEV A TIRER O oncutput then either routine may
be called with MO/ 0. When MO/ 01t s assumed that only b may have been modified.
CSLV s called for solving vhe new set of equations A b and C'TSLV iy called for solving
the new set of equations A's b The routine enplovs the LU decomposition obtamed on
the mitial call to CSLV or CTSLV Lo solve the rew system of equations. The solntion s

stored 1 X As before, X and b may share the sane storage area 1 MO /0 thea only
n, G TWER, and WK are used A TADPAMAX and TERR are not referenced by the
routine.

Note. The remarks concerning the ordering of ihe rows and columns of A when CSPSLV
ig used hold slso for CSLV and CTSLV.

Programming. CSLV calls the subroutines CSLV1 and CSPLU, and CTSLV calls the
subroutines CTSLV1 and CSPLU. These routines were written by A. H. Morris,

COMPUTATION OF EIGENVALUES OF GENERAL REAL MATRICES

The subroutines EIG and EIG1 are available for computing the eigenvalues of real
matrices. These routines frequently yield results accurate to 13-14 significant digits. Indeed,
for syminetric matrices they may give 2 or more digits better accuracy than the routines
designed specifically for symmetric matrices. However, if the eigenvalues are not distinct or
if they are exceedingly tightly clustered, then a severe drop in accuracy can occur when the
matrix 18 not symmetric. In this case one should not expect more than 7-8 digit accuracy.

CALL EIG(IBAL,A, ka,n, WR, WI,IERK)
CALL EIG1{IBAL,A, ka,n, WR, W1 IERR)

A is a matrix of order n > 1 and WR,WI are real arrays of ! »engion n or larger.
When EIG or EIG1 is called then the cigenvalues Ay, ..., A, of A are computec. The real
parts of the eigenvalues are stored in WR(!), ...,WR(n) and the imaginary parts are stored
in WI(1), ...,WI(n). The eigenvalues are unordered except that complex conjugate pairs
of eigenvalues appear conzecutively with the eigenvalue having the positive imaginary part
being first.

IBAL and ka are input arguments. The argument ke is the number of rows in the
dimension statement for A4 in the calling prosram. IBAL may be any integer. If IBAL £ 0
then the routines balance A before they coi.pute the eigenvalues. Otherwise, if IBAL =0
then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Otherwise, if more than 30 iterations are required to compute the 7** eigenvalue A,
then IERR 1is set to j and the routine terminates. In this case, if 7 < n then the eigenvalues
Aj+1, - -, An Will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) Even though the balancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional time and in certain cases can improve the
accuracy by as much as 5-6 significant digits. Thus it is reccommended that balancing
be done.

(2) A is destroyed during computation. EIG and EIGI reduce A to upper Hessenberg
form and Jhen apply the QR algorithm to obtain the eigenvalues. They differ only
in the chuice of transformations used to reduce A to upper lessenberg form. EIG
emplcoys eiermentary similarity transformations and EKIG1 employs orthogonal simy larity
transformations. In theory the use of orthogonal transforinations assures one of a
tighter bound on the errors. However, since in practice matrices infrequently arise
for which the orthogonal transformations actually generate more accurate results) and
since the orthogonal transformations normally require more time than the elementary
iransformations, therefore EIG is the recommened rcutine.

351

Programming. EIG and EIG1 are driver routines for the £ISPACK subroutines BALANC,
ELMHS0, ORTHES, and HQR. These subroutines weras developed at Argonne National
Laboratory. The functions SPMPAR and IPMPAR are also used.

Reference. Smith, B. T'., Boyle, J. M., vt al., Mairiz Eigensysiem Routines - EISPACK
Guide (Second Edition), Spriuger-Verlag, 1976.

COMPUTATION OF EIGENVALUES AND EIGENVELTORS OF
GENERAL REAL MATRICES

The subroutines EIGV and EIGV1 are cvallubie for computing the eigenvalues rnd
eigenvectors of real matrizes. These routines are extensions of the respective eigenvalue
routizies EIG and EIG1. Thus all ccmments made concerning the sccuracy of the eigenvalues
produced by EIG and EIG1 apply also to EIGV and EIGV1. In particular, EIGV and
EIGV1 can frequently yizld high precision results for vhe eigenvalues il t.ey are distinct.
However, be aware that errors in the eigenvalues, no maiter how seemin ily insigmficant,
can be considerably magnified in the compuiation of the eigenvectors. It is not at ali
unusual to obtain an eigenvalue and eigenvector where the eigenvalue i3 correct to within
2-3 units of the 14'P significant digit, but the compounents of the correspoiding eigenvector
are only accurate to 9-10 significunt digits. In the case of repcated ¢igenvalues the situation
regarding the eigenvectors is totally unpredictable. The components of such an eigenvector
n-.y be correct to 67 gignificant digits, or the eigenvector may pnot even be an eigenvector!
In this case the results should be checked.

CALL EIGV(IBAL, A, ka,n, WR,WI,ZR, ZL IERR)
CALL EiGV1(IBAL, A, ka,n, WR,WI,ZR ZI iERR)

A is a matrix of order n > 1 and WR, WI are real arrays of dimension n or larger.
When EIGV or EIGV1 is called the eigenvalues Ay, ..., A, and corresponding eigenveciors
z1, ...,2n are computed. The real parts of the eigenvalues are stored in WR(1), ... ,WR(n)
and the imaginary parts are stored in WI(1), ... ,WI{n). The eigenvalues are unordered
except that complex conjugate pairs of eigenvalues appear consecutively with Jhe eigenvilue

having the positive imaginary part being first.

The input argument ka is the number of rows in the diirension statement for A in
the calling program. ZR and ZI are real arrays of ¢imension ka X n. For = 1, ..., n the
real parts of the components of the cigenvector z; are stored in the J* column of ZR (in
locations ZR{L,5), ...,2R(n, 7)) and the imaginary parts are stored in the 3" column of Z1.

The eigenvectors 7y, ..., 2z, are nai normalbized.
1) b 143

IBAL is an input argument thet can bz assigned an- integer value. If IBAL 3 O Jhen
the routines balance A before they compute the eigeavilues and eigeavectors. Otherwise,
if IBAL == 0 then A 18 not balanced.

Erroy Return. TERR is an integer » ariable. If all the eigenvalues and eigenvectors are {onnd
then IERR is set to 0. Otherwise, if inore than 30 iterations are required to compute the j'0
eigenvalue Aj, then FERE 18 sct to 7 and the rouvine terminates. In this case, if 7 < n fuen
the ergenvalues A, q, ... A, will have been computed and the results stored in the WR and
WI arrays. Howzver, none of the eigenvectors will have boeen computea. The eigenveciors
are computed only after all the eigeuvalues tinve been obtained.

.
503

Remarks.

{1) ¥ven though the balancing operation does rot increase the theorstical bounds on the
errors, nevertheless at times it may result in aslight loss of accurascy. Oun the other hand,
balancing requires little additionsl time and 13 certain cases can improve vhe seonvacy
of the eigenvalues by as much as 5-6 signilicant digits. When this occurs balancing
will normally be neaded to obtain the elgenvectors. In general, 1w i recommended that,
baluncing be done.

(2} A is destroyed during computation. EIGV and EIGV1 both reduce A to upper Hes-
genberg form, apoly the QR algorithm to the essenberg matrix Lo obtain the eiyen-
values, and then backsubstitute to geaerate the sigenvectors. They differ ouly in the
choice of transformations vsed to reduse A to uuper Hessenberg form. EIGV employs
elementary similarity transformations ana CIG VYV employs ordhogonal similavity trans-
formations. In theory the use of ortnogonal transformations assures one of a tighter
bound on the errnrs. [lowever, since in practice matrices infrequently arise for which
the orthogonal transforinations actually generale more accurate resuits, and since the
orthogonel transformations nermally require more time than the elementary transfor.
maticas, therefore BIGYVY is the recommeaendad routine.

Programming. EIGV and EIGV1 are driver rousines for the EISPACK subroutines BAL-
ANC, KLMHSO, ORTHES, ELTRNG, ORTRAN, HQR2, and BALBAK. These subroutines
were develoved at Argonne Natioual Labocatory. The functions SPIMPAR and IPMPAR
are also ugsd,

Refeverrna. Smith, B. T, Zoyle, &. M., et al. Muilrsz Eigensystermn Routines -- EISPACK
Guide {second Fdition}, Springev.-Verlay, 1975,

]
o
PN

DOUBLE PRECISION COMPUTATION OF EIGENVALUES OF
REAL MATRICES

The subroutine DEIG is available for the double precision computation of the eigen-
vaiues of real matrices. This routine frequently yields results accurate to 26-28 significant
digits. However, if the eigenvalues are not distinct or if they are exceedingly tightly clus-
tercd, then a severe drop in accuracy can occur. In this case one should not expect more
than 13-14 digit accuracy.

CALL DEIG(IBAL, 4, ka,n, WR,WI,IERR)

A is a double precision matrix of order n > 1 and WR, WI are double precision arrays
of dimension n or larger. When DEIG is called then the eigenvalues Ay, ..., A, of A are
computed. The real parts of the eigenvalues are stored in WR(1), ...,WR(n) and the
imaginary parts are stored in WI(1), ... ,WI(n). The eigenvalues are unordered except that
coraplex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the
positive imaginary part being first.

IBAL and ka are input arguments. The argument ka is the number of rows in the
dimension statement for A in the calling program. IBAL may be any integer. If IBAL #
0 then the routine balances A before it computes the eigenvalues. Otherwise, if IBAL =
then A is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
to 0. Othorwise, if more than 50 iterations are required to compute the 7" eigenvalue A},
then IERK is set to j and the routine terminates. In this case, if 7 < n then the eigenvalues
Aj+1, - .., An will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) A is destroyed during computation.
(2) DEIG is a double precision version of the eigenvalue routine EIG1.

Programming. DEIG is a driver routine for the subroutines DBAL, DORTH, and DHQR.
These subroutines are double precision versions of the EISFPACK subroutines BALANC,
ORTHES, and HQR, developed at Argonne Natlonal Laboratory. The double precision
versions were prepared by A. H. Morris. The functions DPMPAR and IPMPAR are also
used.

Reference. Smith, B. T, Boyle, J. M., et al., Matriz Eigensysternrs Routines - EISPACK
Guide {Second Edition), Springer- Verlag, 1976.

DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECTORS OF REAL MATRICES

The subroutine DEIGV i+ available for the double precision computation of the eigen-
values and cigenvectors of rewi matrices. This routine [requently yields values for the eigen-
values that are accurate to 26-28 significant digits. However, be aware that errors in the
eigenvalues, no matter how seemingly insignificant, can be considerably magnified in the
computation of the eigenvectors. i ilie eigenvalues are not distinct or if they are exceed-
ingly tightly clustered, then a severe drop in accuracy can occur. In this case one should
not expect the eigenvalues to have more than 13-14 digit accuracy.

CALL DEIGV(IBAL, A, ka,n, WR,WL,Zl. | (ERR)

A is a double precision matrix of order n > 1 and WR, WI are double precision
arrays of dimension n or larger. When DEIGV is called then the eigenvalues Ay, ... A,
and corresponding eigenvectors zi, ..., z, are computed. The real parts of the cigenvalues
are stored in WR(1), ...,WR(n} and the imaginary parts are stored in Wi(1), ..., WI(n).
The eigenvalues are unordered except that complex conjugate pairs of eigenvalues appear
consecutively with the cigenvalue haviug the positive imaginary part being first.

The input argument ka is the number of rows in the dimension statement for A in
the calling program. ZER ud ZI are double precision arrays of dimension ke X n. For
J = 1,...,n the real var.: of the components of the eigenvector z, are stored in the j'P
column of ZR (in locaiions ZR(1,7), ... 7 R(n,7)) and the imaginary parts are stored in the

7" column of ZI. The eigenvectors 2y, ..., 2, are not normalized.

IBAL is an input argunent that can be assigned any integer value. If II AL # 0 then
the routine balances A before it computes the eigenvalues and eigenvecters. Otherwise, if
IBAL = 0 then A is not balanced.

Error Return. IERR is an integer variable. 1f all the eigenvali:cs and eigenvectors are found
then IERR is set to 0. Otherwise, if more than 50 iterations are required to compute the jtb
eigenvalue A, then IERR is set to j and the routine terminates. In this case, if 7 < n then
the eigenvalues A, y, ..., A, will have been computed and the results stored in the WR and
WI arrays. However, none of the eigenvectors will hive been computed. The eigenvectors
are computed only after all the eigenvalues have been obtained.

Remarks.

(1) A s destroyed during computation.

(2) DEIGV is a double precision version of the eigenvalue/igenvector routine RIGVI.

307

Programming. DEIGYV is a driver routine for the subroutines DBAL, DORTH, DORTRN,
DHQR2, and DBABK. These subroutines are double precision versions of the EISPACK
routines BALANC, ORTHES, ORTRAN, HQR2, and BALBAK, developed at Argonne
National Laboratory. The double precision versions were prepared by A. H. Morris. The
functions DPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matriz Eigensystems Routines — EISPACK
Guide (Second Edition), Springer-Verlag, 1976.

COMPUTATION OF EIGENVALUES OF SYMMETRIC REAL MATRICES

The subroutines SEIG and SEIG1 are available for computing the eigenvalues of syin-
wetric real matrices. These routines frequently yield high precision cesults. SEIG is faster
than SEIG1, but at times SEIG1 will produce better results when the syrmmetric matrix ig
tridiagonal. For arbitrary symmectric matrices it is not clear if there is any difference in the
reliability of the routines.

CALL SEIG(A, ka,n,W, T, IERR)
CALL SEIG1(A, ka,n, W, 7, [ERR)

A is a symmetric matrix of order n > | and W an array oi dimension n or larger.
When SEIG or SEIG1 is called the eigenvalues A,, ..., A, are computed and stored in
W(1), ...,W(n). The eigervalues arc ordered so that A; < .. <A,

A may be packed or in standard form.! The input argument ka is a nonnegative

integer. If ka = 0 then A is assumed lo be packed. Otherwise, if ke # 0 then A is assumed
to be in the standard format. In this case ka has the value:

ka = the number of rows in the dimcnsion statement for A in the calling program
It is assumed that ka > n. However, it is not 1 ju -ed that A(i, 7) be defined for i < 7.
Only the lower triangular elei. uts . A are used.

T is an array used for temporary storage. If SEIG is called then T must be of dimensicn
2n. However, if SEIG1 is called then T need only be of dimension n.

Ercor Return. IERR is an integer variable. Ii all the eigenvalues are found then IERR is
set to 0. Otherwise, if more than 30 iterations of the QL algorithm are required to compute
the j'M eigenvalue A;, then IERR is set to j. In this case, if 7 > 1 then the eigenvalues
A1, ...y A1 will have been computed and stored ia W. The eigenvalues are ordered so
that Ay < --- < A;_{. However, they need noc be the smallest eigenvalues of A.

Remark. A is destroye ' during computation,

Programming. SEIG and SEIG1 ate driver routines for the EISPACK subroutines TRED1,
TREDS, TQLRAT, a:d IMTQL!. These subroutines were developed at Argonne National
Laboratory. The funciion SPMPAR is also used.

Reference. Smith, B. T'., Boyle, J. M., et ..l., Matriz Figensystem Routines - E1ISPACK
Guide (Second kdition), Springer-Verlag, 1976.

VEor detaily ¢ the posbed Format see the section on packing a -l winpe 0 2 symetsn o oatnces

354

COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
SYMMEVRIC REAL MATRICES

The subroutines SEIGV and SEIt V1 are available for computing the eigenvalues and
eigenvectors of symmetric real matrices. These routires frequently yield high precision re-
sults for the eigenvalues. However, be aware that errors in the eigenvalues, no matter how
seemingly insignificant, can be considerably magnified in the computation of the eigenvec-
tors. It 18 not at all unusual to obtain an eigenvalue and eigenvector where the eigenvalue
is correct to within 2-3 units of the 14'" significant digit, but the components of the cor-
responding eigenvector are only accurate t¢ 9--10 significant digits. SEIGV is faster than
SEICVI1, but at times SEIGV1 will produce better results when the symmetric matrix is
tridiagonal. For arbitrary symmetric matrices it is not clear if there is any difference in the
reliability of the routines.

« ALL SEIGV(A ka,n,W,Z, T, IERR)
CALL SEiGV1(A, ka,n,W, 2, T,.ERR)

A ls a syminetric matrix of order n > 1 and W an array of dimension n or larger. When
SEIGV or SEIGV1 is called the eigenvalues Ay, ..., A, and correspending orthonormal
eigenvectors zj, ..., z, are computed. The eigenvalues are stored in W (1}, ..., W(n) and
are orde-ed so that A; < ... < A,.

A must be in the standard format, having the dimension ka X n. It iz assumed that
ka > n. However, it ‘s not required that A{¢,,) be defined for ¢+ < j. Only the lower
triangular elements »f A are used.

Z is an array of dimension ka X n or larger. For 7 = I, ...,n the components of the
eigenvector z; are stored in the 5" column of Z (in locations Z(1,7), ...,Z{(n,5)). To
conserve mernory one may let A and Z denote the same array.

T is an array of dini. ension 2 used for temporary storage.

Error Return. IERR iy an iuteger variable. 1If all the eigenvalues and eigenveciors are
found then IERR is set to 0. Otherwise, if more than 30 iterations of the QL algorithm
are required to compute the ' eigenvalue X;, then IERR is set to j. In this case, if j > 1
then the eigenvalues Ay, ..., A; ;| and eigenvectors zy, ...,2z; 1 will Lave been computed
and stored in the W and Z array:.. However, the eigenvalues will be unordered.

Remark. A is not modified except whin A and Z denote the same array.
Programming. 3EIGV and SEICVi are driver routines for the EISPACK subroutiaes

TRED2, TQL2, and IMTQL2. These subros ies were developed at Argonne National
Laboratory. The lunction SPMPAR is als) used.

Reference. Simith, 13 P Bovle, d. M et al) Matrix Eigensyutesn Roulines FEISPACK
Guide Second Edition), springer-Verlag, 1976

DOUBLE PRECISION COMPUTATION OF EIGENVALUES
OF SYMMETRIC REAL MATRICES

The subrcutine DSEIG is available for the 1ouble precision computation of the eigen-
values of syminetric real matrices. The subroutine frequently yields results accurate to
27-28 signmificant digits.

CALL DSEIG(4, ka,n,'V,T, IERR)

A is a double precision symmetric matrix of order n > 1 and W a double precision array
of dimensicn n or larger. When DSEIG is called the eigenvalues \;, ..., A, are computed
and stored in W (1), ...,W(n). The eigenvalues are ordered so that \; <--- < X,.

A may be packed or in standard form.! The input argument ka is a nonnegative
integer. If ka = O then A is assumed to be packed. Otherwise, if ke # 0 theu A is assumed
tu be in the standard format. Ia this case ka has the value:

ke = the number of rows in the dimension statement for A in the calling programn

It is assumed that ke > n. However, it is not required that A(s,j) be defined for ¢« < j.
Only the lower triangular elements of A are usad.

T is a double precision array of dimension 2n or iarger that is a work space for the
routine,

Error Return. IERR is an inceger variable. If all the cige~values are found then IERR is
set to 0. Otherwise, if more than 50 iterations of the QL algorithm are required to compute
the 7' eigenvalue)A;, then IERR is set to j. In this case, if 7 > 1 then the eigervalues
Ay, ..., A;o1 will have been computed and stored in W. The eigenvalues are ordered so
that Ay <--- < A,;_;. Howaver, they need not be the smallest eigenvalues of A.

Remarks.
(1) A is destroyed during computation.

(2) DSEIC* is a double precision version of the eigenvalue routine SEIG.

Programming. DSEIG 1s a driver routine for the subroutines DTREDI, DTRED3, and
DTQC. These subroutines are double precision versions of the KISPACK routines TREDI,
TRED3S, and TQURAT, developed at Argonne National Laboratory. The double precision
versions vere prepared by A, H. Morris. The function DPMPAR s also used.

Reference. Smith, 8.1 Boyle, J. M. et at., Matriz Ewgensystemn Routines EISPACK
Guide (Second Edition), Springer-Verlag, 1976,
Rey cnovdls un the packed ronat see the section on packing and wepackioyg synstoetric matrices.

363

DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECTORS OF SYMMETRIC REAL MATRICES

The subroutine DSEIGYV is available for the double precision computation of the eigen-
values and eigenvectors of symmetric real mairices. This subroutine frequently yields values
for the eigenvalues that are accurate to 26-28 significant digits. However, be aware that
errors in the eigenvalues, no matter how seemingly insignificant, can be considerably magni-
fied in the computation of the eigenvectors. It is not at all unusual to obtain an eigenvalue
and eigenvector where the eigenvalue is correct to within 2-3 units of the 28" significant
digit, but the components of the eigenvector are only accurate to 22-24 significant digits.

CALL DSEIGV(A,ka,n,W,Z,T,IERR)

sion array of dimension n or larger. When DSEIGV is called the eigeavalues Ay, ..., A,
and corresponding eigenvectors 2y, ..., z, are computed. The eigenvalues are stored in
W (1), ...,W(n) and are ordered so chat A; < .-+ < A..

A is a double precision symmetric matrix of order n > 1, and W a double preci-

A must be in the standard format, having the dimension ka x n. It is assumed that
ka > n. However, it is not required that A{t,7) be defined for i < j. Only the lower
triangular elements of A are used.

Z is a double precision array of dimension ke x n or larger. For j = 1, ..., n the compo-
nents of the eigenvector z; are stored in the §*" column of Z (in locations Z(1,7), ..., Z(n,7)).

To conserve memery one may let A and Z denote the same array.

T is a double precision array of dimension n or larger that is a work space for the
routine.

Error Re.arn. IERR is an integer variable. If all the eigenvalues and eigenvectors are
found then 1ERR is set to 0. Otherwise, if more than 50 iterations of the QL algorithm
are required to compute the 7' cigenvalue Aj, then IERR is set to j. In this case, if 7 > 1
then the eigenvalues Ay, ... A, { and eigenvectors zy, ..., z; | will have been computed
and stored 1n the W and Z arrays. However, the eigenvalues will be unordered.

Remarks.
(1) A s not modified except when A and 7 denote the same arcay.
(2) DSEIGV is a deuble precision version of the eigenvalue/eigenvector subroutine SEIGV.

Programniung. DSEIGV 15 a driver routine for the subroutines D'FRED?2 and DTQL2.

T: ese subroutine: are double precision versions of the EISPACK subroutines TRED? and

TQRLZ developed at Argonne National Laboratory. The double precision versions were
repared by AL H. Morris. The fanction DEPMPAR s also used,

Reference. Sunth, BO'U Boyle, J M e ul | Matrix Figensystem Routines FISPACK
Guic - (Second Bditon), Springer-Verlag, 1976

COMPUTATION OF EIGENVALUES OF COMPLEX MATRICES

The subroutine CEIG is availatle for computing the eigenvalues of complex matrices.
This routine frequentiy yields results accurate to 13-14 significant digits. However, if the
eigenvalues are not distinct or if they are exceedingly tightly clustered, then a severe drop
in accuracy can occur. In this case one should not expect more than 7-8 digit accuracy.

CALL CEIG(IBAL,AR A}, ka,n, WR,W{IERR)

AR and AI are real matrices of order n > 1, and WR and WI are real arrays of
dimension n or larger. AR and Al are the real and imaginary portions of the complex matrix
whose eigenvalues are to be computed. When CEIG is called the eigenvalues Ay, ..., A,
are computed. The real parts of the eigenvalues are stored in WR(1), ...,WR(r) and the
imaginary parts ace stored in WI(1j, ... ,WI(n). The eigenvalues are unordered.

IBAL and ka are input arguments. It is assumed that &a is the number of rows in the
dimension statements for AR and Al in the calling program. IBAL may be any integer.
If IBAL # O then the complex matrix {represented by AR and Al) is baianced before the
eigenvalues are comnputed. Otherwise, if IBAL = 0 then the complex matrix is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR is set
tc 0. Otherwise, if more than 30 iterations are required to compute the j*" eigenvalue A,
then IERR is set to 7 and the routine t2rminates. In this case, if 7 < n then the eigenvalues
Aj+1, -+ +rAn will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) Even though the balancing operation does not increase the theoretical bo.unds on the
errors, revertheless at times it may result in a slight loss of accuracy. On the other
hand, balancing requires little additional tune and in certain cases can hmprove the
accuracy by as much as 5-6 sigmifizant digits. Thus it is recommended that balancing
be done.

(2) AR and Al are destroyed during computatior . CEIG reduces the complex matrix
(represented by AR aund Al) to upper Hessepberg form with unitary similarity trans-
formations. Then the QR a'gorithim s used to obtain the eigeavalues,

Usage. If one has a complex matrix A then AR aad 1 can be obtained using the matrix
subroutines CMREAL and CMIMAG,

Programming. CEIG 13 a driver routine for the EISPACK subroutines CBATL, CORTH
and COMQR. These subroutines were developed at Argoune National Laboratory, The
functi »s SPMPAR aad IPMPAR are also used.

Reference. Smuth, B "1 Boyle, J. M et al . Matrir Eigensystern Routines KISPACK

Gurde (Second Bdition), Springes Verlay [0 6

COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF
COMPLEX MATRICES

The subroutine CEICV is available for computing the eigenvalues and eigenvectors
of complex matrices. This routine frequently yields values for the eigenvalues that are
accurate to 13-14 significant digits. However, be aware that errors in the eigenvalues, no
matter how seemingly insignificant, can be considerably magnified in the computation of
the eigenvectors. It is not at all unusual to obtain an eigeavalue and eigenvector where the
eigenvalue is correct to within 2-3 units of the 14" significant digit, but the components of
the corresponding eigenvector are only a.curate to 9-10 significant digits. If the eigenvalues
of a matrix are not distinct or if they are exceedingly tightly clustered, then a severe drop
in accuracy can occur. In this case one should not expect the eigenvalues to have more taan
7--8 digit accuracy, and the situation regarding the eigenvectors is totally unpredictable.
The components of such an eigenvector may be correct to 6-7 significant digits, or the
eigenvector may not even be an eigenvector! In this case the results should be checked.

CALL CEIGV(IBAL,AR Al ka,n, WR,WI,ZR,ZI,IERR, TEMP)

AR and Al are real matrices of order n > 1 and WR and WI are real arrays of
dimension n or larger. AR and Al are the real and imaginary portions of the complex
matrix whose eigenvalues and eigenvectors are to be computed. When CEIGYV is called
the eigenvalues Ay, ..., A, and corresponding eigenvecters 2y, ..., z, arc computed. The
real parts of the cigenvalues are stored in WR(1), ... W&(n) and che imaginary parts are
stored in WI(1), ... ,WI(n). The eigenvalues are unorder:d.

It 13 assumed that the Input argument ka is the number of rows in the dimension
statements for AR and Al in the calling program. ZR and Z1 are real arrays of dimension

ka x n. For g7 = 1, ... n the real parts of the components of the eigenvector z, are stored
in the 7% column of ZR (in locations ZR(1,7), ..., 21{n, 7)) and the imaginary parts arc

th

stored in the 7% column of Z1. The elgenvectors zy, ..., ¢, are not normalized.

IBAL is an input argument that can be assigned any integer value. If IBAL /O
then the complex matrix (represented by AR and Al) is balanced before the eigenvalues
and eigeuvectors are computed. Otherwise, if IBAL 0 then the complex mateix 1y not

balanced.

TEMP 15 a real array used for temporary storage by the routine. If no balancing w to
be done (e if IBAL 0) then TEMP must be of dunmension 2n or larger. Otherwise, if

balancing is to be performed then TEMP must be of dimension 2nor larger.
|4 } 8

Error Return. TEER 5 an integer vartable: If ail the eigenvalaes and eigenvectors are found
then TRRR s set to 0. Otherwse, if meee than 30 iterations are required to eompnte the jtt
cigenvalue A then TRRE 15 set to y and the rontine termmates Inodhs coace d - onthen
the eigenvadues A, ¢ 0 A, will have been computed and the results stoream the WR and
W1 arrays However, none of the cigenvectors will have bheen computed. The cigenvectors

are computed ouly after all the vigenvalues hav s been obtamed

2

Remarke.

{1) Even though the Lalancing operation does not increase the theoretical bounds on the
errors, nevertheless at times it may resuls i.: a slight loss of accuracy. On the other hand,
talancing requires little additional time and in certain cases can improve the accuracy
of the eigenvalues by as much as 5-8 significant digits. When this occurs balancing
will no.mally be needed to obtain the eigeavectors. In general, it is recommended that
balancing be done.

(2) AR and Al are destroyed during computation. CEIGV reduces the complex matrix
(represented by AR and Al) to upper Hessenberg form with unitary similarity trans-
formations. Then the QR algorithm is employed to obtain the eigenvalues, and back-
substitution is performed to generate the eigenvectors.

Usage. If one has a complex matrix A, then AR and Al can be obtained using the matrix
subroutines CMREAL and CMIMAG.

Programming. CEIGYV is a driver routine for the EISPACK subroutines CBAL, CORTH,
COMQR2, and CBABK2. These subroutines were developed at Argonne National Labora-
tory. The functions SPMPAR and IPMPAR are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matriz Eigensystem Routines - FISPACK
Guide (Second Edition), Springer-Verlag, 1976.

30

DOUBLE PRECISION COMPUTATION OF EIGENVALUES OF
COMPLEX MATRICES

The subroutine DCEIG is available for the double precision computation of the eigen-
values of complex matrices. This routine frequently yields resulta accurate to 26-28 signif-
icant digits. However, if the eigenvalues are not distinct ur if they are exceedingly tightly
clustered, then a severe drop in accuracy can occur. In this case one should not expect
more than 13-14 digit accuracy.

CALL DCEIG(IBAL,AR,AI ka,n, WR, Wi IERR)

AR and Al are double precision matrices of order n > 1, and WR and WI are doubie
precision arrays of dimension n or larger. AR and Al are the real and 1maginary parts of
the matrix whose eigenvalues are to be computed. When DCEIG is called the eigenvalues
Ay, <.+, A, are computed. The real parts of the eigenvalues are stored in WR(!), ... ,WR(n)
and the imaginary parts are stored in WI{1), ..., WI(n). The eigenvalues are unordered.

IBAL and ka are input arguments. It is assumed that ka is the number of rows in the
dimension statements for AR and Al in the calling program. IBAL may be any integer.
If IBAL # 0 then the complex natrix {represented by AR and Al) is baianced before the
eigenvalues are computed. Otherwise, if IBAL == 0 then the complex matrix is not balanced.

Error Return. IERR is an integer variable. If all the eigenvalues are found then IERR 13 set
to 0. Othc wise, if more than 50 iterations are required to compute the j*" eigenvalue Ay,
then IERR is set to j and the routine terminates. In this case, if 7 < n then the eigenvalues

A4, -, An will have been computed and the results stored in the WR and WI arrays.

Remarks.

(1) AR and AT are destroyed during computation.
(2) DCEIG is a double precision version of the eigenvalue routine CEIG.

Programming. DCEIG 18 a driver routine for the subroutines DCBAL, DCORTH, and
DCOMQR. These subroutines are double precision versions of the EISPACK subroutines
CBAL, CORTH, and COMQR, developed at Argonne National Laboratory. The double
precision versions were prepared by A H Morris. The fun-ticns DCPABS, DPMPAR,
IPMPAR and subroutine DCSQRT are also used.

Reference. Sumith, B. I Boyle, J M et al , Matriz Eigensystemn Routines EISPACK
Gutde (Second Edition), Springer Verlag, 1976

DOUBLE PRECISION COMPUTATION OF EIGENVALUES AND
EIGENVECTORS OF COMPLEX MATRICES

The subroutine DCEIGYV is available for the double precision computation of the eigen-
values and eigenvectors of complex matrices. The routine frequently yields values for the
eigenvalues that are accurate to 26-2& significant digits However, be aware that the errors
in the eigenvalues, no matter bow seemingiy insignificant, can be considerably magnified
in the computaticn of the eigenvectors. If the eigenvalues are not distinzt or if they are
exceedingly tightly clustered, then a severe drop in accuracy can occur. In this case one
should not expect the eigenvalues to have more than 13-14 digit accuracy.

CALL DCEIGV(IBAL,AR,AL ka,n, WR W{,ZR,Z] IEE.R, TEMP)

AR and Al are double precision matrices of order n > 1 and WR and WI are doulile
precision arrays of dimension n or larger. AR and Al are the real and imaginary portions
of the complex matrix whose eigenvalues and eigenvectors are to be computed. When
DCEIGYV is called the eigenvalues Ay, A, and corresponding eigenvectors z,, ..., z,, are
computed. The real parts of the eigenvalues are stored in WR(1), ..., WR(n) and the
imaginary parts are stored in WI(1), ... ,WI(n). The eigenvalues are unordered.

It is assumed that the input argument ka is the number of rows in the dimension
stavernents for AR and Alin the calling program. ZR and Z1 are double precision arrays of
dimension ka x n. For 7 - 1, ..., n the real parts of the components of the eigenvector z,
are stored in the 7*" column of ZR (in locaticns ZR(1,3), .. ,2R(n,j)) and the imaginary
r~-ts are stored in the 5" column of ZI. The eigenvectors z,, ..., 2, are not normajized.

IBAL is an input argument that can be assigned any integer value. If IBAL # 0
then the complex matrix (represented by AR and Al) is balanced before the eigenvalues
and eigenvectors are coraputed. QOtherwise, if IBAL == O then the compiex matrix is not
balanced.

TEMP 1s a double precision array used for temporary storage by the routine. If no
balancing 15 to be done (i.e., if IBAL 0) then TEMP must be of dimension 2n or larger.
Otherwise, If balancing is to be performed then TEMP niust be of dimensien 3n or larger

Error Return. IR R 1s an integer variable. If all the eigenvalues and eigenvectors are found
then IERR 15 set to 0 Otherwise, if more than 50 iterations are required to compute the 3t"
eigenvalue A, then IERR 18 sel to 3 and the routine ternnnetes. In this case, f 3 < n then
the eigenvalues A, p, ... A, will have been computed and the results stored in the WR and
W1 arrays. However, none of the ergenvectors will have been computed. The eigenvectors

are computed only after all the cigenvalves have been obraned

Reimmarks

(1) AR and Al are destroyed diaring computation,

(2, DURICV s a doable precision versmon of the exgenvaine, cigenvector routne CHIGV

T TR (TN VRN TR

gramming. DCEIGV is a driver for the subroutines DCBAL, DCOKTH, DCMQRZ2,

- DCBABK. These subroutines are double precision versions of the EISFACK rouiines
CJ3AL, CORTH, COMQR2, and CBABK2, developed at Argonne National Laboratory.
"I'ne double precision versions were prepared by A. H. Morris. The functions DCPADBS,
DPMPAR, IPMFAR and subroutine DCSQRT are also used.

Reference. Smith, B. T., Boyle, J. M., et al., Matriz Eigensystern Routines - EISPACK
Guide {Second Edition), Springer-Verlag, 197¢.

594

A

£ SOLUTION OF SYSTEMS OF {INEAR FQUATIONS wWiIrH
EQUALITY AND INEQUALITY CONSTRAINTS

Let A be a kxn matrit, C an €xnmatrix, and % an mxn matrix. Alsolet b,d, and f be
olumn vectors of Junens'om k£, and m reqpeutwely The fellowing nubmutme 18 available

for obtaining a column vector « of dimension n which minimizes || Az - b||; = L [Ayz — b
f==1
subject to the constraints
Cr=d
K < f,

Here A; denotes the i*P row of A, and £ < f means that every component of Ez is less
than or equal to the corresponding coroponent of f.
CALL CLA(k, £, m,n,Q,kq, KODE, TOL,ITER, X, RES RNORM, WK, IWK)

It is assumed that £ > 1,€ > 0,m > 0, and n > 1. @ is a 2-dimensional array with
kq rowe and at least n + 2 colurns where kg > k+ £+ m + 2. The matrices A,C, £ and
vectors b,d, f are stored in the first k + £+ m rows and n -+ 1 columns of @ as follows:

A B
@=41C d
E f

@ is modified by the routine.

KODE is a variable used for input/output purposes, X an array of dimension n + 2 or
larger, and RES an array of dimension k + £ + m or larger. Cn input KODE is normally
set by the user to 0. This indicates that ||Az - &||; is to be minimized subject only to the
constraints Cz = d and Ezr < f. However, if it is also desired that one or moie variables
z; satisfy z; < 0 or z; > 0, or that one or msre residuals b, ~ A,z satisfy b; — A;x < O or
b, - A,x > C, then the user may set KODE to a nonzero value. if KODE 71‘— 0 on mput,
then the user must also set X(j) and RES{r) to the values

{ ~10 z,<0
X(7) - 0.0 z; is unrestricted
10 2, >0
1.0 b - Agz <. 0
RES{1) - 1 0.0 b, A,z is unrestricted

PO Oh A 0

for j noaod s o),k to indicate the aaditional corstraints which are desired.

Yoy >

RNOKRM s 1 vanable When CLY s called b a vector 7 1s tound that rnmimizes
fAr S subgest to the desieed constrabnts, then KODE O o output and the solution o

is stored in X. Also RNORM is assigned the value ||Az — b||;,b — Az is stored in the first &k
locations of RES, ¢ — Cz is stored in the next € locations, and f — Ez is stored in the last
m locations.

When CL1 is called, a modified form of the simplex algorithm is used to minimize
||Az — b]|y. The arguments TOL and ITER control the use of this algorithm. The input
argument TOL is a positive tolerance. CL1 will not pivot on any quantity whose magnitude
is less than TOL. Normally the setting TOL = 1073*/% guffices where v is the number of
decimal digits of accuracy available.

Frequently the routine requires less than 5(k+ £+ m) iterations of the simplex alogrithm
to solve the problem. ITER is a variable used for input/output purposes. On input the user
must set ITER to the maximum number of iterations that will be permitted. When the
routine terminates, ITER has for its value the number of iterations that were performed.

On output KODE reports the status of the results. The routine assigns KODE one of
the following values:

KODE = 0 The problem was solved.

KODE = 1 The problem has no solution.

KODE = 2 Sufficient accuracy cannot be maintained to solve the problem
using the current value of TOL.

KODE = 3 The maximum number of iteraticns were performed. More itera-
tions are needed.

When KODE > 1 on output, X contains the last vector Z which was obtained, RNORM =
||AZ — b|],, and RES contains the vectors b — A%,d — C%, and f ~ Ez.

WK is an array of dimension 2(k + £+ m + n) or larger, and IWK 18 an array of
dimension 3(k + £+ m) + 2n or larger. WK and IWK are work spaces for the routine.

Pregramming. CLI1 calle the subroutine KL1. CL1 was written by 1. Barrodale and
F. D. K. Roberts (University of Victoria, British Columbia, Canada).

References.

(1) Barrodale, 1. and Roberts, . D. K., “An Improved Algorithm for Discrete ¢; Lincar
Approxiination,” SIAM J. Numer. Analysis 10 (1973), pp. 839 848,

(2) . ,“An Efficient Algorithm for Discrete £, Lincar Approximation with Linear
Constraints,” SIAM J. Numer. Analysis 15 (1978), pp. 603 611,
(3) ., “Algorithm 5562, Solution of the Censtrained £; Linear Approximation

i;;:;i)ltéln," ACM Trans. Math So/tware 6 (1980), pp. 231235,

LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Given an m X n matrix A and an m X £ matrix 5. The column vectors by, ..., b, of B
specify £ distinct linear least squares problems

This set of problems can be written in the form AX = B where X is the n X £ matrix having
the column vectors x;, ..., z,. There always exists a unique minimum length least squares
solution z; for each Az; = b;. If B is the m X m identity matrix, then the matrix whose
columns are the minimum length solution vectors z; is called the pseudoinverse of A.

For any B, the subroutines LLSQ, LSQR, HFTI, and HFTI2 are available for obtaining
the matrix X whose colurnns are the minimum length solution vectors. LSQR, PFTI, and
HAFTI2 are more general than LLSQ, begin able to solve arbitrary systems AX = B. LLSQ
assumes that m > n > 1 and that the rank of A is n. LSQR employs a more involved
procedure than HFTI and HFTI2. LSQR computes the rank of A, whereas HFTI and
HFTI2 leave the determination of the rank to the user.

CALL LLSQ(m,n, A, ka, B, kb, ¢, WK,]WK IERR)

It is assumed that m > n > 1 and that the rank of A is n. The input arguments ka
and kb have the following values:

ka = the number ¢i rows in the dimensicn statement for A in the calling program

kb = the number of rows in the dimension statement for B in the calling program
It is required that ka > m and kb > m.

IERR is an integer variable. When LLSQ is called, if no input errors are detected then
IERR is set to 0 and the solution matrix X stored in B. Also, if m # n then the residual
norm ||Az; — b;|| is computed and stored in B(n -+ 1,7) for 7 =1, ..., ¢!

WK and IWK are arrays of dimension n or larger that are work spa-es for the routine.

Error Return. IERR # O when mi > n > 1 s not satisfied (IERR - 1) or the rank of A4 is
less than n (IKRR - 2).

Note. A is destroyed during computation.

Programming. LLSQ 15 a driver for the subroutines ORTHO and ORSOL,, writte: by Nai-
Kuan Tsao and Paul J. Nikolal (Aerospace Rescarch Laboratories, Wright-Patterson Air
Force Base).

Reference. T'sao, N K. and Nikolar, P.J.) Procedures using Orthogonal Tyans formations
for Linear Least Squares Problems. Report ARL TR 740124, Acrospace Rescarch Lab
oratories, Wright-Patterson Air Force Base, 1974

"Parcughout this section le]; LY ar any veclor c I
[i$ 1l \ N y (S v

.)7;7
[N I

CALL LSQR{MO,A, ka,m, n, B, kb, £, RERR,AERR k ko, RNORM,
WK, fw,IWK, &iw JERR)

MO is an argument which specifies if LSQR is being used for the first time. On an

A is an m % n matrix where m,n > 1, and ka is the number of rows in the dimension
statement for A in the calling program. It is required that ka > m. A is destroyed by the
routine.

The argument £ is an integer. 17 £ > 1 then B is an m X £ matrix and kb is the number
of rows in the dimension statement ior B i1 the calling program. Also, RNORM is an array
of dimension £ or larger (for outpu.). It is required that kb > max{m,n}. If £ < 0 then
there are no equations to be solved, and B, kb, and RNORM are not used.

RERR is an argument which s; acifies the relative accuracy of the data in A. If it is
estimated that the elements in A ar accurate to p significant decimal digits then one may
set RERR = 107#. It is required that RERR > 0. If RERR = 0 then it is assumed that
the elements in A are accurate tc m .chine precision.

AERR is an argument which specifies the maximum absolute uncertainty of the data
in A. For example, if it i1s estimated that the elements a;; of A have the relative accuracy
RERR except when [a;;| < 1073¢) then one may set AERR = 1073°. It is required that
AERR > 0.

The arguments k, kp, and IERR are variables. When LSQR is called, if no input errors
are detected then IERR is set to 0 and the rank of A4 is bounded from above and below
using the tolerances RERR and AERR. The variable k is set to the upper bound and kg to
the lowe: boi nd. If £ > 1 then the n x £ matrix X whose columns are the minimum lengih
solt ion vectors is computed (using k as the rank) and stored in B. Also, the residual norm
A+, b || is computed and stored in RNORM(j) for 7 =: 1, ... L.

WK 13 «n array of dimension fw where fw > 5- min{m,n}. wmd IWK Is an array of
dimenston frw where fiw > eon f oo WK and IWK are work spaces for the routine,

Error Return. IERR 18 as igned one of the following values where an error 15 detected:

IKRR = m << Yor -« 1.
IKERR = 2 ka < m.

LUOR 3 kb < maxi v, n!}
KRR - 4 frw < i b on

[TKRR 5

TERY 6 RERR or ARKR s negative,
TERKR 7 MO/ 0and £

fw s too small.

No commpataton 18 prriormed when an error s detected

After an mital - all to LeQRf TERR O thien the routiae o be calle fa s N

S0 In thas oo s assutoed that only 3 has been modihed b o the e

equations AX == 13 are to be solved. The routine employs the Hous-holder factorization of
A stored in A, WK, and IWK »n the iuitial call to LSQR.

When MO # 0, it is vssumed that 4,ka, n,n,7 . VK, and £&w have not been modified
by the user. If k == 0 or k£ = min{rn,n} then only il.. first min{m, n} elements of WK are
needed and one may soi fw > min{m, n}. Otherwise, it is required that €w > 2-min{m,n}.

RERR, AERR, #.d kg are not used when MO # 0. The only assumptions concerning
the new B, kb, and 7 are that kb > max{m,n}, £ > 1, and the dimension ¢ RNGRM is
now the ne v value of £, When LEQR is called, if no input errors are detected then ILRR
is set to 0 aad the now solution matrix X obtained. As beforz, X is stored in B and the
residual norms are computed and stored in RNORM.

Remarks.N¢ nally ko = & in which case & is the rank of A, However, if ko # k then it is
recommende that ¥ 12 be used for obtaining the most appropriate value for the rank
and solving AX = B. If HFTIY s used, the sizes of the elements of the sclution matrix
X should be conuidered (in addition to the values of the residual norms). Frequently, the
lower bound £, will be found t¢ be the most appropriate value for the rank.

Progrataming. LSQR employs the subroutines J11LE, UL2LS UL1US, Ul2US, {SWAP,
SSWAY, SAXPY, S8CAL and functions SDOT, SNEM2, ISAMAX, SPMPAR, IPMPAR.
LSOR was written by A. H. Morris and UiiLS, J12LS, UL1US, Ui2US were written by
T. Manteuffel (Los Alamos).

Referenices. N anteuffel, T., An Inferval dAnalysis Approach to Reank Determination
in Linear Veast Squares Problerns, Report SAND 83-10565, Sandia Laboratorics, Albu-
quergie, Ioow lexico, 1980.

Ci o HETUA, ka, s n, 8, kb 81k RNORNY G IP)
CAo o HFTI2(A ka, ey, Bkb £, D, 7k, RIVORM, il (1P IERR)

Youe oo oo matnix where coon 1 and ka s the number of rows i the dimension

staloment a0 a the calling program, 1t s requiced that ko o

Whe wopument £y an acteger. IF € > 1 then B s an oo x £ matrix and &8 the
ut nbwer ¢ cows in the dimeasor statement for 73 as the calline programy. 1o requared that
LA 8 {

A i aomd A F < 0 then 0 cre are no equations to be solved, and H and k) are not
e
g o then RNORNM - anoarcay of dunenston € o larper Otherwage of €270 then
N M e el When BT or HETE s cadled, 8 Uihea the na £atein X whose
Gt st e denpth solution vectors s corngabosb wnd stored o I Also, the
LT v b, s copated snd atvred g RN e o 1,
! de e arvays of didvenson oo Biger Uoet o wonk spaces for ther toutine
the a v £k and 1)
AU o tolerance that peoot by the neeo, 0o s 'x;l.éuiw, and han LAY !

R¥LY

dimensior. min{m,n} or larger. It is assumed that + > 0. Normally 7 = 0 is the setting
that is used. D and k are sel by the routines.

In order to understand the use of v, k, and D one musi be briefly acquainted with the
processing of /4. The routines first reduce A to a triangular matrix C where A = QCP.
@ 18 an orthogonal matrix and P a permutation matrix. P is defined so thatv the diageonal
elements c,; of C satis y |ci| > |ciyi,41] for each 1. The variable k is set to the largest
integer such that |c, | > 7, and if HFTI2 is used then the diagonal elements ¢,; are stored
in D. C is now regarded as the partitioned matrix

¢, C
C = 1 2
0 C,
whe € is a k x k matrix. Minimum length least squares solutions z; are then computed

for uhe problems As; = b, usi g only the first k rows of C. This is cquivalent to replacing
A with

- C Ca
A:Q(! ‘)P
L0 0

and solving A':r;- =byforg=1,...,°

Since leyy| > - > |eki| > - clearly k is the rauk of A. It is also truc that the
ratio leyy| /|ckk| is a lower bound on the condition number of C; (relative to the spectral
norm). Thus, if the rauo is extremely large (say > 10%) then a severe loss of accuracy
can be expected. A large ratio may be due all or in part to rank deficiency (or near rank
deficiency) of the matrix A. Fortumnately, rank deficiency is frequently not ioo difficult to
detect and cure. When A is rank leficient then machine roundoff may assign cii a small
value, say 10714 when it should he (. 'The cure is to examine the diagonal clements ¢,
which are stored in D, to reset 7 so as to climinate the unwanted ¢,,’s, and then to rerun
the problem. This will reduce the order of £y, ihercby lowering the rank of the replacement

b

matrix A. Cy will now be better conditioned, but the value of the residual norns [Ar,]
may he larger. If the norms do increase, then the solution obtained will be satisfi-tory only
if the size of the increased norms fall within acceptable bounds

Remarks.

< 7. ik U then the zero matrix s the solntyon

(1) The variable & 15 set to 01f all |,
tor AX - 1.

(2, 1f £ < 0 then the decomposition A QU s performed, the diayo ol oloments of €
are stored m D) and k 18 computed.

() The contents of 4 are destroyed by the rou ies,
(4) HITT and HETI2 yield the same results,

Ervor Return TELRR s a vartable that oot by the roatie. oo nopot enior e detectaed
then TERE mosev to 00 Otherwase, TERE 1 wsipocc one of the following value .

IR it - ka

[§ A TR Dol f - v and Ab - max g

When an error s detected, the routine mmmediates termmat o

Programming. HFTI and HFTI2 call the subroutine H12. These routines were written by
Charles L. Lawson and Richard J. Harson (Jet Propulsion Laboratory), and modified by
A. H. Morris.

Reference. L.awson, C. L., and Hanson, R. J., Solving Least Squares Problems, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1974.

381

LEAST SQUARES SOLUTION OF OVERDETERMINED SYSTEMS OF
LINEAR EQUATIONS WITH (TERATIVE IMPROVEMENT

Given an m X n matrix A and an m x £ matrix B. The column vectors by, ...,bs of B
specify £ distinct linear least squares problems

AIJ':bJ‘ (jzl, ,e)

This set of problems can be written in the form AX = B where X is the n X £ matrix having
the column vectors z;, ...,x,. Assume that m > n > 1 and that the rank of A iz n. Then
there exists a unique least squares soluticn z; for each Az; = b;. The subrouuine LLSQMP
is available for obtaining the solution matrix X. Iterative improvement is performed to
compute X to machine accuracy.

CALL LLSQMP(m,n, A, ka, B, kb, £, WK, IWK IERT)

It is assumed that m > n > 1 and that the rank of A is n. The input arguments ka
and kb have the following values:

ka = the number of rows in the dimension statement for A in the calling program

kb == the number of rows in the dimension statement for B in the calling program
It is required that ka > m and kb > m.

When LLSQMP is called, the solution X 1s computed and stored in B. Also, il m # n
then the residual norm ||Az; - b,|| is computed and stored in 8(n + 1,7) for j = 1, ..., ¢!
A4 18 not modified by the routine.

WK is an array of dimeusion mn ¢ 2 { n or larger, and IWK an array of dimension
n or larger. WK and [WK are work spaces for the routine.

IKRR 13 a variable that 1s set by the routine. When LLSQMP terminates, [XRR has
one of the following valnes:

IERRR 0 The solution X was computed to machine accuracy.

IKRR 1 X was obtaned, but not to machime accuracy.

IKRR . 2 The restiiction m > n > 1 s not satisfied

IKRR 3 The rank of A 18 less than n.

Programming. LLSQMP 1. o driver for the subroutines OR™MHO, ORSOL, and ORIME.
These subroutines were written by Nar-Kuan Tsao and Paul J. Nikolad (Avrospace Research
Laboratories, Wright-Patterson Air Force Base). ORIMP was modihed by A0 1 Morns.
The function SPMPAR and subroutine MCOPY are also used

Reference. Tsao, N K and Naikolm, PP) IYocedures ussnig Orthogonal Transformations

for Linear Least Squares Problems, Beport ARL TR 740124, Acrospace Hesearch Lab-
oratories, Wright-Patterson Air Force Buase, 1974

ere e \‘f'k§:,x“1 for any veoton . [T Cen)

DOUBLE PRECISION LEAST SQUARES SGLUTION OF
SYSTEMS OF LINEAR EQUATIONS

Given an m X n matrix 4 and an m X ¢ matrix B. The column vectors by, ...,b,of B
specify ¢ distinct linear least squares problems

Az;=b; (j=1,....¢).

This set of problems can be written in the form AX = B where X is the n x £ matrix having
the column vectors z,, ..., z,. There always exists a unique minimum length least squares
solution z; for cach Az; = b;. If B is the m > m identity matrix, then the matrix whose
columns are the minimum length solution vectors r; is called the pseudotnverse of A.

For any R, the subroutines DLLSQ, DLSQR, DHFTI, and DHFTI2 are available for
obtaining the matrix X whaose columus are the minimum lengtih solution vectors. DLSQR,
DHFTI, and DHFTI12 are moere general than DLLSQ, begin able to solve arbitrary systems
AX - B, DLILSQ assumes that m > n > 1 and that the rank of A is n. DL3QR
employs a more involved procedure than DHFTI and DHFTI2. DLSQR computes the rank
of A, whereas DHFTIL and DHFTI2 leave the determination of the rank to the user. The
subroutines perform all calculations in double precision.

CALL DLLSQ(mn, n, A, ka, B, kb, £, WK IWK IERR)

A and I} are double precision arrays. It is assumed that m > n > 1 and that the rank
of A s i The mmput arguments ka and kb have the following values:

ka - the number of rows in the dimension statement for A in the calling prograin

kb - the number of rows in the dimension statement for 13 in the calling program
It 1s required that ka - miand kb > m.

IEHR 18 an integer vaniable, When DLLSQ 18 called, 1f no mput errors are detected
then TERIR 18 set to 0 and the solution matnix X stored i B, Also, ff iz on then the

!

residual norm flaAr, bl

Jis computed and stored in B(noy 1,) for g 1

y -

WH and IWK are arrays of dunension nor larger that are work spaces for the routine

WK s a double precision array.

Ervor Return TERR ¢ O when e n - s not satusticd (IERR 1) or the rank of U
less than n (IKRR O 2)

Note A s destroyed dunng computation

Programming DLESQ 15 a daver for the subrontimes DORTUHO and DORSOL These s
routines are double precision varsions of ORTHO and ORSOL, written by Nat huan T
a b Paul b0 Nkl (Aerospace Research Laboratories, Wreght Patterson A Foroe ooy

CTheughout thie setion NI for any vector o (g, e,

RIS

Reference. T'sao, N. K. and Nikolai, P. J., Procedures usir.g Orthogonal Transformations
for Linear Least Squares Problems. Report ARL TR 74-0124, Aerospace Research Lab-
oratories, Wright-Patterson Air Force Base, 1974.

CALL DLSQR(MO,A, ka, m, n, B, kb, , RERR,AERR k ko. RNORM,
WK, fw,IWK ¢iw, IERR)

MO is an argument which specifies if DLSQR is being used for the first time. On an
initial call, MO = 0 and we have the following setup:

A is a double precision m x n matrix where m,n > 1, and ka is the number of rows
in the dimension statement for A in the calling program. It is required that ke > m. A is
destroyed by the routine.

The argument £ is an integer. If £ > 1 then B is a double precision m x £ matrix and
xb is the number of rows in the dimension statement for B in the calling program. Also,
RNORM is a double precision array of dimension € or larger ({for output). It is required
that kb > max{m,n}. If £ < 0 then there are no equations to be solved, and [, kb, and
RNORM are not used.

RERR is a double precision value which specifies the relative accuracy of the data in
A. 1f it is estimated that the elements in A are accurate to p significant decimal digits then
one may set RERR — 107#. It is required that RERR > 0. If RERR — O then it i3 assumed
that the elements in A are accurate to machine precision.

AERR is a double precision value which specifies the maximum absolute uncertainty
of the data in A, For example, if it is estimated that the clements a,; of A have the relative

< 10 39 then one may set AERR 10 *Y {tis required

accuracy RERR except when la,,;
that AKRR > 0.

The argnments k, k,, and IERR are variables. When DLSQR is called, if no input
errors are detected then [ERR s set to O and the rank of A s bounded from above and
below using the tolerances RERKR and AFRR. The variable & soset to the upper bound and
k, to the lower bound. (£ £ <1 then the no~ £ matny XN whose (olainns are the i
lenyth solution vectors is computed (using & as the rank) and stored i 8. Also, the residual

norm [[Ar, b1 s computed and stored tn RNORM(y) for j 1, 8

WK 15 a double precision array of dunension £ where fw - 5 man{m,n}, and WK

s an mteger array of dimension fruewhere foeocom s WE and TWK are work spaces tor

the reutine

Error Return 1ERR s Akw‘\l;".l!(‘\i one of the {(J“H\Nllly, vidues where an coror o detected

e P lorn -

1FERR 2oha o
IERR 3 kb - ma{mon}
IERR e oo

iR S5 Fuwoas too stald

RN

IERR = 6 RERR or AERR is negative.
IERR = 7 MO £ 0 and £ <0,

No computation is performed when an error is detected.

After an initial call to DLSQR, .f IERR = 0 then the routine may be called with MO
0. In this case, it is assumed that only B has been modified and that the new set of
equations AX = B are to be sclved. The routine employs the Houvseholder factorization of
A stored in A, WK, and IWK on the initial call to DLSQR.

When MO # 0, it is assumed that A, ka, m,n, k,JWK, and £iw have not been n.>dified
by the user. If k == 0 or k = min{m,n} then only the first min{m, n} elements of WK are
needed and one may set fw > min{m,n}. Otherwise, it i3 required that fw > 2-min{m,n}.

RERIL, AERR, and kg are not used when MO # 0. The only assumptions concerning
the new B, kb, and £ are that kb > max{m,n}, £ > 1, and the dimension of RNORM is
now the new vahie of £. When DLSQR is called, if no input errors are detected then IERR
i3 set to 0 wnd the new solution matrix X obtained. As before, X is stored in B and the
residual norins are computed and stored in RNORM.

Remarks.Normally kg = k, in which case k is the rank of A. However, if kg # k then it is
recommended that DHFTI2 be used for obtaining the most appropriate value for the rank
and solving AX == B. If DHFTI2 is used, the sizes of the elements of the solution matrix
X should be considered (in addition to the values of the residual norms). Frequently, the
lower bound ky will be found to be the most appropriate vali 2 for the rank.

Programming. DLSQR employs the subreutines DUI1LS, DU12LS, DU11US, DU12US,
ISWAP, DSWAP, DAXPY, DSCAL and functions DDOT, DNRM2, IDAMAX, DPMPAR,
IPMPAR. DLSQR was written by A. H. Morris and DU11LS, DUI2LS, DU11US, DU12US
were written by T. Manteuffel (Los Alamos).

Referenices. Manteuffel, T., An Interval Analysis Approach to Rank Deterrination
tn Linear Leust Squares Problems, Report SAND 80-0655, Sandia Laboratories, Aibu-
querque, New Mexico, 1980.

CALL DHFTI(A,ka,m,n, B, kb, £, r, k, RNORM, ¥ ,G 1P)
CALL DHFTI2(A ka,m,n, B kb €, D, 7,k RNORM, H ,C,IP,IERR)

A 13 a double precision m x n matrix where m,n > 1, and ka i1s the number of rows in
the dimengion statement for A in the calling program. It is required that ka > m.

The argument £ ig an integer. If £ > 1 then B 1s a double precision m x € matrix and
kb 1s the number of rows in the dunension statement for B in the calling program. It is
required that kb > max{m n}. If £ < 0 then there re no equations to be solved, and i3
and kb are not used.

If £ 1 then RNORM iy a double precision array of dimension € or larger. Gllerwise,
tf £ < 0 then RNORM 1s ignored. When DHFTL or DHETIZ 1s called, if £ > 1 then the

n = £ matrix X whose columns are the numimam length solution vectors 1s computed and

387

stored in B. Also, the residual norm ||Az; — b;|| is computed and stored in RNORM(5) for
7=1,...,¢L

H,G, and IP are arrays of dimension n or larger that are work spaces for the routines.
H anad G are double precision arrays.

The parameters r,k, and D.

7 is a double precision tolerance that is set by the user, k£ an integer variable, and
D a double precision array of dimension min{m,n} oi larger. It is assurned that r > 0.
Normally r = 0 1s the setting that is used. D and k are set by the routines.

In order to understand the use of 7, k, and) one must be briefly acquainted with the
processing of A. The routines first reduce A to a triangular matrix C where A = QCP.
Q is an orthogonal matrix and P a permutation matri::. P is defined so that the diagonal
elements c¢,; of C satisfy |eq| > |cit+1,i41] for each 1. The vaiiable k is set to the largest
integer such that |cxx| > 7, and if DHFTI2 is used then the diagonal elements ¢;; are stored
in D. C is now regarded as the partitioned matrix

_ 'Cl C,
C_‘(O Cs>

where C1 is a k x k matrix. Minimum length least squares solutions z, are then computed
for the problems Axz; = b; using only the first k rows of . Thig is equivalent to replacing

A with _
' C;y C;
A= Q(oS) p

and solving }i:cJ- =byforg=1,... L

Since leyy| = -+ > lexr| > 7 clearly k is the rank of A. It is also true that the
ratio |c11| /|ckk| is a lower bound on the condition number of Cy (relative to the spectral
norm). Thus. if the ratio is extremely large (say > 10®) then a severe loss of accuracy
can be expected. A large ratio may be due all or in part to rank deficiency {or near rauk
deficiency) of the matrix A. Fortunately, rank deficiency is frequently rot too difficult to
detect and cure. When A is rank deficient then machine roundoff may assign cgy a small
value, say 1078 when it should be 0. The cure is to examine the diagonal elements ¢,
which are stored in D, to reset 7 so as to eclirninate the unwanted cy’s, and then to rerun
the problem. This will reduce the order of 7y, thereby lowering the rank of the replacement
matrix A. Cy will now be better conditioned, but the value of the residual norms {|Ax, b, ||
may be larger. If the norms do increase, then the soiution obtained will be satisfactory orly
if the size of the increased norms fall within acceptable bounds.

Remarks.

(1) The variable k is set to 0 if all [ey,
for AX I

(2) If € < 0 then the decompasition A <= QCP is performed, the diagonasl elements of €
are stored in D, and & i1s computed.

<. I & 0 then the zero matrix is the solution

(3) The contents of A are destroyed by the routines,

'\(v%
]

(4) DHFTI and DHFTI2 yield the same results. These routines are double precision ver
gions of the subroutines HFTI and HF TI2.

Error Return. IERR is a variable that is set by the routine. If no input errors are detected
then IERR is set to 0. Otherwise, IERR is assigned one of the following values:

IERR =1 if m > ka
IERR = 2 if £> 1 and kb < max {m,n}

When an error is detected, the routine immediately terminates.

Programming. DHFTI and DHFTI2 call the subroutine DH12. These routines are modi-
fications by A. H. Morris of ihe subroutines HFTI and H12, written by Charles L. Lawson
and Richard J. Hanson (Jet Propulsion Laboratory).

Reference. Lawson, C. L., and Hanson, R. J., Sc¢lving Least Squares Problems, Prentice-
Hall, Inc., Englewood Cliffs, New Jerzey, 1974,

389

LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND INEQUALITY CONSTRAINTS

Let A be an m, X matrix, E an m, X n matrix, G an m, x n matrix, b a column vector
of dimension m,, f a column vector of dimeunsion mi,, and h a column vector of dimension
mg. The subroutine LSEi is available {or finding a column vector x of dimension n that
minimizes || Az - b]| subject to the constraints!

Er~f
Gr> h.

Ez ~ f states that z is a least squares solution of the equation Ex = f, and Gz > h means
that every component of the vector Gz must be equal to or greater than the corresponding
component of k. It is assured that m; >0, m, > 0, and m, > 0.

CALL LSEKW. kw, m,, ms,my,n,OPT, 2, RNORME RNORMA,
IERR,WK,IWK)

If m=m, +mg, -+ m, then W is the m x (n + 1) matrix:

Ef
W (A b)
G h
The input argument kw is assumed to have the value:

kw = the number of rows in the dimension statement for W in the calling program
Thus it is required that kw > m.

RNORME and RNORMA are real variables. When LSE! is called, if the constraints
Ez »~ f and Gz > h are consistent then = is computed, RNORME is assigned the value
|Ex —~ f]|,* and RNORMA is assigned the value ||Az - b||.

OP'I' is an array, called the option vector, which permits the user to take advantage of
certain options that are supplied by the routine. If no options are desired then OP'T may
be declared to have dimension 1 and OPT(1) must be assigned the value 1. The details
concerning the avatlable options and how to specify them in OPT wre given below.

IWK is an array of dimension my § 2n+ 2 or larger, and WK is an array of dimension
2(m, 4 n) 4 max {m, +myn} i (m, + 2)(n+ 7) or larger. IWK and WK are work
spaces. When LSEL is called, using a solution for Kz ~ f a reduced least so ares problem
with inequality constraints 1s obtained and solved. When the routine ternn ates IWIK(1),
IWK(2), IWK(3) contain the following information:

"Phroughout this section fed] denates the worm \//}J‘t';‘ for any vector e fey, o, L)

“Ifrn, - O then RNORME .

391

IWK(1) = the estimated rank of the matrix £
IWK(2) = the estimated rank of the reduced problem
IWK(3) = the amount of storage in the array WK that was actually needed

IERR is a variable that is set by the routine. When LSEI terminates, JERR has one
of the following values:
IERR =2 0 The solution z was obtained. The equality Kz = f is satisfied
when m, # 0.
IERR = 1 The solution z was obtained. In this case ||Ez — f]| > 0.
IERR = 2 The problem cannot be solved. The constraints are inconsistent.
IERR = 4 (Input error) Either kw < m, the covariance matrix is requested
and kw < n, or the option vector OPT is not defined properly.

If IERR > 2 then z, RNORME, and RNORMA are not defined.

Remarks.

(1) W is modified by the routine.
(2) ¥ m,+ m, <0orn <0 then IERR is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1 and OPT(1) must have the value 1. Otherwise, OPT is a linked list consisting
of groups of data link,, key,, data; (f = 1, ...,s). Each link; and key, is an integer. The
amounut of storage required by data, depends on the value of key,;. The general layout of
OPT is as follows:

OPT(1) = link,; (index of the first entry of the next group)
OPT(2) = key; {key to the option)
OPT(3) = the first word of the data (data,) for this option

OPT(link;) = links (index of the first entry of the next group)
OPT(link, + 1) = key, (key to the option)
OPT(linky + 2) = the first word of the data (datay) for this option

OPT(link,) = 1.0 (There are no more options to be considered.)
The following options are available:

key - 1 It is assutned that kw > n. Cempute the n 2 n covariance matrix
and store it in the first n rows and columns of W. The data for
this option iy a single value. It must be nonzero for the covariance

matrix to be computed.
E

ke 2 Scale the nonzero columns of the matrix { a4) so that they have
) M
o

302

length 1. The data for this option is a single value. It must be

nonzero for the scaling to be performed.
E
key = 3 Scale the columns of the matrix <A) The data for this option
le]
consists of n scaling factors, one for each matrix column.

key = 4 Change the internal tolerance r which is used for determining the
rank of E. The data for this option is the new tolerance. r may be
set to any value > ¢ where ¢ is the smallest fioating point number
for which 1+ € > 1{e = 27*7 for the CDC 6700). If the new value
is less than ¢ then it is ignored and r is set to €. The default value
employed for 7 is \/e.
key = & Change the internal tolerance 7 which is used for rank determi-
nation in the reduced least squares problem. The data for this
option is the new tolerance. r may be set to any value > ¢ where
¢ 18 the smallest floating point number for which 14 ¢ > 1. If the
new value is less than € then it is ignored and 7 is set to €. The
default value employed for 7 is /€.
Also the key 8 and 9 options for the least squares subroutine WNNLS are permitted.
(WNNLS is employed by LSEL) The order of the options in the array OPT is arbitrary.
If an option has an unrecognized key then the cption is ignored. It is assumed that the
dimension of OPT is no greater than 100000 and that the number of options is < 1000. If
either of these assumptions is violated then IERR is set to 4 and the routine terminates.
Tt is also required that link; # link; for ¢ # 7. If this restriction is not satisfied then the
linked list OPT is circular and we again have an IERR = 4 error.

Example. Assume that we have an array D containing n scaling factors for the columns of
E
the matrix | 4), and that the tolerance TOL is always to be used for rank determination.

G/
Then OPT will have to be of dimension > n + 9 and OPT can be defined as follows:

OPT(1) = N+3 (Scaling option)
OPT(2) = 3.0
DGI0T=1,N
10 OPT(I +2) = D(I)
OPT(N +3)=N +6 (Matrix E tolerance option)

OPT{N + 4) = 4.0

OPT(N + 5) = TOL

OPT(N +4-6) = N +9 (Reduced problem tolerance option)
OPT(N +7) = 5.0

OPT(N +8) = TOL

OPT(N +9) = 1.0 (There are ne more options.)

Remarks.

(1) LSEI may perform poorly if the norms of the rows of 4 and E differ by many orders
of magnitude, or if the norms of the rows of K are exceedingly small.

(2) The covariance matrix obtained by the key = 1 option may not be meaningful when

393

there are inequality constraints Gx > h. This matrix assumes that any inequalities
which are selected by the algorithm to be equalities remrain equalities when the solution
is perturbed. This, of course, may not be the case.

Programming. LSEI employs the subroutine LSI, LPDP, WNNLS, WNLSM, and WNLIT.
These routines were written by Karen H. Haskell and Richard J. Hanson (Sandia Labora-
tories) and modified by A. H. Morris. The subroutines HF TI, H12, SROTM, SROTMG,
SCOPY, SSWAP, SSCAL, SAXPY and functions SPMPAR, SDOT, SASUM, SNRM2,
ISAMAX are also used.

References.

(1) Hanson, R. J. and Haskell, K. H., “Algorithm 587: Two Algorithms for the Linearly
Constrained Least Squares Problem,” ACM Trans. Math Software 8 (1982), pp.
323-333.

(2) Haskell, X. H. and Hanson, R. J., “An Algorithm for Linear Least Squares Prob-
lems with Equality and Nonnegativity Constraints,” Math. Programming 21 (1981),
pp. 98-118.

394

LEAST SQUARES SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH EQUALITY AND NGNNEGATIVITY CONSTRAINTS

Let A be an m, X n matrix, £ an m, x n matrix, b a column vector of dimension m,,
and f a column vector of dimension m, The subroutine WNNLS is available for finding a
column vector z = (zy, ...,z,)" that minimizes || Az - b|| subject to the constraints?

Ez~f
;> 0ford > ¢

Ez o~ [states that z is a least squares solution of the equation Ez = f. It is assumed that
mg > 0,m, > 0,and 0 < € < n. If my =0 then WNNLS solves Exz ~ f subject to the
constraints z; > 0 (1 > #).

CALL WNNLS(W, kw,m,, m,,n,¢, OPT, z, RNORM, MODE IWK,WK)

f m=m,+ m, then W is the m x (n + 1) matrix:

_(E ¢
W_(A b)

The input argument kw is assumed to have the value:
kw = the number of rows in the dimension siatement for W in the calling progam
Thus it is required that kw > m.

RNORM_E?_XE@P‘E',_,,YY_ES[‘__WNNLS is called, z is computed and RNORM is assigned
the value \/||Az — b[|2 + ||Ez — f]|*.2

OPT is an array, called the option vector, which permits the user to take advantage of
certain options that are supplied by the routine. If no options are desired then OPT may
be declared to have dimension 1 and OPT(1) must be assignea the value 1. The details
concerning the available options and how to specify them in OPT are given below.

IWK is an array of dimension i n or larger, and WK is an array of dimension m § bn
or larger. IWK and WK are work spaces for the routine.

Error Return. MODE is an integer variable that is set by the routine. If the problem
18 solved then MODE is assigned the value 0. Otherwise, MODE is assigned one of the
following values:
MODE - I The maximum number of iterations (3(n ~ £) iterations) was ex-
ceeded. An approxiinate solution and its residual norm are stored
in x and RNORM.
MODIE 2 {luput error) Either kw > m or 0 < £ < n is violated, or the
option vector GPT 1s not properly defined.

"Phroughout this section |[efl denotes the norm \/L‘f:"‘ for any vector ¢ - (cg,e2, ...).
21 e - 0 then BRNORM - HE: f|', and if me - 0 then RNCRM Az - b

395

When an input error is detected, the routine immediately terminates. In this case z and

RNORM are not defined.

Remarks.

1) W is modified by the routine.
] Y
(2) If m <0 or n <0 then MODE is set to 0 and the routine terminates.

The option vector OPT. If no options are desired then OPT may be declared to be of
dimension 1 and OPT/(1) must have the value 1. Otherwise, OPT is a linked list consisting
of groups of data link,, key,, data; (f = i, ..., s). Each link; and key, is an integer. The
amount of storage rcquired by data; depends on the value of key,. The gereral layout of

OPT is as follows:

OPT(1) = linky (index of the first entry of the next group)
OPT(2) = key; (key to the option)
= the first word of the data (data,) for this opficn

OPT(3)

OPT(link;) = link; (index of the first entry of the next group
OPT(link; + 1) = key, (key to the option)
OPT(link; + 2) = the first word of the data (data;) for this option

OPT(link) = 1.0 {"There are no more options to be considered.)

The following options are permitted:

key = 6

key = 7

key — 8

key =~ 9

Scale the nonzero columns of the matrix (f) so that they have
length 1. The data for this option is a single value. It must be
nonzers for the scaling to be performed.
Scale the columns of the matrix (1:)
consists of n scaling factors, one for each matrix column.

Change the internal tolerance v which 1s used for rank determina-
tion. The data for this option 1s the new tolerance. v may be set

to any value >

The data for this option

> ¢ where ¢ is the smallest floating point number for
which 14+ ¢ > 1. (¢ - 2 %7 for the CDC 6700.) If the new value is
less than ¢ then it is ignored and 7 18 set to ¢. The default value
employed for 1 18 \/e.

Change the parameter BLOWUP. The reciprocal of this parameter
ig used in deternuning when solution components are too large.
The data for this option is the new value for BLOWUP. It 1s
assumed that BLOWUP < 1. BLOWUP may be set to any value
> ¢ where ¢ 18 the smallest number for which 14 ¢ > 1 If the new
value 1s less than ¢ then it s 1gnored and BLOWUP i3 set to ¢
The default vadue used for BLOWUP 15 /e,

396

The order of the options in the array OPT is arbitrary. If an option has an unrecognized
key then the option is ignored. It i assumed that the dimension of OPT is no greater than
10000C and that the number of options < 1000. If either of these assumptions ig violated
then MODE i1s set to 2 and the routine terminates. It 18 also required that link; # link; for
1/ 7. 1f thig restriction is not satisfied then the linked list OPT is circular and we again
have a MODE = 2 error.

Example. Assume that we have an array D contalning n scaling factors for the columns of
the matrix (i), and that TOL is the tolerance to be used for rank determination. Then
OPT will have to be of dimensions > n -+ 6 and OPT can be defined as follows:

OPT({1) = N +3 (Scaling option)
OPT(2) =170
DO/ =1,N
10 OPT(I+2) = D(I)
OPT(N +3)=N+6 (Tolerance option)
OPT(N +4)=8.0
OPT(N +5) = TOL
OPT(N +86) =1.0 (here are no more options.)

Remark. WNNLS may perform poorly if the norms of the rows of A and E differ by many
orders of magnitude, or if the norms of the rows of E are exceedingly small.

Programming. WNNLS employs the subroutines WNLSM and WNLIT. These routines
were written by Karen H. Haskell and Richard J. Hanson (Sandia Labcratories), and mod-
ified by A. H. Morris and Virgis Dadurkevicius (Astronomical Observatory, Viinius Uni-
versity, Lithuania). The subroutines H12, SROTM, SROTMG, SCCF Y, SSWAP, SSCAL,
SAXPY and functions SPMPAR, SASUM, SNRMZ, ISAMAX are also used.

References.

(1) Dadurkevicius,V.,“Remark on Algorithm 587,"ACM Trans. Math Software 15 (1989),
pp. 257-261

(2) Hanson, R. J. and Haskell, K. H.| “Algorithm 587: Two Algorithms for the Linearly
Constrained Least Squares Problem,” ACM Trans. Math Software 8 (1982), pp. 323
333.

(3) Haskell, K. H. and Hanson, R J., “An Algorithm for Linear Least Squar -8 Problems
with Equality and Nonnegativity Constraints,” !Math. Programming 2 (1981), pp.

98 118.

LEAST SQUARES ITERATIVE IMPROVEMENT SOLUTION OF SYSTEMS
OF LINEAR EQUATIONS WITH EQUALITY CONSTRAINTS

Let A be an m, x n matrix, £ an m, X n matrix, 3 an m, x £ matrix, and F an
m, x £ matrix. It is assumed that 0 < m, < n and that the rank of Eis m,. Let by, ..., b,
denote the column vectors of B and fi, ..., fe the column vectors of F. The subroutine
L2SLV is available fer finding the unique minimum length column vector z, of dimension
n that minimizes ||Az; — b;|| subject to the equality constraints Ez; = f; (if there are any)
for j = 1,...,8! Iterative improvement is performed to compute the vectors Ty, ...,2y
to machine accuracy. It is assumed that mg > 0. If m, = O then L2SLV finds the unique
minimum length solution z; to Fz; = fforj=1, ...,¢

CALL L2SLV(m,n,m,, ¢, A, ka, B, kb, WGTS, TOL,N1,IPIVOT,
X,kz, R, kr,T ki, WK,IERR)

if m = m, + m, then A is the m x n matrix (f) and B is the m x £ matrix (g) The
mput arguments ka and kb have the values:
ka = the number of rows in the dimension statement for A in the calling program
kb = the number of rows in the dimension statement for B in the calling program
It is assumed that m > 1,n > 1,£> 1,ka > m, and kb > m. A and B are not modified by
the routine.

WGTS is an array containing m nonnegative weights. The first m, weights are set to 1.0
by the routine. Let wy, ..., wn,, denote the remaining weights (i.e., let w, = WGTS(m, +1)
for ¢ == 1 ™my). The remaining weights are supplied by the user. In effect, w, is the
weighting that is given to the ' equation in the least squares problem Ar, = b, If
W denotes the m, x m, diagonal inatrix diag(wy, ..., w,,,) then L2SLV finds the unique

minimum length vector that minimizes [|[WAz; Wb, || subject to Ex; -« f,forj = 1, .. ¢

L |

For convenience, W will denote the rm x m diagonal matrix diag (1, ..., Lw;, ... w,..).

X 1s an n x £ matnx that contains the solution vectors x;, ..., r, when the routine
terminates. The mput argament kr is the number of rows in the dimension statement for
X in the calling program It is assumed that kr > n.

‘th

13 an m o € matnix. Let b, denote the j*" column vector (, ') of B for I A
‘ 1

Then L2SLV stores the residual veetor v, Wo, WAz, in the J columin of £ The input
argument kr s the number of rows in the dimension statement for £ 1n the calling progam.
It s assumed that kr - s

W is an array of dimension 6(m 4 n) + 2¢ or larger that s used for a work space
When L2SLV termunates, for j - 1, . f

n if ierative improvement of the solution r, converyged
P 7 b} X
WK (/)]

vy, afaterative improvement of 1, failed to converge

“Uhiroughont this section 200 denotes the noom Vel forany vedtor v
‘ X b

2049

where n, is the number of iterations in the iterative improvement process that were per-
formed in computing r,. Also

WK(€+7) - the estimated number of correct digits in z, before iterative improvement
was performed
for g -: 1, .. L

TOL and N1 correspond to the parameters v and k in the least squares subroutines
HFTI and HFTIZ2. TOL 1s a nonnegative number that is specified by the user, and N1
18 a vanable that is set by the routine. When L2SLV is calied, modified Cram-Schimidt
orthogonalization with column pivoting is used to reduce WA to the form (A Ay) where A,
i8 an m x Ny matrix having rank N,. Ay is of the form QU where Q'@ = diag(d,, ..., dn,)
and U 1s an upper unit triangular matrix. The values dy,d;, ... <orrespond to the diagonal
elements ¢y, c22, ... generated by HFT1 and HFTI2 (d, - c‘z' for - 1,2,...). The values
are ordered so that d, >> d,, and d,,d,, ... are stored in WK(2¢ + 1), WK{2¢ 1 2),
If n - m, then N1 is assigned the value m,. Otherwise, if m > m, then N1 is the largest
integer k for which dy > v Here 7 TOLf TOL > 0, and 1 - (ne)¥d,,_ ,, where ¢ is the
smallest value for which 1 ¢ ¢ - 1 (¢ 2 47 on the CDC 6700) if TOL 0. Thus, if TOL

0 then a tolerance based on the computer precision is used to determine the rank of &,
of WA, Otherwise af TOL > 0 then TOL is the tolerance that is used to specify the rank
of the problem to be soived. If the user inadvertently sets TOL to be negative then L2SLV
resets TOL to be O

IPIVOT 1s an array of dimension n or targer that s used by L2SLV to record the order
in which the colnmes of Wa ae selected by the pivoting procedure when WA 1s reduced to
(A3 Az) I NT < nthen the first N1 elements of IPIVOT are the indices of the columns of

WA from which the matrix 4, is generated.

T s a Z-dimensional array of dimension kt < n that is used for temporary storage. It
5 assumed that k¢ - v When L2SLV termunates, if N1 n then the unscaled 1o n
covaniance matnx is stored i the first norows and columns of T Rerative imnprovement s

not performed on the covariance matrix

Error Return TERR s annteger vanable that as set by the routine. If no mput errors are
detected and the results appear to be satisfastory, then IERI s set to O Otherwise, TERR

15 assigned one of the following values

TRR 1 Either o, or £1s not positive

IERR 2 The restocton O g < man{m g s not sabisfied

IHERR 3 dather ka o kb ke o ke okt rn s niclated
WRR 8 WIS () o nevative for some v - r,

IERR & Futher WA Oor b 0
IERR 6 The rank of F s less than o,

IR R Tolterative improverent of all the solntions oy s fanled tacon
\rl'r)""

TR B Meratnve smproverment of one or miore solutions Laled to convere

HORR 9 More vhan goaterationes of the gterative Hprovemeg:t p.‘«nminrc-
were pethormed oo cosnpatans soane o, (Here ot s cosied thiat o

tTin

H

u decimal digit floating-point arithmetic i8 being used. p = 14 for
the CDC 6700.)

IERR = 10 The accuracy of some z; before iterative improvement was esti-
mated %o be less than half a decimal digit.

IERR = 11 One ¢ more of the computed diagonal elements of the covariance
matrix is negative. This is due to roundoff error. Theoretically,
all the diagonal elements shoull be nonnegative. No evidence of
severe ill-conditioning was detected.

IERR = 12 One or more of the computed diagonal elements of the covariance
matrix is negativ This is due to roundoff error. Theoretically,
all the diagonal ¢iements should be nonnegative. The problem
appears to be extrernely ill-conditioned.

When an input error is detected (IERR = 1,2, ...,6} thea L2SLV immediately terminates.
If evidence of severe ill-.conditioning is detected, ther IFRR is sct to 8,5, or 10 and com-
putation of the solutions continues. If iterative improvement appears to converge for one
or more of the solutions, then the covariance matrix is also computed (when N1 = n).
However, if iterative improvement fails for all the solutions zy, ..., z, then IERR is set to
7 and the covariance matrix is not computed.

Note. WK(1), ...,WK(2¢) should be examined when severe ill-conditioning is detected.

Programming. L2SLV employs the subroutines DECOM2, SOLVE2, SOLVE3, and CO-
VAR. These routines were written by Roy Wampler (National Bureau of Standards). L25LV
18 a slightly modified version by A. H. Morris of the subroutine L2B discussed in reference
(4). The algorithm employed for finding and iteratively improving the least squares solu-
tions is described in references (1)-(2). The function SPMPAR is also used.

References.

(1) Bjorck, Ake, “Solving Linear Least Squares Problems by Gram-Schmidt Orthogonal-
ization,” BIT 7 (1967), pp. 1-21.

(2) ___ . _____, “Iterative Refinement of Linear Least Squares Solutions 1" BIT 7
(1967), pp. 257-2178.
(3) _ . “Iterative Refinement of Linear Least Squares Solutions II,” BIT 8

(1968), pp. 8 30.

{1) Wampler, Roy, “Solutions to Weighted Least Squares Probiems by Modified Gram-
Schmidt with Iterative Refinement,” ACM Trans. Math Software 5 (1979), pp. 457-
465.

40

ITERATIVE LEAST SQUARES SOLUTION OF BANDED LiNEAR
EQUATIONS

Given an m X n matrix A, a colummn vector & of dimension m, and a real number A

Let A= (fl) where I is the n x n identity matrix, and let b = (g) The problem is to find

a column vector z of dimension n which is a least squares solution of Az =&, If A is stored
in band form then the following subroutine is available for solving this problem.

CALL BLSQ(m,n, 4, ka,m;,m, A, b,z, ATOL,BTOL CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM, WK)

A 18 an m X n matrix stered in band form, m, the number of diagonals below the
main Giagonal containing nonzero elements, and m, the number diagonals above the
main diagonal containing nonzero elements. The argument ka 1s the number of rows in the
dimension statement for A in the calling program. It is assumed that 0 < my < m,0 <
m, < n, and ka > m. When BLSQ is called, an iterative procedure is used to obtain a
least squares solution = of Az = b. The vector b is modified by the routine.

ATOL and BTOL are input arguments which specify the relative accuracy of A and b
respectively. For example, if it ig estimated that b is accurate to k decimal digits then one
may set BTOL = 10™%. It is required that ATOL > 0 and BTOL > 0. If ATOL = 0 or
BTCL = 0, then it is assumed that A or b is accurate to machine precision,

Let cond(A) denote the condition number of A relative to the Frobenius norm.! In

each iteration of the algorithm being used, an estimate is made of the condition number
cond(A). The estimates form a monotcnically nondecreasing sequence. The input argument
CONLIM is an upper limit on cond(A). It CONLIM > 0 then BLSQ terminates when an
estimate of cond(A) exceeds CONLIM. This termination may be needed to prevent small
or zcro singular values of A from coming into effect and causing damage to the solution x.
CONLIM may be ignored by being set to 0. It is assumed that CONLIM > 0.

The input argument MXITER 1s the maximum number of iterations that arc permitted.
Normally BLSQ requires less than 4n iterations. The related argument ITER is a variable,
When the routine terminates I'TER == the number of iterations that were perfurmed.

COND,RNORM, und XNORM are variables. When BLSQ terminates COND - the
last estimate made for cond(A), RNORM == ||Az -~ b||, and XNORM = ||z||.?

WK is an array of dimension 2n or larger that is a work space for the routine.

The equations Az b are considered to be compatible if for any least squares solution
z,||Az - b]| = 0. IND is a variable that reports the status of the results. When BLSQ
termivates, IND bas one of the following values:

Teond (A) -~ JJAllpllAYlp where A' is the pseudoinverse of A, Here [[C][p \/]!.Jc?) for any matrix
C o (ey)
et V/EC:‘ for any vector ¢ (g, e, o).

403

IND == 0 The solut'on is z == 0. No iterations were performed.

IND == 1 The equations Az -- b are probably compatible. A solution z
has been obtained which is sufficiently accurate, given the values
ATOL and BTOL.

IND = 2 The equations Az == b are probably not compatible. A least
squares soluticn z has been obtained which is sufficiently accu-
rate, given the value ATOL.

IND = 3 An estimate COND of cond(A) exceeds CONLIM. The vector z is
the most recent approximation of a solution for Az = b.

IND = 4 The equations Az = b are probably corapatible. A solution z has
been obtained which is as accurate as seemns reasonable on this
machine.

IND = 5 The equations Az = b are probably not compatible. A least
squares soiution z has been obtained which 18 as accurate as seems
reasonable on this machine.

IND = 6 cond{A) appears to be so large that there is not much point in
doing further iterations. The vector = is the most recent approxi-
mation of a solution for Az = 5.

IND = 7 MXITER iterations were performed. More iterations are needed.
The vector z is the most recent approximation of a solution for
Az = b.

Remarks.

(1) A large estimate of the condition number cond(A) may be due to rank deficiency or near
rank deficiency of the matrix A. If it is suspected that a large estimate of cond(A) has
occurred for this reason, then it is recommended thay CONLIM be set to a moderate
value such 2s /€ where ¢ is the smallest value such that 14 = > 1 (¢ = 27*7 for the CDC
6000-7000 series computers). Setting CONLIM to 0 is equivalent to setting CONLIM
toe !

(2) The vector b is the only input argument modified by the routine.

Algarithm. BLSQ employs an iterative algorithm developed by Golub and Kahan.

Programming. BLSQ calls the subroutines NORMLZ, BVPRDI1, BTPRDI1, SCOPY, and
SSCAL. The function SNRM2 is also used. BSLQ is an adaptation by A. H. Morris of the
subroutine LSQR, written by Christopher C. Paige (McGill University, Montreal, Canaa)
and Michael A. Saunders {(Stanford University).

References.

(1) Paige, C. C. and Saunders, M. A.; “LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares,” ACM Trans. Math Software 8 (1982), pp. 43-71.

2y ., “Algorithm 583. LSQR: Sparse Linear Equations and Least Squares
Problemns,” ACM Trans. Math Software 8 (1982), pp. 195-209.

404

ITERATIVE LEAST SQUARES SOLUTION OF SPARSE LINEAR

EQUATIONS
Given a n matrix A, a column vector b of dime_nsion m, and a real number M.
Let A= (:\41 vl 2 [is the n X n identity matrix, and let b == (g) The problem is to find
a column vector . of dimension n which is a least squares solution of Az = b. If A is sparse

then the followir subroutines are available for solving this problem.

CAlr PLSQ(m,n, A,IAJA, A, b, z, ATOL,BTOL,CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM,WK)

Ci' iTLSQ(m,n, TA,ITAJTA, A, b, z, ATOL,BTOL,CONLIM,MXITER,
IND,ITER,COND,RNORM,XNORM, WK)

if SPLSC :lled then A,1A, JA are arrays containing the matrix A in sparse form.
Otherwise, itt . Qis called then TA, ITA, JTA are arrays containing the transpose matrix
A' in sparse fo.m. An iterative procedure is used to obtain a least squares solution z of
Az = b. The vector b is modified by the routines.

ATOL and BTOL are input arguments which specify the relative accuracy of A and b
respectively. For example, if it is estimated that b is accurate to k decimal digits then one
may set BTOL = 107%. It is required that ATCL > 0 and BTOL > 0. If ATOL = 0 or
BTOL = 0, then it is assumed that A or b is accurate to machine precision.

Let cond{A) denote the condition number of A relative to the Frobenius norm.! In
each iteration of che algorithm being used, an estimat~ is made of the condition number
cond(A). The estimates form a manotonically nondecr ing sequence. The input argument
CONLIM is an upper limit on cond (A). If CONLIM > 0 then the routines terminate when
an estimate of cond(A) exceeds CONLIM. This termination may be needed to prevent small
or zero singular values of A from coming into effect and causing damage to the solution .

CONLIM may be ignored by being set to 0. It is assumed that -CONLIM > 0.

The input argument MXITER is the maximum number of iterations that are permit-
ted. Normally the routines require less than 4n iterations. The related argument ITER
is a variable. When the routines terminate ITER = the number of iterations that were
performed.

COND, RNORM, and XNORM are variables. When the routines terminate COND ==
the last estimate made for cond(A), RNORM = ||Az — b||, and XNORM = ||z||.2

WK is an array of dimension 2n or larger that is a work space for the routines.

Ycond (A) = ||Allp||A* || where A% is the pseudoinverse of A. Here CH \/”“5.-?] for any matrix
(08 (z:.‘j),mm
2=l \/EC? for any vector ¢ - (ey,¢q, ...).

406

The equations Ax - b are considered to be compatsble if for any least squares solution
xz, || Az ~ b|| = 0. IND is a variable that reports the status of tie resulis. When the routines
terminate, IND has one of the following values:

IND == 1 The equations Az ~ b are probably compatible. A solution z
has been obtained which is sufficiently accurate, given the values
ATOL and BTOL.

IND = 2 The equations Az —b are probably not compatible. A least squares
solution = has been obtained which is sufficiently accurate, given
the value ATOL.

IND == 3 An estimate COND of cond{A) exceeds CONLIM. The vector z is
the most recent approximation of a solution for Az — b.

IND = 4 The equations Az — b are probably compatible. A solution z has
been obtained which is as accurate as seems reasonable on this
machine.

IND = 5 The equations Az b are probably not compatible. A least squares
solution z has been obtained which is accurate as seems reasonable
on this machine.

IND = 6 cond(A) appears to be so large that there is not much point in
doing further iterations. The vector z is the most recent approxi-
mation of a solution for Az - b.

IND = 7 MXITER iterations were performed. More iterations are needed.
The vector z is the most recent approximation of a solution for
Az =b.

Remarks.

(1) A large estimate of the condition number cond(A) may be due to rank deficiency or near
rank deficiency of the matrix A. If it is suspected that a large estimate of cond(A) has
occurred for this reason, then it is recommended that CONLIM be set to a moderate
value such as \/€ where ¢ is the smallest value such that 1+¢ > 1 (¢ = 27*7 for the CDC
6000--7000 series computers). Setting CONLIM to 0 is equivalent to setting CONLIM
toe !,

(2) The vector b is the only input argument modified by the routine.

Algorithm. SPLSQ and STLSQ employ an iterative algorithm developed by Golub and
Kahan.

Programming. SPLSQ and STLSQ call tiie subroutines NORMILZ, MVPRD1, MTPRDI,
SCOPY, and SSCAL. The function SNRRM2 is also used. SPLSQ and STLSQ are : laptations
by A. H. Morris of the subroutine LSQR, written by Christopher C. Paige (McGill Univer-
sity, Montreal, Canada) and Michael A. Saunders (Stanford University).

References.

(1) Paige, C. C. and Saunders, M. A, “LSQR: An Algorithm for Sparse Linear Equations
and Sparse Least Squares,” ACM Trans. Math Software 8 (1982), pp. 43-71.

2y , “Algorithm 583, LSQR: Sparse Linear Equations and Least Squares
Problems,” ACM Trans. Math Software 8 (1982), pp. 195 209

406

MINIMIZATION OF FUNCTIONS OF A SINGLE VARIABLE

Let F'(z) be a continuous real-valued function defined for @ < z < b. Then the following
subroutine is available for finding a local minimum of F(z}.

CALL FMIN(F, a,b,z,w, AERR,RERR,ERROR,IND)

It is assumed that a < b. FMIN finds a value z in the interval [a, b] which is a local
minimum of F. ERROR and w are variables. When FMIN terminates, w = F(z) and
ERROR is the estimated maximum absolute error of z.

The input arguments AERR and RERR are the absolute and relative error tolerances
to be satisfied. For example, if k significant digit accuracy is desired then one may set
RERR = 107%. It is assumed that AERR > 0 and RERR > 0. The setting AERR =
is equivalent to the setting AERR = 107%°, and the setting RERR = 0 is a request for
machine precision.

IND is a variable that reports the status of the results. IND = 0 if z is found to the
desired accuracy. Otherwise, IND = 1 when z cannot be obtained to the desired accuracy.
In this case, w satisfies the tolerances AERR and RERR.

Note. F must be declared in the calling program to be of type EXTERNAL.

Algorithm. The golden section search procedure is used.

Programming. The function SPMPAR is called. FMIN was written by A. H. Morris.

407

MINIMIZATION OF FUNCTIONS OF N VARIABLES

Let f(z) be a real-valued function of n variables z = (21, -+, Zn) where n > 2. If f(x)
is twice continuvously differentiable then the following subroutine is available for finding a
local minimum of f(z).

CALL OPTF(F,n,RERR,ITER,X,FVAL,IND,WK)

X is an array of dimension n and FVAL a variable. On input, X contains an initial
guess @ = (ay,...,a,) to a minimum of f. When OPTF terminates, X contains the final
estimate z = (zy,...,z,) of a local minimum of f and FVAL = [(z).

The argument F is the name of a user defined subroutine that has the format:
CALL F(n, X,FVAL)
Here X is an array of dimension n containing a point r = (z;,...,7,), and FVAL is a
variable. F sets FVAL to the value of the function [at the point z. F must be declared in
the calling program to be of type EXTERNAL.

RERR is an input argument that specifies the relative accuracy of F. If it is estimated
that the subroutine F produces results accurate to k significant digits then one may set
RERR = 107%. It is required that RERR > 0. If RERR = 0 then it is assumed that F
produces results accurate to machine precision.

When OPTF is called, line search iteration is performed to find the loczl minimum
of f. ITER is a variable. On input, ITER is the maximum number of iterations that
are permitted. When the routine terminates, I'TER = the number of iterations that were
actually performed.

WK is an array of dimension n(n + 8) or larger that is a work space for the routine.

IND is a variable that reports the status of the results. When the routine terminates,

IND has one of the following values:

IND = ~1 (Input error) n < 0.

IND = -2 (Input error) n = 1.

IND — ~4 (Input error) ITER < 0.

IND = -5 (Input error) Either RERR < 0 or RERR > 104,

IND = 1 A local minimura = was found. The gradient of [at z was con-
sidered to be sulficiently small.

IND = 2 The steps taken became so small that OPTF had to terminate.
X 13 probably a local minimum, but it need not be a local mini-
mum. The algorithmn frequently requires exceedingly sinall steps
to be taken, no matter whether X is close to or far from a local

minimum.

IND = 3 A local minimum has possibly been found. OPTF could not find
a point for which f would take a smaller value.

IND 4 ITER 1terations were performed.

IND =5 The algorithm appears to be diverging This generally oceurs

when f iy unbounded from below.

409

When an input error is detected, the routine immediately terminates.

Accuracy ard Efficiency. OPTF is frequently extremely efficient in finding a value FVAL
which roughly approximates a local minimum value f(zo), but at times it can be quite
slow in obtaining FVAL to greater precision. A rough approximation is often obtained in
20--30 iterations. If f(zn) # O then FVAL may be accurate to 4-6 significant digits after
20-30 additional iterations, or FVAL may not be accurate to 1 significant digit after several
hundred iterations. 4-6 digit accuracy is the greatest precision that can be expected. In
general, it i3 recommended that ITER < 200. Each iteration can take considerable time,
even if the subroutine F is cheap to evaluate.

Remark. OPTF can be quite sensitive tc the scaling of the variables (z,, ...,z,). The
routine tends to operate more efficiently when the components of a local minimum z =
(z1,...,2zn) are all roughly of the same magnitude. If the components are of considerably
different magnitudes (say |z;| =~ 107® and |z,| ~ 10°%) then convergence may be extremely
slow. In such acase, OPTF attempts to rescale the variables, but the rescaling is not always
helpful.

Algorithm. The line search algorithm given in pp. 325-327 of the reference is employed.
Also, BFGS secant updates for the hessian are used.

Programming. OPTF employs the subroutines OPTDRV, OPCHK1, OPST¢, FXDEC,
SCALEX,LLTSLV,FSTOFD,FSTOCD, LNSRCH,SECFAC,QRUPDT, and JROT. OPTF,
FXDEC, and SCALEX were written by A.H. Morris. The remaining subroutines were writ-
ten by Robert B. Schnabel (University of Colorado at Boulder) and modified by A.H. Morris.
The functions SDOT, SNRMZ, and SPMPAR are also used.

Reference. Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

410

UNCONSTRAINED MINIMUM OF THE SUM OF SQUARES
OF NONLINEAR FUNCTIONS

Let fi(z), ..., fm(z) be m real-velued functions of n real variables z = (zy, ...,z,)
where m > n. The problem under consideration is to find a point x which minimizes the
m
function ¢(z) = > fi(z)*. Assume that each fi(z) is differentiable and that an initial
=1
guess & = (ay, ...,a8,) to a minimum of ¢(z) is given. Then the following subroutine is
available for finding a point which minimizes ¢(z).

CALL LMDIFF(F,m,n, X,FVEC,EPS, TOL,INFO,IWK WK, £)

X is an array of dimension n and FVEC an array of dimension m. On input X
contains the starting point a = (ay, ...,a,). When LMDIFF teiminates, X contains the
final estimate z = (21, ...,7,) of a minimum of ¢ and FVEC contains the values of the
functions fy, ..., fm at the output point in X.

The argument F is the name of a user defined subroutine that has the format:
CALL F(m,n, X,FVEC,IFLAG)

Here X is an array of dimension n, FVEC an array of dimension m, and IFLAG an
integer variable. The array X contains a point © = (21, ...,z,). Normally F evaluates
the functions fy, ..., f,» at this point and stores the results in FVEC. However, if = does
not lie in the domain of fy, ..., f,, then this cannot be doue. In this case, the argument
IFLAG (which will have been assigned a nonnegative value by LMDIFF) should be reset
by F to a negative value. This will signal LMDIFF to terminate. F must be declared in
the calling program to be of type EXTERNAL.

EPS is an irput argument which specifies the relative accuracy of F. If it is estimated
that the subroutinc F' produces results accurate to k significant decimal digits then one
may set EPS = 10, It is required that EPS > 0. If EPS = 0 ther it is assumed that F
praduces results accurate to machine precision.

TOL is an inpui argument ‘wvhich specifies the desired accuracy to be attained. The
Euclidean norm ||z|| = /¥, 27 is employed. If # denotes an actual minimum of ¢, then
LMDIFF terminates when an iterate z is generated for which it 1s estimated that

(1) #(z) <(1-+ TOL)*¢(z) or

(2) [|D(z - 2)|| < TOL- || Dz|]
is satisfied. In (2) z and z are regarded as column vectors, and D is a diagonal matrix
generated by LMDIFF whose eutries are scaling factors. For convenience, criterion (1) is
called the F-convergence (or ¢-convergence) test and criterion (2) is called the z-convergence
test. It is required that TCL > 0. In order for the convergence tests to work properly, it is
recomnmended that TOL always be smaller than 107 %,

IWK is an array of dimension n and WK is an array of dimension £, IWK and WK

are work spaces. It s assumed that € > min + 51t m.

411

INFO is an integer variable that reports the status of the results, When LMDIFRF
terminates, INFO has one of the following values:

INFO < 0 This occurs when the user terminates the execution of LMDIFF by
resetting the argument IFLAG in the subroutine ¥ to a negative
value. Then INFO = the negative value of IFLAG.

INFO == 0 (Input error)l < n < m,f£PS > 0, TOL > 0,or £> mn + 5n+n
is violated.

INFO =1 The F-convergence test has been satisfied.

INFO =2 The z-convergence test has been satisfied.

INFO == 3 The F-convergence and z-convergence tests have been satisfied.

INFO = 4 The gradient of ¢ i3 0 at point X.

INFO =5 The number of calls to the subroutine F has reached or exceeded
200(n + 1).

INFC = 6 TOL is too small. No further reduction in the value of ¢(z) is
possible.

INFO == 7 TOL is too small. No further improvement in the accuracy of X
18 possible.

When LMDIFF terminates, if INFO # 0 then X contains the final iterate that was gener-

ated. Also, if INFO > 1 then FVE(C contains the values of the functions fy, ..., fin at this

iterate. If INFO = 4 then X should be examined very closely. The gradient of ¢ can be

when X is a local minimum or maximum, or when X is a saddle point. If INFO = 5 then

it may (or may not) be helpful to continue the procedure by recalling LMDIFF with the
_ current point in X as the new starting point. Since TOL is a relative tolerance, this setting
& can Geeur when ¢(0) = 0.

Algorithm. A modified form of the Levenberg-Marquardt algorithm is employed.

Programming. LMDIFF is a slightly modified version of the MINPACK-1 subroutine
LMDIF1. The MINPACK-1 subroutines LMDIF, SPMPAR, ENORM, FDJAC2, LMPAR,
QRFAC, and QRSOLV are employed. The subroutines were written by Jorge J. More,
Burton S. Garbow, and Kenneth E. Hillstrom (Argonne National Laboratory).

References.

(1) More, J. J., Garbow, B. S., and Hillstrom, K. ., User Guide for MINPACK-1,
Argonne National Laboratory Report ANL-80-74, Argoune, lllinois, 1980.

(2) More, J. J., “The Levenberg-Marquardt Algorithni: Implementation and Theory,”
Numerical Analysis, G. A. Watson {ed.}, Springer-Verlag, 1977.

LINEAR PROGRAMMING

Let A == (c¢;;) be an m X n matrix, B an array containing by, ..., b, and C an array
containing ¢y, ...,¢, where a,;, b, ¢, are real. Consider the problem of finding nonnegative
values zy, ...,2, which maximize or minimize the function ¢yzy + - - 4+ ¢n 2z, subject to
the constraints:

a1z + 0+ a1,7,{<,=, 21y

Am1Ty + 0+ amnzn{57 = Z}bm

In each constraint
a1z, + -+ @i Ta {<, =, 2}

only one of the relations <,=,> is used, but the relation may vary from constraint to
constraint. The following subroutines are available for solving this problem.

CALL SMPLX(A, B, C, ka, m,n,IND,IBASIS, X, z, ITER, MXITER,
NUMLE,NUMGE,BI, WK, IWK)

CALL SSPLX(TA,ITA,JTA, B,C, m,n, IND,IBASIS, X, z, ITER, MXITER,
NUMLE,NUMGE,BI,WK ,IWK)

It is assumed that m > 2,n > 2, and that each b; > 0. If SMPLX is called then ka is
the number of rows in the dimension statement for A in the calling program. Otherwise,
if SSPLX is called then TA, ITA, JTA are arrays containing the transpose matrix A* in
sparse form.

The constraints a;yx; + -+ - b ainzn{<,=, > }b; are assumed to be ordered so that the
< constraints are followed by the > constraints, and the = constraints come last. NUMLE
and NUMGE have the values:

NUMLE =: the number of < constraints.

NUMGE = the number of > constraints.

It 18 assumed that NUMLE > 0, NUMGE > 0, and NUMLE + NUMGE < m.

When SMPLX or SSPLX 18 called, the routine attempts vo maxunize 2, ¢,r; subject
te the constaints. A modtfied form of the primal simplex algorithm s employed. Frequently
the procedure requires less than Sriterations to perform the task. The argument MXITER
has the value:

MXITER = the maximum number of iterations that may be performed.
This argument 1s provided by the user. The related argument I'FER 18 a vanable that s
set by the routine. When the routine termmmates, FI'ER has for its value the number of

iterations that were performed.

IND 13 a variable and [BASTS an array of dimension mc FBASTES contiuns the iandices
1 of the current basic varntables oy and IND 15 used for mput/output purposes. On e
put IND 1s normally sct by the veer to 00 0 IND O then the routine selects 1t own

413

beginning basis and stores the appropriate indices in IBASIS. [The remainder of this para-
graph may be skipped by anyone not acquainted with the simplex algorithm.] If the user
wishes to use his owu beginning basis, then IND must be set to 1 and the indices of
the initial basic variables stored in IBASIS. It ¢s not required that the initial basis
be selected so that the basic variables are nonnegative. The initial basic variables may
be original, slack, surplus, or artificial variables. Slack and surplus variables are automat-
ically provided for the < and > constraints, and artificial variables for the = constraints.
The routine defines z,,.; to be the slack, surplus, or artificial variable for the #** constraint
ai171 + 0o+ @ina{<, =, > }b;. If IND == 0 then the slack, surpius, and artificial variables
are the initial basic variables that are employed.

On output IND reports the status of the results. The routine assigns IND one of the
following values:

IND = 0 The problem was solved.

IND =1 The problem has no solution.

IND = 2 MXITER iterations were performed. More iterations are needed.

IND = 3 Sufficient accuracy cannot be maintained to solve the problem.

IND =4 The problem has an unbounded solution.

IND =5 An input error was detected. (See below)

IND =6 A possible solution was obtained. The routine is not certain if the

solution is correct.

X is an array of dimension n + NUMLE + NUMGE and z is a variable. If IND = 0 or
IND = 6, then z has for its value the maximum value obtained for £;c;z, and X contains
the values obtained for the original, slack, and surplus variables. If IND # 5 then IBASIS
contains the indices of the basic variables currently in effect when the routine terminates.

Bl is ap array of dimension m? that is used for storing the inverse of the basis matrix.
The order of the column vectors of the basis matrix corresponds to the order of the basic
variables given in IBASIS. If IND # 3,5 on output then BI contains the inverse of the basis
matrix currently in effect when the routine terminates.

WK is an array of dimension 2 or larger, and IWK 18 an array of dimension 2m + n
or larger. WK and IWK are work spaces.

Input Errors. IND 5 occurs on output when one of the following conditions is violated:
(1) n > 2 and ka > m > 2.

2) NUMLE + NUMGE - mo

3) Bach b, » 0.

1) The basis matrix specified by the user in IBASIS (when IND 1 on input) is nonsin-

gular and sufliciently well conditioned so that its inverse can be computed.

Remarks.
(1) AR CPATEA JTA are not modihied by the routines
(2} The rontimes maxitmize e o, Phs function can be nmnimized by maximizing ¥, (o,)0,

and then clingiag the sign of the result

114

(3) SMPLX and SSPLX generate the same results. For efficiency, SSPLX should be used
when A is sparse.

Algorithm. A three step procedure is used. The first step eliminates the negative variables.

Then phases (1) and (2) of the primal simplex algorithm are invoked. Negative variables

are eliminated as follows: Let zp;, ..., Zpm be the basic variables and y,,; the components

of the simplex tableau.

(1) Compute dy = Zly,; for each nonbasic variable z; where the sum X} is for ali ¢ wh e
zp; < 0. If all d; > O then the problem has no feasible solution. Otherwise, select k so
that dx = min;d;. Then zj is the variable to be made basic.

{(2) If zg, > 0 and y,x > O for some j then go to (3). Otherwise, select a negative variable
T, to become nonbasic where zg,/y,x = max{zg;/y,x : 8; < 0 and y,x < 0}. Then
update the basis and go to (5).

(3) Compute ¢ = min{zg;/y;x : Tp, > 0 and y;x > O} and check if a negative variable
rp, exists that satisfies the conditions:

(x) yjx <O0ande>zp;/yx
If such a variable exists then go to (4). Otherwise, select a nonnegative variable 25, to
become nonbasic where y,x > 0 and g,/y,+ = €. Then update the basis and go to (1).

(4) Select a negative variable zp, to become nonbasic where zp,/y,&x = max{zp,/y;x :
zp; < 0 and z g, satisfies(x)}. Then update the basis and go to (5).

(5) Check if there are any remaining negative variables. If not, then we are finished.
Otherwise go to {1).

Programming. SMPLX and SSPLX employ the subroutines SMPLX1, SSPLX1, and
CROUT]. These routines were written by A. H. Morris. The function SPMPAR is also
used,

THE ASSIGNMENT PROBLEM

Let C = (c,;) be an n x n matrix (the cost matrix). The problem under consideration

n 123
i to find an n x n matrix z == (z,,) which minimizes T = 3 3" ¢,,7,, and satisfies:
s=13--1

(1) Sz, = 1forj - 1,...,n
[E=D

(2) Xz, ~tfori -1, .. .)n

=1
3) Each z,, - 0 or 1
2

Each z which satisfies (1)-(3) is called an assignment. For each such z, from (1) and (3)
we note that for each j there exists a unique integer #{j) such that Te(yy.; = 1. Also, {2)
and (3) assert that x is a permutation of {1, .., n}. Conversely, for any permuiation 7

there corresponds an assignment r defined by T 1 and z,, = 0 for ¢ # x(3). Thus,

1)
n
the problem is to find a permutation » of {1, ..., n} which minimizes T = 3 Cx(;).;- The
J=1
following subroutine is available for solving this problem when all c,, are integers.

CALL ASSGN(n, " JC, T, IWK IERR)

C s a 2-dimensional integer array of dimensicn n x (n 1), JC an integer array of
dimension n, and T an integer variable. It is assumed that n > 2 and that the first n
columns of €7 contain the cost matrix (¢y,). [The (s + 1)" column of C is a work space for

When ASSGN s called, the desired permutation 7 is obtained and the values

the routine.
A1), m(n) stored in JC - Also T s assigied the mimimized value YiCuiyy,-

IWK 13 an array of dunension 7n ¢ 2 or larger that is a work space for the routine.

IMRR 1w a vanable that is set by the routine. If JC and 7" are obtained then IERR is
assigned the value O Otherwise (f the problem cannot be solved because of mteger overflow,

then KRR i

Remarks.
(1) O s destroyed by the coutine
(2) ASSGN munminmzes 7T Yocain o This funcuon can be maxamized by nunimizing

20 e,) and then changing the sign of the result

Programming ASSGN calls the subrontine ASSGNE ASSGNIT was written by Giorgio
Carpaneto and Paolo Torh (Unversity of Bologna, Ttaly), and moditied by A H Maorns
The function IPMPAR 1 also used

Reterence Carpanevo. U and Toth 1 SAlponithion S48 Salntion of the Assipniment
Problem.” ACAM Trans A ath Softwere 0 (VUs0) ppo 104 11

0-1 KNAPSACK PROBLEM

Given n > 2 items, each having a profit p; > 0 and weight w; > 0, and m > 1
containers (knapsacks), each having a capacity k; > 0. Let z;; = 1 if item j is assigned to
knapsack ¢. Otherwise, let z;; == 0. Then the problem is to find an assignment z;; of the

, !‘“ .
items to the knapsacks which maximizes o =) > p, z,; subject to
s=17=1
n
(1y ¥ wyzy; <k forv=1,...,m, and
7=1

NSE]

(2)

Condition (2) states that each item may be assigned to a (single) knapsack or be rejected.
It can be assumed, without loss of generality, that

z;; <1 forg=1,...,n

ﬁ.
-

(a) the knapsacks are ordered so that k; <-+ < kyy,

(b) min{wy,...,w, } < ky,

(c) max{w,,...,w, } < kn, and

(d) 22,5, ws > kn.

Then the following subroutine is available for solving this problem when all p;, w;, and k,
are positive integers.

CALL MKP(n,m, P,W, K,NBCK, L, o, TEMP ITEMP,NUM)

P and W are integer arrays containing p;,...,pn and wy,...,w,, and K an integer
array containing ky,...,k,,. L is an integer array of dimension n or larger, and o an integer
variable. When MKRP is called, if no input errors are detected then the maximum value for
o is obtained. Also, L(j) = 1 if item j has been assigned to knapsack ¢ (7 =1, ...,n}, and
L(7) = 0 if itern 7 does not appear in the solution (i.e., if z;; =+ = z,; = 0).

A depth-first tree search employing backtracking is used. if no bound is placed on
the number of back tracks that may be performed, then the exact maximum ¢ is assured.
However, if the number of back tracks must be restricted, then only an approximation
to the maximum may be obtained. The argument NBCK is available for limiting the
backtracking. NBCK is a variable. On input, if NBCK = -1 then no restrictions are
placed on the backtracking. Otherwise, if NBCK # -1, then it is assumed that NBCK
is the maximurm number of back tracks that are permitted. When the routine terminates,
NBCK = the number of back tracks that were actually performed.

TEMP 1s a real array of dimension n or larger, and I'TEMP an integer array of dimen-
stion NUM. It is assumed that NUM > om | 14n + 4mn + 3. TEMP and I'TEMP are work
spaces for the routine. It should be noted thay TEMP is the only argument of MKP that
15 not of 1nteger type.

Error veturan. If an input error is detected then o 13 set to one of the following values:

o T Lorn < 2

419

o = -2 if some p;,w;, or k; is not positive.

o = -3 if min{wy, ..., w,} > ky; i.e., if a knapsack cannot contain any
itern.

g = -4 if max{w;, ..., w,} > kp,; i.c,, if an item cannot fit in any knap-
sack.

o = -5 if T w; < k,n; i.e., if knapsack m can contain all the itemns.

o = -7 if the knapsacks are not ordered so that k; < .-- < k.

oc=—-8 if NUM < 5m + 14n + 4mn + 3.

Backtracking. For NBCK = —1, the time required for finding the exact maximum depends
primarily on the value of m, and can increase quite dramatically for very small increases in
the value of m. It is recommended that this setting never be used when m > 10. Instead,
if m > 10 then a setting of NBCK < 50 frequently suffices.

Programming. MKP employs the subroutines MKP1, SIGMA1, PI1, PARC, SKNP, and
SKNP1. The interface subroutine MKP was written by A.H. Morris. The remaining subrou-
tines were written by Silvano Martello (University of Bologna) and Paolo Toth (University
of Florence) and modified by A.H. Morris. The subroutine RISORT is also used.

Reference. Martello, S. and Toth, P.,“Algorithm 632. A Program for the 0-1 Multiple
Knapsack Problein,” ACM T'rans. Math Software 11 {1985), pp. 135-140.

420

INVERSION OF THE LAPLACE TRANSFORM

Let f(t) be a complex-valued function that is continuous for t > 0 except possibly at
a countable set of values t; having no finite limit peoints. Then for complex z the Laplacc
transform F{z) of f(t) is defined by

F(z) = /Ow e f(t) dt

when the integral converges. If the integral converges for Re(z) > ¢ but does not exist for
Re(2) < ¢, then c is called the abscissa of convergence of F{z). If [[7f(t)le **dt < oo
for some real constant a, then F(z) is analytic for all z where Re(z) > a. Also, for any point
t for which f(t) is continuous and sufficiently well-behaved, the value f(t) can be obtained
from F by the inversion formula

- Ly e MPOA) A (i=V-1
JO = g fim [AMEO A (= Vo)

a—sT

for any o > a. If f{t) is real for t > 0, then F(z) = F(%). Given a transform F(z) where
F(2) = F(z), then the following subroutine is available for computivg f(t) for t > 0.

CALL LAINV(MO,FUN t,AERR,RERR,Y, c, ERROR,NUM,IERR)

Iv is assumed that F(z) = F(2z). The argument FUN is the name of a user defined
subroutine for computing F(z). FUN has the format:
CALL FUN(z,y, A, B)
A and B are variables. For real arguments z and y, A and B are assigned the values
A = Re[F(z + iy)] and B = Im{F(z + iy)]. FUN must be declared in the calling program
to be of type EXTERNAL.

IERR is a variable that is used both for input and output purposes. If IERR > 0 on
input then it is assumed that the abscissa of convergence is k.iown and that ¢ == the abscissa
of convergence. Gtherwise, if IERR< G then the abscissa of convergence must be comnputed.
In this case, ¢ is a variable. LAINYV sets ¢ to the value that is obtained for the abscissa of
convergence.

MO is an irteger which specifies the search procedure to be used for finding the abscissa
of convergence ¢ when IERR < 0 on input. A one-pass precedure is employed when MO
0, and a two-pass procedure when MO == 0. Normally, the one-pass procedure should
be used. However, if all the singularities of F(z) are known tu be real, then the two-pass
procedure (MO == 0) will be more efficient.

It 18 assumed that ¢t > 0 and that Y s a variable. When LAINV 1s called Y 1s set to
the value obtained for f(¢).

AEURR and RERR are the absolute and relative error tolerances to be used in computing

F{t) (AERR > 0 and RERR > 0). If one wants accuracy to k significant digits then set
RERRK - 10" % If RERR 0 then it is assumed that f(t) is w0 be compated to mackine

421

accuracy. LAINV attempts to find a value Y which satisfies |Y - f| < max{ AERR, R¥RR-

f(1) }.

ERROR and NUM are variables that are set by the routine. When LAINYV terminates,
ERROR is a rough estimate of the absolute error |Y — f(t)| and NUM is the number of
calls that were made to the subroutine FUN.

When LAINV terminates, IERR reports the status of the results. IERR is assigned
one of the following values:

IERR = 0 Y was obtained to the desired accuracy.

IERR =1 Y was obtained, but it may not be accurate because of inaccuracy
in the computation of ¢. This setting occurs only when IERR < 0
on input.

IERR = 2 Y could not be obtained, possibly because too much accuracy was
requested. Increase AERR and RERR, and rerun the problem.

IERR =3 Y could not be obtained, possibly because of inaccuracy in the
computation of ¢ or too much accuracy was requested. Increase
AERR and RERR, and rerun the problem. This setting cccurs
only when IERR < 0 on input.

IERR =4 (Input error) The argument # is not positive. Y and ERROR are
assigned the values 0 and 1.

IERR == 5 The abscizsa of convergence ¢ could not be found in the interval
[-10%,10%]. Y, ¢, and ERROR are assigned the values 0, 0, and
1. This setting occurs only when IERR < 0 on input.

IERR = 6 The argument t 18 too large for f(t) to be computed. Y and
ERROR are assigned the values 0 and 1.

Remarks.

(1) Accuracy decreases when ¢ is near a discontinuity of f(¢).
(2) The calculation may lose accurary or fail when F(t) is oscillatory.

Algorithm. Given ¢, f(¢) is computed by a modification of the subroutine DLAINV devei-
oped by R. Piessens and R. Huysmans, where the real Wynn ¢-algorithm has been replaced
with the complex Wynn «-algorithm.

When IERR < 0, ¢ i3 calculated by the subroutine ABCGN or the subroutine AB-
CONL1. In ABCON, which is a two-pass search procedure, the abscissa z1 of the rightmost
singularity in the strip —10* < x < 10*, |y| < .01 is first determined. Then the abscissa of
the rightmost singularity in the half-plane Re(2) > 1 1s found. In ABCONI these calcula-
tions are comb’ned into a single-pass procedure.

In ABCON and ABCONI, the function F(z)/(z -~ zy - 1)? is integrated along paths €
and 'y defined as follows: ' is the straight line segment from (x,0) t¢ (zy, .01}, followed
by the straight line segment from (zy, 01) to (oo, .01), and €7y is the straight line segment
from (ry,00) to (£7.0), followed by the straight line seginent from (ry,G) to (00,0). The
integral along €' vanishes if no singularity hes to the right of) in the strip |y] 0 01,
and the integral along O vanishes if no singularity lies 1 Re{z) = oy Otherwise, these
mtezrals are nonzero in most apphications. Shapson’s rule suflices for integrating along the

-
tZ
[

finite line segment from (z4,0) to {zy,.01).

Example. Let F(z) = 1/(1 + 2*%), in which case f(t) = sint. The following code may be
uced for computing f(t) at t =1,1.1,1.2,...,1.9 and storing the results in the array W.

REAL W(10)
EXTERNAL FT

C
AERR = 1.E-30
RERR = 1.LE-12
IERR = --1
T=10
DO 101 = 1,10

CALL LAINV (1, FT, T, AERR, RERR, W(I), C, ERR, N, IERR)
IF (IERR .GT. 1) STOP
T=T+0.1

10 CONTINUE

Here FT may be defined by:

SUBROUTINE. FT(X, Y, A, B)
COMPLEX Z,W

Q

Z = CMPLX(X,Y)

W = 1.0/(1.0 + Z++2)
A = REAL{W)

B = AIMAG(W)
RETURN

IND

Programming. LAINV employs the subroutines ABCON, ABCONI, SRCH, ACOND,
XCOND, LAINV1, CQEXT, QAGIl, QAGIEIL, QELG, QK15i1, GQPSRT, CDIVID, CREC
and functions ACONDF, ACONDG, XCONDX, XCONDY, SPMPAR, EXPARG. LAINV
and ABCON were written by Andrew H. van Tuyl (NSWC) and modified by A M. Morris.
ABCONI was written by A H. Morris. LAINV1 was written by Robert Piessens aud Rudi
Huysmans (University of Leuven, Herverlee, Belgium) and moeditied by Andrew van Tuyl.
QAGIL is a modification of QAGI by Andrew van Tuyl and A H. Mearris.

Feference. Piessens, R. and Huysmans, R, "Algorithm 619, sutomatic Numerical Inver-
sion of the Laplace Tvausform,” ACM Trans. Math Sojtware 10 (1984), pp. 348 353.

FAST FOURIER TRANSFORM

Let n be a positive integer and §; = 2xj/n for j = 0,1, ...,n — 1. For any complex
valued functions f and g defined on the points §; let (f,g) = ni:l £(8,) 9(6;). Then (f,g) is
an inner product when f and g are regarded as functions deﬁ‘:;ec()i only on ;. Also e***(j =
0,1, ...,n — 1) form an orthogonal set of functions where each ¢*’* has norm /n.! Thus, if
f is & function that is approximated by f(6) = nz—:l c;e'7? then each c; = 1{f(0),e7?). The
mapping f(8,) — ¢, given by =

c; =

S|

n-—-1 ..
L f(ok)e——Z:nch/n
k=0

is called the digcrete Fourier transform and its inverse

n—1

f(gJ) _ E Cke‘hrijk/n
k=0

the snverse discrete Fourier trans form. The following subroutines are available for com-
puting these transforms.

CALL FFT(C, n,¢,IERR)
CALL FFT1(A4, B,n,¢,IERR)

Let ¢; = a; +1b;(j = 0,1, ...,n — 1) be the data to be transformed. If FFT is called
then C is a complex array containing ¢o,cy, ...,¢n—1 (Where C(5 + 1) = ¢, for j < n).
Otherwise, if FFT1 is called then A and B are real arrays containing ag,ay,a,_1 and
bo, by, ..., b,_1 respectively.

The argument £ may have the values 1 or —1, and IERR is a variable. When FFT or
FFT1 is called, if there are no input errors then IERR is ret tc 0 and

n-1 ik

P 2

€=), cpe“™™ /I
k=0

is computed. The results é; - a, t #b; replace the original data ¢, = a; + ¢k, in C (or A

and B).

Restrictions on the argument n. When FEFT and FIFT1 are called, n is factored by the
routine mto its prime factors. It 1s assumed that the largest prime factor of nis < 230 1f
n pin where n is the square free portion of n, then it is further assumed that n < 210
whenever nas a product of two or more primes.

'"Ihroughout this section v /1.

Error Return. If an input error iy detected then IERR 1s set as follows:

IERR =1 ifn<1.

IERR = 2 if n has too many factors.

IERR =3 if n has a prime factor greater than 23 or the square free portion
of n is greater than 210,

IERR =4 if £ # +1.

The setting IERR == 2 can occur only when n > 4251528.

Remark. The complex array C is interpreted by FFT as a real array of dimension 2n. If
this association is not permitted by the FORTRAN being employed then use FFT1.

Programiming. FFT and FFT1 are interface routines for the subroutine SFFT, which was
written by Richard C. Singleton (Stanford Research Institute).

Reference. Singleton, R. C., “An Algorithm for Computing the Mixed Radix Fast Fourier
Transform,” IEEE Trans. Audio and lectroacoustics, vol. AU-17 (1969), pp. 93-103.

426

MULTIVARIATE FAST FOURIER TRANSFORM

Let ny, ...,n,, be positive integers. For any J = (415 ---1Jm) where 5, =0,...,n, — 1
(v =1,...,m) let 8; denote the point (2r7,/n,, oy 27 3m/nm). Also, for any complex
valued functions f and ¢ defined on the points 8; let (f,g) = %sf(85) ¢(65). Then (f,9)
1s an inner product when f and ¢ are regarded as functions defined only on §;. Also the
functions ¢, (0) = exp(if;8') - - - exp(¢5,8™) form an orthogonal set where each ¢ has the

norm \/ny- - fig,.t Thus, if f is a function that is approximated by f = ;¢ ¢ then each

¢; = 57k (f,44). The mapping f(¢s) = cs given by

§ = m--l-n.,. 2k f(0K) exp(—27rij1k1/n1)-~exp(—27rijmkm/nm)

(e}

is called the discrete multivariate Fourier transform and its inverse

f(05) = 2k ek exp(2migiky /ny)- - exp(2mijnkm /npm)

the inverse discrete muliivariate Fourier transform. The sums Sy are for all K =
(kv, ..., km) where k, = 0,1, ...,n, — 1 (v = 1, ...,m). The following subroutines are
available for computing these transforms.

CALL MFFT(C, N, m, ¢, IERR)
CALL MFFT1(A, B, N,m,¢,IERR)

Let c¢; = ay + 1b; be the data to be transformed where J = (71, .-y Jm) for 3, =
0,1,...,m, —1 (v = 1,...,m). If MFFT is called then C is a I1-dimensional complex
array containing the values ¢y where c; = C(1+ jy + Jony + Janing 4 - t dmny N1).
Otherwise, if MFFT1 is called then A and B are 1-dimensional real arrays containing the
data ay and b, respectively.

Note. If MFFT is used and m = 2 or 3, then instead of having to store the m-dimensional
data ¢ into a l-dimensional array C, the data may be stored in C where € is defined to
be an m-dimensional array. If m — 2 then C may be declared to be of dimension ny x ng,
in which case C(5; + 1,72 + 1) = ¢y for all J — (j;,52). Similarly, il m = 3 then ¢ may be
declared to be of dimension n; x ny X ns, in which case Clart Lja t 1,734 1) == ¢y for all
J = (41,72, 72). Similar comments hold for A and B if MFFT! is employed.

N is an array containing the integers ny, ... n,,. The argumeut ¢ may have the values
I'and -1, and IERR is a variable. When MFFT or MFFT1 is called, if there are no input
crrors then TERR 13 set to 0 and the transform

¢, 2ok crexp(2nbijiky/ny)-- cexp(2néig, k., /ng)

is computed. The results é; -~ a, | tby replace the onginal data cy - ay 4 1b, i ¢ (or A

and £).

"Phroughont this section s v/ 1 and 8 (6%, ..., 0™) denotes an arbitrary point.

427

Restrictions on the arguments n,, ..., n,,. When MFFT and MFFT1 are called, each n,
is factored by the routine into its prime factors. It is assumed that the largest prime factor
of n, is < 23. I n, = uln, where f, is the square free portion of n,, then it is further
assumed that fi, < 210 whenever fi,, is a product of two or more primes.

Error Return. If an input error is detected then IERR is set as follows:
IERR =1 if some n, < 1.
IERR = 2 if some n, has too many factors.
[ERR = 3 if some n, has a prime factor greater than 23 or the square free
portion of some n, is greater than 210.
IERR =4 if £ # 1.
IERR =5 if m < 0.

The setting IERR == 2 can occur only when sore n, > 4251528.

Remark. The complex array C of dimension ny---n,, is interpreted by MFFT as a real
array of dimension 2n; -+ n,,. If this ascociation is not permitted by the FORTRAN being
employed then use MFFT1.

Programming. MFFT and MFFT1 are interface routines for the subrcutine SFFT, which
was written by Richard C. Singleton (Stanford Research Institute).

Reference. Singleton, R. C., “An Algorithra for Computing the Mixed Radix Fast Fourier
Transform,” IEEE Trans. Audio and Electroacoustics, vol. AU-17 (1969}, pp 93-103.

428

DISCRETE COSINE AND SINE TRANSFORMS

Let n be a positive integer and 0, = (v + 1/2)x/n for v = 0,1, ...,n — 1. For any
n—1

real valued functions f and g defined on the points 8, let (f,¢) = Y f(8.) ¢(6.). Then
v=0

(f,9) is an inner product when f and g are regarded as functions defined only on 6,.
Also cos j0 (7 = 0,1, ...,n — 1) form an orthogonal set of functions where cos j0 has
norm /n when 7 = 0 and norm /n/2 when 7 > 1. Thus, if f is a function that is

n—1
approximated by f(f) = ao + 2 3 ajcos j0 then each a; = L(f(6),cos 50). The map-
=1

ping f(,) — a; is called the discrete cosine transform and its inverse a; = f(8,) the
inverse discrete cosine transform.

Alternatively, the functions sin 5@ for 7 = 1, ...,n also form an orthogonal set where

sin 78 has norm \/71/2 when j < n and norm y/n when j = n. Thus, if f is a function that
n-1

is approximated by f(6) =2) b;sin 76 + b, sin nf then each b; = 1(f(8),sin j§). The
7=1

mapping f(6,) — b, is called the diserele sine transform and its inverse b; -+ f(6,) the
tnverse discrete sine transform.

The subroutines COSQB and COSQF are available for coinputing the discrete cosine
transform and its inverse, and the subroutines SINQB and SINQF are available for comput-
ing the discrete sine transform and its inverse. The subroutine COSQI provides information
that is needed for the cosine and sine transform routines.

CALL COSQI(n, WK)

WK is an array of dimension 3n + 15 or larger that is a vork space for the routines
COSQB, COSQF, SINQB, and SINQF. COSQI stores in WK informaticn needed for the
fast Fourier computation of the discrete cosine and sine transforing and their inverses. A
preliminary call must be made to COSQI before COSQB, COSQF, SINGB, and SINQF can
be used. After this preliminary call, CO59Q! peed only be recalled wlhien nis modified.

Programming. COSQI employs the subroutines RFFTT and RFFTH. These routines were
written by Pau) N. Swarztrauber (National Center for Atmospheric Research, Boulder,
Colorado).

CALL COSQB(n, X, WK)

X v an array of dupeusion soor larger. On meput 1t s assumed that X contains the
data f(0y), f(¢1), .., (0,). When COSGB s called, 4na, is computed and stored in
X(y v t)yfory OF, . 0 L

Wil s an array of diaension 3n 4 15 or larger that is a work apace for the reatine
WK mast Le set up by ohe rontine COSQL before COSQB can be used,

420

Programming. COSQB employs the subroutines COSB1, RFFTB, RFFTB1, RADBZ,
EADB3, RADB4, RADBS, and RADBG. These routines were written by Paul N. Swarz-
trauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL COSGF(n, X, WK)

X is an array of dimension n or larger. On input it is assumed that X contains the
data ag,ay, ...,an—;. When COSQF is called, f(4,) is computed and stored in X (v -+ 1)
forv=0,1,...,n-1.

WK is an array of dimension 3n + 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before COSQF can be used.

Example. Assume that X contains the data f(60), ..., f(#n-1). When the statements
CALL COSQI(n,WK)
CALL COSQB(n, X,WK)
CALL COSQF(n, X ,WK)
are called, COSQB stores 4nag, ...,4na,_1 in X and COSQF then sets X{(v+1) = 4nf(8,)
for v = 0,1, ...,n — 1. Thus, the terms of the original sequence X are multiplied by 4n.

Programming. COSQF employs the subroutines COSQF1, RFFTF, RFFTF1, RADF2,
RADF3, RADF4, RADY5, and RADFG. These routines were written by Paul N. Swarz-
trauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL SINQB(n, X, WK)

X 18 an array of dimension n or larger. On input it is assurned that X contains the
data f(80), ..., f(frn-1). When SINQB is called, 4nb; is computed and stored in X (j) for
7=1,...,n.

WK is an array of dirnension 3n -4 15 or larger that is a work space for the routine.
WK must be set up by the routine COSQI before SINQB can be used.

Programming. SINQB calls the subroutine COSQR. SINQB was written by Paul N,
Swarztrauber (National Center for Atmospheric Research, Boulder, Colorado).

CALL SINQF(n, X, WK)

X is an array of dimension n or larger. On input it is assumed that X contains the
data by, ..., b,. When SINQF is called, f(8.) is computed and stored in X(v + 1) for

v O ... on 1.

)

WK 15 an array of dimension Sn ¢t 15 or larger that is a work space for the routine,
WK must be set up by the routine COSQI before SINQF ¢un be used.

Example. Assume that X contains the data by, .. b, When the statements
CALL COSQI(n,WK)
CALL SINQVF(n, ¥, WK)
CALL SINQB{(n, Y, WK)

are called, SINQF stores f(8),...,f(fn-1) in X and SINQB then sets X(j) = 4nb, for
7 =1,...,n. Thus, the terms of the original sequence X are multiplied by 4n.

Programming. SINQF calls the subroutine COSQF. The routine SINQF was written by
Paul N. Swarztrauber (National Center for Atmospheric Rescarch, Boulder, Colorado).

431

RATIONAL MINIMAX APPROXIMATION OF FUNCTIONS

Let a < b and g(z) be a continuous nonvanishing function on the interval [a,b]. For any
continuous function f(z), let ||f|| denote the weighted norm maz{|f(z)|/|g(z)| : a < = < b}.
Also let ¢(z) be a continucus strictly monotonic mapping on [a,b]. Then for any nonnegative
integers £ and m, the subroutine CHEBY is available for finding a rational function

) = PO + p1g(z) + - + ped(z)*
go+q19(z) + - + gm(z)™

which minimizes ||R — f||. The subroutine performs the calculations in double precision. It
is assumed that the error curve 6(z) = (R(z) — f(z))/g9(z) satisfies |6(z;)| = ||R — f|| at
precisely £+ m -+ 2 critical points 2o < z; < --- < z,(n = £+ m + 1), and that §(z,4,) =
—6(z;) for each 1 < n.

CALL CHEBY(a,b, F,G,PHI, ¢, ITER, MXITER, £, m, P, Q,
ERROR,IERR,WK)

The arguments @ and b are double precision real numbers. F, G, and PHI are functions
whose arguments and values are double precision real numbers. The functions must be
declared in the calling program to be of types DOUBLE PRECISION and EXTERNAL.
The functions evaluate f(z),g(z), and ¢(z) respectively.

The argument ¢ is a double precision tolerance that is supplied by the user. If A denotes
the estimated value of || R - f{|, then the routine converges when the error curve 8(z) satisfies
A(1 —€) < |8{z,)] < A(1+4 ¢) for each z;. Thus € specifies the relative agreement that must
be attained between [|f - R|| and the [§(z,). Normally the setting ¢ - 10°% will give
satisfactory results. It is required that 0 < ¢ < 10 2.

The Remes-type algorithin designed by Cody, Fraser, and Hart is employed. This algo-
rithim normally requires less than 20 iterations. The argument MXITER - the maximum
number of iterations that may be performed. "This argument 1s set by the user. The related
argument I'TER is an integer variable thay 1 set by the routine. When CHEBY terninates,
ITER will have for its value the number of iterations that were actually performed.

P15 a double precision array of dimenston €4 1, Q a double precision array of dimension
m -+ 1, KERROR a double precision vanable, and IERR an wteger variable, When CHEBY
terminates, 1if the rational function approximation K(x) has been obtained then TERR s
assigned the value 0 and ERROR i the estimated error [/ f]]. The coellicient p, of the
numerator of R(xr) iy stored in (5 1 1) for s 0,1,...,2, and the coelicient ¢, of the
denominator is stored e Q(y 1) Tor j o 0,1, e “The coetlicient g will always have

the value 1.

Let & €4 v i 20 Then WK s o doehle precision array of dimersion k(K 1 Y or larper

that 1 used for a work space.

133

Error Return. IERR is assigned one of the following values when the desired minimizing
rational function R(z) is not obtained.

iERR =1 An input error was detected. Either £ < 0,m < 0,¢ < 0,¢ > 10732,
or g(z) = O for some point z.

IERR = 2 MXITER iterations were performed. More iterations are needed
to obtain R(z).

IERR = 3 Tle system of linear equations that define the coefficients p; and
q; was found tc be singular. This indicates that for the current
values of £ and m, the numerator and denominator of R(z) may
have common factors.

IERR = 4 A nonmonotonic sequence of critical points z; was obtained. Mod-
ify £ and/or m.

IERR =5 The value of the error curve §(z) at some critical point z; appears
to be too large. This indicates that R(z) may have poles, and that
m (or possibly a or b) may have to be modified.

IERR =6 CHEBY completely failed to find (or roughly approximate) R(z).
All information in P,Q, and ERROR should be ignored.

If IERR = 2,34, or 5 then P and Q contain the coefficients of the most recent rational
function appro«imation R(z) obtained, and ERROR is an estimate of the error | R — f|| of
the approximation.

Remark. The two most common weighting functions employed are g(z) = 1 and g(z) =
f(z). If g(z) = 1 then the absolute error is minimized in constructing h(z). If g(z) = f(z)
then the relative error is minimized.

Programming. CHEBY employs the subroutines CHEBY1, CERR, and DPSLV. These
routines were written by A. . Mornis. CHEBY, CHEBY1, and CERR are slightly modified
translations of the ALGOIL 60 procedures Chebychev, lineq, del, and surmis given in the

reference.

Reference. Cody, W. J., Fraser, W and Hart, J. F. “Rational Chebychev Approximation
using Lincar Equations,” Numerische Mathematik 12 (1968), pp. 242 251,

L, APPROXIMATION OF FUNCTIONS

For any countinuous real-valued functicu f(z) defined on the interval [a,b], iet ||f|l,
denote the L, norin defined by

1£ls = (3 1f(=)P dz)i/? if 0<p<oo

[|fll, = max{|f(z)] e <2z <b} i p=co
If p = oo then the norm is also known as the Chebyshev uorm. For any ~ontinuous function
f, 0 < p < 00, and € > 0, the subroutine ADAPT is availabie for finding a continuous
piecewise polyromial function ¢ that satisfies ||f — @[], < e.

CALL ADAPT(F,a,b,¢, k, ERROR,XKNQTS, C, IND, 4, n, £, ANORM,
DX MO, m XBREAK,KDIFF,DLEFT,DRIGHT)

I 18 assumed that the polynomials which form the approximation ¢ are of degree < n.
The argument n must satisfy 1 < n < 19, and iND 18 a variable. When ADAPT i3 called, if
there are no input errors and ¢ is successfully constructed, then IND is set to 0, a sequence
of points a = z; < ++- < zg_y < T = b ia relected, and ¢ takes the forin

#(z) = cio +calz —)+ -+ cin(z — 2)" i <z <2y
fori=1,...,k— 1. The points z,, . .,z are called the knots (or nodes) of ¢.

The argument p is the maximum number of polynomials that mcoy be uszd n forming
¢. ERROR and k are variables, XKINOTS an array of dimension u -+ 1 or larger, and C a
2-dimensional array of dimension u X (n +1). ADAPT sets k to the number of knots that
are generated. The knots zy, ...,z are stored in the XKNOTS airay, and the coeffictents
Cic, -+ -,Cin are stored 2 C(d,1), ...,C(t,n+ 1) fori=1,...,k— 1. FRROR is a vough
estimate of the error ||f — ¢||,.

The argument £ specifies the degree of smoothness that the approx.mation ¢ must
satisfy. It i3 assumed that 0 < £ < 10 and n > 2£. If € == O then it is only required that
& Le continuous on the interval [a,b]. Otherwise, if £ > 1 then it ig assuized that f is of
class C'¢ on [a,b] except at possibly a finite number of points (called break points), and it
is require:! that ¢ be of class C® on [a, b] except possibly at the break points.

The arguament rm specifies the number of break peints of £ It 13 assumed that m < 20.
If vn = O then the arguments XBREAK KDIFF DLEFT, and DRIGIH'Y can be ignored.
Otherwise, if m > 1 then 1t is assumed that XBREAK KDIFF DLEFT, and BRIGHT ave
arrays of dimension m or larger, and that

XBREAK(s) - the ¢'* break point, call it u,,

KDIFF(3) the smallest integer v, for whirh the v derivative of f does
not ex,sb or 1 not continuous at u,,
DLEFT(3) the value from the lefi the v derivative at vy, and
DRIGHT(x) the valiue from the right of the v * derivative at w,
forv o, oo e Iy also assumed that a <0 uy <0 - < uy, ~ band i 2, for cach vy

135

F is the name of a user defined function that has the value F(z, D) = f(z) fora < z < b.
If £ = 0 then I* can be ignored. (However, D must still be given as an argument of F.)
Otherwise, If £ > 1 then D is an array of dimnension greater than or equal to £. For any =z
not a break point in XBREAK, the user must set D(5) = the 7t derivative of f at z for
J < £. However, if z = XBREAK(s) then the user necd only set D(7) = the 5** derivative
of f at z for 7 < KDIFF(s). The function F must be declared in the calling program to be
of type EXTERNAL.

The argument DX upecifies the maximum distance to be permiited between the knots
x;, and the argument AMNORM spacifies the norm to be used. Set

ANORM = £1.0 for L, approximation.

ANORM = +2.0 for L; (least squares) approximation.
ANORM = 3.0 for L, {minimax) approximation.
ANGRM = -pfor L, D < p < oo) approximation.

Before considering the argument MO, one should be briefly acquainted with how
ADAPT operates. ADAFT employs the following procedure to construct ¢é.

(1) Set I = [a,b] and k == 1. Let a be the first knot of ¢.

(2) 1f the interior of I contains no break points then go to (3). Otherwise, if I = [c,d] then
partition I into the subintervals [c,u] and [u,d] where u is the smallest break point
greater than c. Siack the right subinterval [u,d] and reset I to [c,u].

(3) Construct a polynomial ¢; on I using Hermate interpolation. If the length of the interval
I'is < DX and ¢; satisfactorily approximates f on I, then go to (4). Otherwise go to

(4) Set k to be k + 1. Let ¢; be the (k — 1)°* polynomial forming ¢ and let the right end
point ¢f I be the kt* knot of ¢. If the interval stack is empty then the procedure is
finished. (therwise, obtain from the stack the next interval I to be considered and
return to (2).

{(5) The polyncinial ¢; cannot be used. Partition i into halves, stack the right subinterval
and reset | to be the left subinterval. Then go to (3).

The argument MO specifies the accuracy criterion that che approximation ¢ ig to satisfy
on a subinterval I == [c,d] of [, b]. It is assumed that MO = 0,1, 2. If the L norm is used
then MC is ignored! and ¢ is required to satisly | f(z) ~ ¢(x)] < € for ¢ < z < d. Otherwise,
if the L, (0 < p < o0) norm is used then ¢ is required to satisfy:

d d ¢
/ - LA PN (N p)
j{ [f(z) - o(x)|F dx < B for MO = 0
~d
/ [f(z} ()P dr - * for MO - 2

The setting MO - 0, which is the most cornnonly used setting, requires the total error

f ¢, < ¢ The alternate setting MO . 2 cmploys ¢ to control loeal accuracy If ¢

consists of k1 polypomials then the total error |1 f Gl (K DYPC Phis setling can

YHowever, it s stilt required that MO - 0,1, 2

be useful when f is rough. A (heuristic) compromise strategy is provided when MO == 1,
At each step in the formation of ¢, the MO = 1 strategy estimates the total number of
subintervals that will finally be needed and adjusts the error requirement for the subinterval
I accordingly. This strategy attempts to keep the total error to a minimum while relaxing
the lecal accuracy criterion demanded by the MO == 0 setting.

Remarks. IND, k, iz, n, £, MO, m, and KDIFF are integer arguments. All other arguments
(including F) are double precision arguments.

Error Return. ADAPT assigns IND cne of the following values:

IND == 0 The approximation was successfuliy constructed.

IND = —1 Either a > b or one of the arguments ¢, n, £, ANCRM, MO, m is
assigned an incorrect value,

IND = -2 [a,}] is too small an interval.

IND = —3 DX is less than (b — a)/u. Since only u subintervals can be used
and each subinterval must be of length < DX the intervai [a, b
cannot be covered. Make DX or u larger.

IND = —4 The restriction a < u; < -+ < t,, < b on the break points is
violated.

IND = --5 Either KDIFF(i) < 0 or KDIFF(f) > (n ~ 1)/2 for some 1.

IND = 1 ADAPT selected g + 1 knots. More knots are needed o complete
the problem.

IND = 2 A subinterval I = [c, d] must be partitioned into subintervals [c, u]
and |u,d] where u is a break point. However, this cannet be done
either because the interval stack is full, or partitioning will produce
tco small an interval. (The stack can hold only 50 subintervals).

IND = 3 A subinterval must be partitioned because its length is greater
than DX. However, this cannot be done since the interval stack is
full.

IND = 4 A subinterval must be partitioned so that the accuracy criterion

can be satisfied. ifowever, this cannot be done either because the
stack is full, or partitioning will produce too small an interval.

If an input error is detected (i.e., if IND < 0) then no computation is performed. Otherwise,
if IND > 0 then when ADAPT terminates k := the number of knots generated, XKNOU'S
containg the knots, ' contains the coefficients of the pelynomials generated, and ERROR
contains the error estimate for f — ¢ over the interval covered.

Remarks.

(1) if the Lo, norm is used then ¢ controls absolute accuracy, not velative acuracy. This
should be kept in mind when ¢ 18 to be set for any L, norm.

(2) ADAPT requires more time when £ > 2 than when £ 0 or 1. However, the cholce of
the norm normally has hitle effect on the efiiciency of the routine.

(3) ADAPT can yield excellent results even when the derivatives of f have singrlanties.
The one major exceotion is when the first dervaiive of f s not boanded. Then the

routine can be expected to fad

Example. The foilowing code can be used for approximatiug f(z) = e® on the interval [0, 1].

DOUBLE PRECISION F, A, B, EPS, ERROR, ANOKM, DX
DOUBLE PRECISION XKNOTS {11), C(10,20)

INTEGER KDIFF(1)

DOUBLE PRECISICN XBREAK(1),DLEFT(1},DRIGHT(1)
EXTERNAL F

DATA MAX, A, B, DX/19, 0.D0, 1.DO, 1.D0/

N=28
L=1
EPS = 1.D-~12

ANORM == 3.D0
CALL ADAPT(F,A,B,EPS,X,ERROR,XKNOTS,C,IND,
« MAX,N,L,ANORM,DX,0,0,XBREAK, KDIFF,DLEF T,DRIGHT)

Here I may be defined by:

DOUBLE PRECISION FUNCTION F(X,D)
DOUBLE PRECISION X,D(1)

F == DEXP(X)

D(1) =

RETURN

END

In the ADAPT statement XBREAK, KDIFF, DLEFT, and DRIGHT are ignored since
m = 0.

Programming. ADAPT employs the subroutines ADAPTI, ADSET, ADTAKE, ADCOMP,
NEWTON, ADCHEK, ADPUT, ADTEAN and functions ERRINT, POLYDD. These rou-
tines exchange information in labeled cornmon blocks. The block names are INPUTZ,
RESULZ, KONTRL, and COMDIF. The routines were wriiten by .John R. Rice (Purdue
University) and modified by A. H. Morris. The function DPMPAR is also used.

References.

(1) Rice, J. R,,“Algorithm 525. ADAPT, Adaptive Smooth Curve Fitting,” ACM Trans.
Math Softwaere 4 (1578), pp. 82-94.

{2) ___, “Adaptive Approximation,” J. Approz. Theory 16 (1976), pp. 329-337.

438

CALCULATION OF THE TAYLOR SERIES OF
A COMPLEX ANALYTIC FUNCTION

Let f(z) = 3 an(z — z0)™ denote ihe Taylor series of an analytic function f around
n>0
a point zg. Then the subroutines CPSC and DCPSC are available for obtaining the coef-

ficients a,, of the series. CPSC obtains single precision results and DCPSC obtains double
precision results.

CALL CPSC(f, 2, n,IND,, R, A,ERR)

it is assumed that f(z) is a user defined function whose arguments and values are
complex numbers. The argument f must be declared in the calling program to be of types
COMPLEX and EXTERNAL.

The argument 2o is complex, n is an integer where 1 < n < 51, and A is a complex
array of dimensicn n or larger. IND may be any integer. If IND == 0 ther a; is computed
and stored in A(7 +1) for j = ¢,1,...,n — 1. Otherwise, if IND # O then f(z0) and the
derivatives f’(zo), ..., f(* "V (2) are computed and stored in A.

The argument ¢ specifies the relative accuracy of f. If it is estimated that f produces
results accurate to k significant decimal digits then one may set ¢ = 10~%. It is assumed
that ¢ > 0. If € = 0 then the results of f are assumed to be correct to machine precision.

When CPSC is called, f(z) is ¢valuated on circles of various radii around the point
zg. R 15 a real variable. On input, K is the radius of the first circle on which f(z2) is to be
evaluated. After using this radius, the radius ie repeatedly modifizd {first by factors of 2
or 1/2) until a suitable final radius r, is obtained for deriving the values cf the coefficients
a;. This radius, whese value depends on ¢, is called the computational radius of the series
Ya;(z - 20)°. When the routine ierminates, R is assigned the value r,.

ERR is a real array of dimension n or larger. On output, ERR(j) is the estimated
absolute error of A(j) for j = 1, ..., n.

Usage. Given a radius R, f(z) is evaluated on k equidistant points on the circle of
radius R around zg where
k= 8 when I <n <86,
k=16 when 7 <n < 12
k = 32 when 13 < n < 25,
k = 64 when 26 < n < 51,
It is assumed that f() has at least one nonzero coefiicient ay amony the first k /2 coefficients,
and al least ore nonzero coefficient among the next k/2 coefficients. Thus, the routine
should not be used to obtaro coeilicients of a low degree polynominal such as f(z) =1 - z%
In such cases, the results will normally be iicorrect.
In general| the selection of the radius K of the first circle on which f(2) 18 evaluated s

not bothersomie. A randomly selected value of moderate size, such as K o 6.2738, alimost

439

always suffices. No difficulties normally arise when the 1aitial radius R is greater than the
radius of convergence of the series La;(z ~ 20)7. However, difficulties do arise when

(1) the routine attempts to evaluate f too close to (or exactly at) a singularity,

(2) f has a Taylor series expansion which contains ocne or more extremely large isolated
terms (e.g., f(z) = 10® + sin 2),

(3) f has a branch point near z, or

(4) The initial radius R is too far from the computational radius r. (see the error return
section below).

The risk of (1) occurring is minimized by the random selection of an initial radius R. For
(2) and (3), a severe loss of accuracy can occur when a large number of coefficients are
requested. In these cases, any loss of accuracy is reported by the ERR array.

Ercor return. A(j) is assigned the value 0 and ERR(J) is set to 10'° for =1, ...,n when
the initial radius R differs from r, by a factor of 30000 or greater.

Programming. CPSC was written by Bengt Fornberg (California Institute of Technology)
and modified by A.H. Mosris. CPSC employs the function SPMPAR.

References.

(1) Fornberg, B.,“Numerical Differentiation of Analytic Functions,” ACM Trans. Math
Software T, 1981, pp. 512-526.

(2) _____ ,“Algorithm 579. CPSC: Complex Power Series Coefficients,” ACM Trans.
Math Software 7, 1981, pp. 542-547.

CALL DCPSC(F,zg,y0,n,IND,, R,AR,ALEKR)

F is the name of a user defined subroutine that has the format:
CALL F(z,y,u,v)
This subroutine is used for evaluating f(z) at point z. The arguments z and y are the
real and imaginary parts of 2z, and u and v are the real and imaginary parts of f(z). The
arguments z and y have double precision values, and u and v are double precision variables.
F must be declared in the calling program to be of type EXTERNAL.

The arguments zy and yg, which have double precision values, are the real and imagi-
nary parts of 2. The argument n is an integer where 1 < n < 51, and AR and Al are double

real and imaginary parts of a; are siored in AR(7+ 1) and AI(j+ 1) for y =0,1, ...,n- 1.
Otherwise, if IND # O then the real and imaginary parts of f(zo) and the derivatives
f'(z0), . ..,f(""'l)(zo) are stored in AR and Al respectively.

Tha argument ¢, which has double precision values, specifies the relative accuracy of
the subroutine F. If it is estimated that ¥ produces results accurate to k decimal digits
then one ay set €~ 10 % It is assumed that ¢ > 0. If ¢ 0 then the results of F are
assumed to be correct to machine precision.

When DCPSC is called, f(2) 18 evaluated on circles of various radii around the point
20. £ 13 a double precision vartable. On input, R is the radius of the first circle on which

440

f(2) is to be evaluated. After using this radius, the radius is repeatedly modified (first by
factors of 2 or 1/2) until a suitable final radius r, is obtained for deriving the values of the
coefficients a;. This radius, whose value depends on ¢, is called the computational radius
of the series Ta;(z — 20)?. When the routine terminates R is assigned the value r..

ERR is a double precision array of dimension n or larger. On output, ERR(j) is the
estimated absolute error of the complex value stored in AR(j) and AX(j) for j=1,...,n.

Usage. DCPSC is used in the same manner as CPSC. See the usage section for CPSC.

Error return. AR(j) and AI{j) are assigned the value 0 and ERR(j} is set to 10'? for
7=1, ...,n when the initial radius R differs from r, by a factor of 30000 or grzater.

Programming. DCPSC is an adaptation by A.H. Morris of the subroutine CPSC, written
by Bengt Fornberg (California Institute of Technology). CPSC employs the function
DPMPAR.

References.

(1) Fornberg, B.,“Numerical Differentiation of Analytic Functions,” ACM Trans. Math
Softwere 7, 1981, pp. 512-526.

(2) __, “Algorithm 579. CPSC: Complex Power Series Coefficients,” ACM Trans.
Math Software T, 1981, pp. 542-547.

441

LINEAR INTERPOLATION

Let a be a real number and (z1,y1}, ..., (2n,yn) & sequence of points. The following
{unction performs a linear interpolation at point a.

TRP(a,n, X,Y)

It is assumed that n > 2 and z; < --+ < z,. X and Y are arrays containing the
abscissas zi, ...,z and ordinates yi, ...,yn respectively. TRP(a,n,X,Y) = b where b is
the value of the interpolation at a.

Programmer. A. H. Morris.

443

LAGRANGE INTERPOLATION

Let {(zi,yi) : § = 1, ...,n} be a set of n > 2 points where z; < :++ < z,,,m be an
integer where 2 < m < n, and %y, ...,%x be k > 1 points at which m point Lagrange
interpolation is to be performed. The subroutine LTRP is available for performing this
interpolation.

CALL LTRP(m, X,Y,n, XLYI, &, T, IERR)

X is an array containing), ...,z,, Y an array containing y;, ...,y., XI an array
containing Zi, ..., Zk, and Y[an array of dimension k or larger. When LTRP is called, if
no input errors are detecied then interpolation is performed at each Z, and the result stored
in YI(y) for =1, ... k.

T is an array of dimension i or larger. The array is used as a temporary storage area
by the routine.

Crror Return. IERR is a variable that is set by the routine. If no input errors are detected
then IERR is assigned the value 0. Otherwize, IERR is assigned one of the following values:

IERR =1 if m < 2.
IERR =2 if m > n.
IERR =3 ifk < 1.

When an error is detected LTRP immediately terminates.

Algorithm. If £; = (x; + £, 4m)/2 for some 1, then (zi,%), ..., (Zitm—1,Yitm-1) are the m
data points used in the Lagrange interpolation at Z,. Otherwise, the data points selected
for the interpolation are those m points (z, y;) whose abscissas are closest to z;.

Linear Interpolation. For m = 2, if the abscissae x; are not equally spaced then LTRP
can produce different results than the linear interpolating function TRP. If Z; lies in the
interval (z,,2,y) then TRP always uses the data points (z,,y;) and (Zit1,Yc+1) to find
the interpolated value at z,. However, the operation of LTRP is somewhat different. For
example, if the point Z; in [z, 7.,,) is closer to 2,_; than to z,4,, then (z;_{,y_1) and
(%1, %) will be the data points employed in the interpolation. Thus, TRF will normally be
the procedure that will be desired for linear interpolation.

Programming. Developed by A. I1. Morris. The portion of the code for finding the subin-
terval containing 2, was written by Rendall E. Jones (Sandia Laboratories).

445

HERMITE INTERPOLATION

Let zy, ..., 7x be k > 1 distinct points. For each z; assume that we are given n; > |
values y;,y!, ...,y‘("‘ Y ifn = ny + +-- + ng, then there exists a unique polynomial of
degree n - 1 which satisfies

p(7:) = v
p'(zs) = ¥

2) = Y

for each + = 1, ..., k. The subroutine HTRP is available for obtaining this polynomial.

CALL HTRP(n, X,Y, A, WK IERR)

X and Y are arrays of dirmension n containing the following information: X(7) =
zy for 5 = 1,...,n; and V(1),...,Y (r1) contain the values y, ,¥}, ...,ygn'"—l) For
1= 2,...,k let mi; = ny +-+--+n;_1. Then X(m; +5) = z; for 3 = 1,...,n,; and

Y (m; + 1), e ,Y(m. + n,;) contain the values y;,y!, ..., y("'_l)

A is an array of dimension n and IERR an integer variable. When HTRP is called,
if no errors are detected then IERR is assigned the value O and the coefficients a, of the

n—1

polynomial p(z) = ao+ ¥ aj{z - X(1)}--: (x— X(J)) are coinputed and stored in A(5+1)
J=1

for=0,1, ...,n—1

WK is an array of dimnension n or larger that is a work space for the routine.

Error Return. If an error is detected then IERR is assigned one of the following values:

IERR =1 The argument n is not positive.

IERR =: 2 There exists integers 1 and € for which X/¢) = X(£) but X(1} #
X () for some j where i < j < £. In this case, the values ¢ and £
are stored (in floating point form) in WK(1) and WK(2).

When an error is detected, the rovtine immediately terminates

Example. If (0) = 2, p(--1) = 1, and p'(—~1) = 2 where z; == 0 and z; == —1, then HTRP
stores 2,1, -1 in A. Hence, p(z) = 2+ v — z(z + 1) is the desired polynomial.

n-—1

Remark. The Newton representation ag -+ 3, a;{z — X(1))---(z ~ X(j)) of the polynomial
1=1 n-—-1

p(z) can be converted to the Taylor series representation Y. ¢,(z — «)7 by the subroutine

=0

PCCEFF

Programmer. A. . Morris.

CONVERSION OF REAL POLYNOMIALS FROM NEWTON
TO TAYLOR SERIES FORM

n—1
For n > 1let p(z) = ap + 3 aj{(z — z1)---(z — z;). Then for any real number «,
1=1
the subroutine PCOEFF is available for converting the polynomial p(z) to the Taylor series

n—1 R
form Y, c;(z —).
=0

CALL PCOEFF(a,n, X, A,C,T)

X is a single precision real array containing z;, ...,Z,-1, A asiugle precision real array
containing ag, 4y, ...,a,-; Where a, is stored in A(y +1) for y =0,1,...,n~1, and C
a single precision real array of dimension n or larger. When PCOEFF is called then the
coefficients ¢; of the Taylor series representation are computed and stored in C(j + 1) for
7=0,1,...,n-1.

T is a double precision array of dimension n or larger. The array is a work space for
the routine. (The conversion of the coefficients is done in double precision.)

Note. A and C may reference the same storage area, in which case the results c; will
overwrite the input data a;.

Programmer. A. H. Morris.

449

LEAST SQUARES POLYNOMIAL FIT

Let {(zi,y:) : ¢ =1,...,m} be a set of m > 2 points where z; # z; for i # 7. Then
for any positive integer n where n < m, the subroutine PFIT is available for obtaining the
n i m
(unique) n*? degree polynomial p(z) = 3 a;27 which minimizes 3 (p(z;) — v)2.
=0 =1

CALL PFIT(n,m, X,Y, A, RNORM,PHL,WK,IERR)

X is an array containing zy,...,%m, Y an array containing y;, ...,ym, and A an
array of dimension n -1 or larger. RNORM and IERR are variables. When PFIT is called,
if no input errors are detected then IERR is set to 0, the coefficients a, of p(z) are stored

in A(y +1) for 7 =0,1, ...,n, and RNORM is assigned the value /Z;(p(z;) — v:)?.

PHI is an array of dimension 2(n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI and WK are work spaces for the routine.

Eiror Return. JERR =1 ifn<lorn>m.

Algoritkm. The abscissas z; are first mapped into values in the interval [-1,1]. Then the
Forsythe procedure is used.

Programmer. A. H. Morris.

WEIGHTED LEAST SQUARES POLYNOMIAL FIT

Let {(z:,y) : 1 = 1,...,m} be a set of m > 2 points where z; # z; for ¢ # j, and
let wg > 0(t =1, ...,m) be weights. 1t is assumed that my, > 2 where m,, 1s the number
of nonzero weights. For any positive integer n where n < sm,,, the subroutine WPFIT is

available for finding the (unique) n*" degree polynomial p(z) = > a,':rj which minimizes
m ;=0

2 wi(P(-T.‘) - !Ii)2~

t=1

CALL WPFIT(n,m, X,Y,W, A, RNORM,PHI, WK IERR)

X 1s an array containing %, ...,Zm, Y an array containing yi, ...,ym, W an array
containing wy, ...,Ww,, and A an array of dimension n + 1 or larger. RNORM and IERR
are variables. When WPFIT is called, if no input errors are detected then IERR is set to
0, the coefficients a; of p(z) are computed and stored in A(j5 + 1) for 7 = 0,1, ...,n, and
RNORM is assigned the value \/Z,w;(p(z;) — v:)?.

PHI is an array of dimension 2{n + 1) or larger, and WK is an array of dimension 4m
or larger. PHI aud WK are work spaces for the routine.

Error Return. IERR =1 ifn <1 or n > m,, and IERR = 3 if some w, is negative.

Algorithm. The abscissas z; corresponding to the positive weights are first mapped into
values in the interval [~1,1]. Then the Forsythe prosedure is used.

Programmer. A. . Morris.

CUBIC SPLINE INTERPOLATION

Given z; < -+ < z,. A function f(z) is a cubic epline having the nodes{knots)
T1, ...,2n if f is a polynomial of degree < 3 on the interval [z,,z;4,| for i =1, ..., n -1,
and the first and second derivatives f/(z) and f”(z) exist and are continuous for all z. If
f: denotes the polynomial for the interval [z, z;4,] then f; has the form:

fi(@) = yi + ai(z — ;) + bi(z — £,)? + iz — ,)°.

Consequently, the function f is obtained by fitting the polynomials fy, ..., fn_1 together
at the points z3, ..., z,_1. For z < z; f(z) = fi(z), and for 2 > z, f(z) = fu_i(z). Also
f(zs) =yifori=1,...,n— L. Hence, if f(z.) = y. then f interpolates the points (z,, y;)
fori=1,...,n.

Assume now that the ordinates y;, ...,y, are given. Then there exist an infinitude
of splines with nodes z,, ..., z, that interpolate the points (z,,y,). In general, two inde-
pendent conditions must be imposed to uniquely specify the interpolating spline f which is
of interest. Frequently, f is restricted on the first interval [z, z2] by requiring that f'{z,)
or f"(z;) has a given value, or that f is continuous at zz. Also, f is restricted on the
last interval [z,_1,x,] by requiring that f/(z,) or f’(z,) has a given value, or that f is
continuous at z,_ . The subroutine CBSPL is available for obtaining the spline when these
restrictions are employed. Alternatively, f may be required to satisfy the conditions

J'(z1) = af(z) t B la] < 1
fll('rn) "’f“(:r'n«—l) ! ,H '('!] < 1

when n > 4, Then the subroutine SPLIFT is available for obtaining vhe spline.
CALL CBSPL{X,Y, A, B,C n,i,,i2,w,;,wy,IERR)

X and Y are arrays contalning the abscissas z,, ..., r,, and ordinates yy, ..., y,. It is
assumed that xq « -+« < x, aud 2 > 3. A B and € are arrays of dimension n or larger,
and IERR an integer variable, When CBSPL s called |
IERR is set to 0. Also, the coeflicients ay, by e (¢ 1, 00 1) of the interpolating spline
J(x) are stored in A, B, C L and A(n) is set o f'(x,)-

if no input errors are detected then

The arguments 17,19, wy, wy specify the conditions thao the spline f(z) must satisfy. 1y

18 assumed that 1 and 19 have the values 01,2 where:

1; 0 f s continuous at ry. 1, 0 [s continuous at r, .
1]] f'(ry) has the value wy, Ly ! f{r,) has the value w,,.
1 20 f"(ry) has vhe value wy. 1, 2 ["{(r,) has the value wy,

If 1, Othen the arpument wyasagnored, and f 1, O then wy wagnored

Error Retuin. JERR Pt s 3and IERR 200 r, - ryoy for some s

Remarks.

() B(n) and C(n) are used for temporary storage.

(2) If £y =4, =0 and n = 3, then it is aluo assumed that f'(z9) + f/(z3) = 2(31’—;512’%)

(3) After A,B and C have been obtained, then SCOMP or SCOMP1 may be used to
evaluate the spline at any point z. SEVAL or SEVALI may be used if derivatives are
also desired.

Programming. CBSPL is an adaptation by A. H. Morris of the subroutine CUBSPL,
written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Praciical Guide to Splines, Springer-V-rlag, 1978.
CALL SPLIFT(X,Y,DY,DDY,n,W,iERR,MO, o, 3, @, B)

X and Y are arrays containing the abscissas z;, . .,z, and ordinates yy, ...,y,. It is
assumed that z; < --- <z, and n > 4. DY and DDY are arrays of dimensicn n or larger,
and IERR an integer variable. When SPLIFT is called, if there are no input errors then
IERR is assigned the value O, the first derivatives f'(z;),....f'(z,) are computed and
stored in DY(1),...,DY(n), and the second derivaticz f"{xy), ..., f"(z.) are computed
and stored in DDY(1), ..., DDY(n).

W is an array of dimension 3n or larger that is used for a storage area. On the first call
to SPLIFT the argument MO must be set to 0. When SPLIFT is initially called, certain
calculations which depend only on the values of o, &, and z,, ..., z, are performed and the
results stored in W. On subsequent calls to SPLIFT, if only values of #,8 or y1, ..., yn
are modified, then the information in ¥ need net be recomputed. Set MO = 1 and the
infermation in W will be reused.

Error Return If there is an input error then [ERR is set as follows:
IERR =1 if |a| > Lor |&l > L
IERR = 2 if n < 4.
IERR == 3 if the restriction z; < --- < x, 18 not satisfied.
Remarks.

1) After DY and DDY have been obtained, then SCOMP1 or SCOMP2 may be used to
evaluate the spline at any point . SKEVAL1T or SKVA L2 may be used if derivatives are
also desired.

(2) Given the values yy and y/,. Then there exists a unique interpolating cubic spline f
that satisfies f'(x;) - y) and f'(z,) -~ y,. This spline can he obtained by setting
o= a - 1/2 and

3 [ys o -3 Yn - Un
g [Jz Y1 !/,1] ;ST . l:“/.' Yn-1 y:‘:I_
I 4 LII:‘ Iy I, Iy I,, = Iy |

Programmer. Rondall £, Jones (Sandia Laboratories),

.....

WEIGHTED LEAST SQUARES CUBIC SPLINE FITTING

Let t;, < «-+ < #, be a sequence where £ > 2, {(z;,y:) :¢ =1,...,m} be aset of m > 4
points where t, < 2y < --- < 2, < ty, and wy, ...,w,, be positive weights. Theu the

subroutine SPFIT is available for obtaining a cubic spline f(z) with the nodes ¢y, ..., t,
m

which minimizes } w; (f{(z:) — yi)®. This spline is represented by

J(=z) = z; + az(z — t;) +by{z - tj)z + C.v'("" - tJ')S

for i, <= < #;41 (7= 1,..., £~ 1). If the nodes are selected so that £ < m — 2 and
cach intervai (t;,¢;41) contains a data point z,,, then this least squares approximation is
unique.

CALL SPFIT(X,Y,W,m,T,¢, 7, A, B,C, WK,IERR)

X is an array containing zp, ...,Z,, Y an array containing yi, ...,Ym, W an array
roataining wy, ..., w,,, and T an array containing t,, ...,t,. Z, A, B,C are arrays of
dimension £ — 1 or larger, and IERR is an integer variable. When SPFIT is called, if no
1aput errors are detected then IERR is set to 0. Also, the coefficients z;,a;,b;,c; of the
least squares approximating spline f(z) are computed and stored in Z, A, B, C.

WX is an array of dimension 7€ + 18 or larger that is a work space for the routine.

Erro: Return. IERR is set to one of the following values when an input error is detected.
IERR =1 if £ < 2.
IERR = 2 ift; < +-- < t;is not satisfied.
IERR =3 f m>4andt; <xy <--- <z, <{t, are not satisfied.

If an error is detected, the routine immediutely terminates.

Remarks.

(1) Occasionally, accuracy can be lost when t, = z,,. Therefore, it is recommended that
te > 14y,

(2) After A, B,C, and Z have been obiained, then SCOMTP may be used to evaluate the
spline at any point . SEVAL may be used if derivatives are also desired.

Programming. SPFIT emplovs the subroutines BSPP, BSLSQ, BSPVDB, BCHFAC, and
BCHSLV. SPFIT was written by A. 1. Morris.

LEAST SQUARES CUBIC SPLINE FITTING WITH
EQUALITY AND INEQUALITY CONSTRAINTS

Let t; < -+- <ty be a sequence where £ > 2, and { (vs,u) 4= 1,...,m} be a sct
of pointe where ¢; < z; < -+ < z,, < t;. Then the subrouiine CSPFIT is available for
obtaining a cubic spline f{z) with the nodez t; ..., t, which minimizes oS (=) - wi)?
subject to a set of zonstraints. This spline is represcnted by

Fle) = oy 1 0] hute = 1) ey - 1)

fort; <z <i g G=1,...,2- 1),

Notation. For any real z, f(9)(z) will denote the value F(z) if § == O, the j*F derivative nf
fat zif j=1or2, and the right third derivative /" (z+) if j = 2.

CALL CSPFIT(X,Y,m, T, XCON,R,NDER k, Z, A, B,C,WK IWK,IND)

X 1s an array containing z,, ..., %,,, Y an array containing yy, ..., ¥m, and T an array
containing ¢y, ...,i,. The argument k is the number of constraints to be satisfied (k> 0)
and XCON, R, NDER are arrays of dimension max{1, k} or larger.

f & > 1then XCON contains the points %y, ..., £, at which the constraints are placed.

The pomts mav be given in any crder and need nob be distinet. It ix assumed that t; <
Ty Stpfer i =1, ..., k. At % any of the following types of constraints

itype = 0 fUN(z) <y

itype = 1 fOU)(z;) >

Qupe == 2 fONE) =y

stype = 3 fUN(z) = fU(r,)
can be impused where 5 = 0,1,2, or 3. ¥or the selected constraint, it is assume: that
R(¢} = r; and NDER(f) = itype + 45. I an itype 3 constraint is imposed then it is further
assumed that t; < r; < {,.

WK and IWK are arrays that are work spaces for the routine. Ou input, IWK(1) is the
dimension of WK and IWK(2) the dimension of IWK. If £ = 0 then one may set IWK(1) -
NE and FWK(2) = 2 where NB = 7(£+ 7). Otherwise, let v = £ + 3, m, be the number of
equality (i.e., “type 2 and 3) constraints, and m; the number of ircquality {itype G and 1;
constraints. Then one must set

IWK(1) 2 NB 4 (w4 K)o 4 2(m, +v)+ (my 4 0) + (mg + 2+ 6)
FWK2) > my + 2o
Remarks.

(1) Yk > ¥ ihen ~ne can let the routine determine the wnonnt of storage that is needed
for Whoand tWiL Set IWK(!) ~ N anc IWK{2) - 2, in which cawe errors will Locar

(sce the IND - 6, --7 crror values Lelow),
(2) NDER{s) way 1 amigned « negative value (5 = 1, .. k) N NDER(,) <0 e g the
" constraint 4 ipnosed

Z, A, B,C are arrays of dimension ¢ -- 1 or larger. When CSPFIT is call2d, if the cubic
spline f(z) is obtained then the coefficients z;,a;,b,, ¢, of the spline are store 1 in Z, A, B, C.

iND is a variable that reports the status of the results. When CSPFIT terminates,
IND is assigned one of the following values:

IND == 0 The spline was obtained.

IND = 1 The equality (i.e., itype 2 and 3) constraints are contradictory. The
spline was cbtained where the equality constraints were satisfied
in a least squares sense.

IND == 2 The spline could not be obtained. The constraints are contradic-
tory.

IND=-1¢<2

IND = -2 m<Qcr k <0.

IND = -3 t; > t;; for some 1.

IND = -4 The assumption t; < x; < <+« < x,, < ty 18 not satisfied.

IND = ~5 The t*! constraint is incorrect for the value of § stored in IWK(2).

IND = —6 Insufficient storage was specified for the WK array. IWK(1) has
been reset to the amount, of storage needed by WK.

IND = --7 Insufficicnt storage was specified for the IWK array. IWK{2) has
been reset, to the amount of storage needed by IWK.

IWK{1) and IWK(2) are not modified when IND # -5, -6, 7.

Example. if one wants f to be convex on an interval [t;,t;41], then this is equivalent to
requiring that j"{z) > 0 on the interval. Thus, since f is a cubic polynomial on the interval,
it suffices to require that f’(¢;) > 0 and f'{(t;31) > 0. For these two ccnstraints, 9 is the

aporopriate value for the NDER array.

Programming. CSPFIT employs the subroutines BFIT and BSPP, and the functions and
subroutines used by BFIT. CSPFIT was written by A. H. Morris.

CUBIC SPLINE EVALUATION

Given 2y < '+« < z,. A function f(x) is a cubic spline having the nodes (knots)
Ty, ..., 4y if fis a polynomial of degree < 3 on the interval [z, 24 ford =1, ... ,n -1,
and the first and second derivatives f'(x) and f’(z) exist and are continuous for all z. If
fi denotes the polynomial for the interval [z,, ;1] then f; has the form:

fi(z) =y +oag(e = 2) + bz~ 1) 4 ez - x;)®

Consequently, the function f is obtained by fitling the polynomials fy, ..., f,..1 together
at the puoints zg, ..., 24.1. For 2z < zy f{z) = fi(x), and for = > z, f(z) = f._1(2)
Also f(z;) =y for £+ =1, ...,n— L. Hence, if f(x,} ==y, then f interpolates the points
(i, 9) forv =1, ..., n.

A cubic spline f given by the polynomials £y, ..., f,-1 is uniquely defined by any of
the following ihree sets of data:

(1) the peints (zy, ;) aad coeflicients a;, by, ¢ for i =1, ... n~1

{?) the points (=, y;) and first derivatives f'(z;) for i =1, ...,n

(8) the points {(zy,y:) and second derivatives f"(z;) fer =1, ... ,n
The subroutines SCOMP, SCOMP!, SCOMP2 are available for computing the spline at
any point z. SCOMP is used if data set (1) is given, SCOMP1 is used if data set (2) is
given, and SCOMP2 is used if data set (3) is given.

CALL SCOMP(X,Y, A, B,C, N, XI,Y], m, IERR)

Let N =n— 1. Then ¥ is the number of polynomials *; that form the spline, X and
Y are arrays containing the abscissas xy, ..., zxy and ordinates y,, ...,yn, and A4 B, C
are arrays containing the coefficients a;, by, ¢ (f = 1, ..., N). 1t is assumed that N > 1 and
that ©; < -+ < zpy.

L2t &, ..., %Em be the points at whicn the spline) 1s to be evaluated. XI is an array
conbaining %y, ..., %, Yl an array of dimension m or larger, and IERR a variable. When
SCOMP is called, if s < 1 then [ERR is set to 1 and the routine terminates. Otherwise, if
m > 1 tken IERR is set to 0 and f(#;} i computed and stored in YI(y) for 7 =1, ..., m.

Note. SCOMP does not require f to be a spline. It is only required that fi(z) be a cubic
polynoraial y; 4 ay{z -~ x;) + bi(z — 2,)? + c;(z — ,)* and that

Flz) = five) fore < xy

fla) = fi{g) for oy <z <y (<4 <N)
flz) = fnlz) forx > zy.

I this case, SCOMP computes the value flo) forj -1, .. ,m.

401

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SCOMP1(X,Y,DY,n, XL YL, m, IERR)

X, Y, DY are arrays containing the abscissas z,,...,z,, ordinates yy, ..., y,, and first
derivatives f'(z1),..., f'(z,) respectively. It is assumed that n > 2 and z; < -+ < z,.

Let 71, ...,Zm be the points at which the spline f is to be evaluated. X! ig an array
containing #y, ..., %, YI an array of dimension m or larger, and IERR a variable. When
SCOMP1 is called, if m < 1 then IERR is set to 1 and the routine terminates. Qtherwise,
if m > 1 then IERR is set to 0 and f(Z;) is computed and stored in YI(j) for j =1, ..., m.

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SCOMP2(X,Y,DDY, n, XLYI, m, JERR)

X, Y, DDY are arrays containing the abscissas zy,..., z,, ordinates y;,..., ¥, and
second derivatives f(z,),..., f"(z,) respectively. It is assumed that z; < -+ < z, for
n> 2.

Let Z;, ...,Z,x be the points at which the spline f is to be evaluated. XI is an array
containing %y, ...,%,,, YIan array of dimension m or larger, and JERR a variable. When
SCOMP?2 is called, if m < 1 then IERR is set to 1 and the routine terminates. Otherwise,
if m > 1 then IERR is set to O and f(Z;) is computed and stored in YI(j) for j =1, ..., m.

Programmer. Rondall E. Jones (Sandia Laboratories).

CUBIC SPLINE EVALUATION AND DIFFERENTIATION

Given z; < -+ < zn. A function f(z) is a cubic spline having the nodes (knots)
Ty, ..., 2y if f is a polynomial of degree < 3 on the interval [2i,Zi41] for =1, ...,n -1,
and the first and second derivatives f'(z) and f"(z) exist and are continuous for all z. If f;
denotes the polynomial for the interval [z, z,,;] then f; has the form:

f,-(x) =y, + a.-(:c - :L‘,’) -+ b,‘(.’lj — 2:“)2 -+ C,'(:l: - :17.')3

Consequently, the function f is obtained by fitting the polynomials fy, ..., fn_; together
at the points 23, ...,2,_1. For z < z; f(z) = fi(z), and for z > z, f(z) = fn-1(2). Also
f(zs) =yifori=1,...,n— 1 Hence, if f(z,) = yn then f interpolates the points (24, 95)
fori=1,...,n.

A cubic spline f given by the polynomials fy, ..., f,_; is uniquely defined by any of
the following three sets of data:

(1) the points (=;,y,) and coeflicients a;,b;,¢; for i =1, ... ,n— 1

(2) the points (z;,y,) and first derivatives f'(z;) fori =1, ...,n

(3) the points (x;,y;) and second derivatives f"(x;) fori =1, ...,n
The subroutines SEVAL, SEVAL1, SEVAL?2 are available for computing the spline and its
first and second derivatives at any point z. SEVAL is used if data set (1) is given, SEVALL
18 used if data set (2) is given, and SEVALZ is used if data set (3) is given.

CALL SEVAL(X,Y, A, B,C, N, XLY,DYL,DDYI, m, IERR)

Let N = n — 1. Then N is the number of polynomials f; that form the spline, X and
Y are arrays containing the abscissas zy, ...,z and ordinates yy, ..., yn, and A, B,C are
arrays containing the coefficients a,,b;,¢;(= 1, ..., N). It is assumed that N > 1 and that
;<o < TN

Let z4, ..., %,, be the points at which the spline f and its first two derivatives are to
be evaluated. XIis an array containing Zy, ..., Zn,, YI, DY[, DDYI are arrays of dimension
m or larger, and IERR is a variable. When SEVAL is called, if m < 1 then IERR is set to
1 and the routine terminates. Otherwise, if m > 1 then IERR is set to 0 and the values
f(25), f'(25), f"(Z;) are computed and stored in YI(J), DYI(7), DDYI(j) for j =1, ..., m.

Note. SEVAL does not require f to be a spline. It is only required that fi{=) be a cubic
polynomial y; + a;(z — ;) + by (2 — 2,;)? + ¢;(z — z,)® and that

f(z) =fi(z) forz < 1
/

(z) =fi(z) forz; <z < 2y, (1 <1< N)
f(z) =fn(z) forz>apN.

[n this case, SEVAL computes the values f(z,+), f/(z;+), [z, +)for j=1,...,m.

463

Programming. Adaptation by A. II. Morris of code written by Rondall E. Jones (San-
dia Laboratories).

CALL SEVAL1(X,Y,DY,n, XLY,DYLDDYI, m, IERR)

X, Y, DY are arrays containing the abscissas z,, ..., z,, ordinates y,, ..., y,, and first
derivatives f'(z,), ..., f'{zn) respectively. It is assumed that » > 2 and 2| < -+ < z,.

Let Z1, ...,Zm be the points at which the spline f and its first two derivatives are to
be evaluated. XIis an array containing Z,, ..., %, YI, DYL, DDYI are arrays of dimension
m or larger,and IERR is a variable. When SEVALL is called, if m < 1 then IERR is set
to 1 and the routine terminates. Otherwise, if m > 1 then IERR is set to 0 and the values
f(z5), f/(%5), f""(%;) are computed and stored in YI(j), DYI(7), DDYI(y) for j =1, ..., m.

Programming. Adaptation by A. H. Morris of code written by Rondall E. Jones (Sandia
Laboratories).

CALL SEVAL2(X,Y,DDY,n, XI,YL,DYI,DDYI, m, IERR)

X, Y, DDY are arrays containing the abscissas z,,...,z,, ordinates y,...,y,, and
second derivatives f"(x1), .., f"(z,) respectively. It is assumed that n > 2 and z;<-+- <z,,.

Let Z;, ...,Z,, be the points at which the spline f and its first two derivatives are to
be evaluated. XI is an array containing Z;, ...,Zm,,Y[, DYI, DDYI are arrays of dimension
m or larger,and IERR is a variable. When SEVALZ2 is called, if m < 1 then IERR is set
to 1 and the routine terminates. Otherwise, if m > 1 then IERR is set to 0 and the values
f(;), f(%,), f"(z,) are computed and stored in YI(7), DYI(j), DDYI(y) for j =1, ...,m.

Programmer. Rondall E. Jones {Sandia Laboratories).

464

INTEGRALS OF CUBIC SPLINES

Given z < .-+ < z,. A function f(z) is a cubic spline having the nodes (knots)
Zy, ..., Tp if f is a polynomial of degree < 3 on the interval [y zivq] for i =1, ...,n 1,
and the first and second derivatives f'(x) and f”(r) exist and are continuous for all z. If f;
denotes the polynomial for the interval [z, #;,,] then f; has the form:

fi(@) = yi +aglz — 2) 4 bi(z —)% + iz — 2,)®
Consequently, the function f is obtained by fitting the polynomials fi, ..., f._, together
at the points xg, ...,z 3. For z < z; f(z) = fyi(z), and for z > z,, f(z) = fa-1(z). Also
f(zs) =yifor i =1,...,n 1. Hence, if f(x,) = y, then f interpolates the points {z;, y;)
fori=1,... n.

A cubic spline f given by the polynomials fy, ..., f,.1 is uniquely defined by any of
the following three sets of data:

(1) the points (z,y;) and coefficients a;, b;,c; fors =1, ...,n— 1

(2) the points (z;,y:) and first derivatives f'(z;) fori =1, ...,n

(3) the points (z;,y;) and second derivatives f"(z;) for i = 1,...,n
For any real a and 8 the functions CSINT, CSINT1, CSINT2 are available for computing
the integral jf f(t)dt. CSINT is used if data set (1) is given, CSINTI is used if data set
(2) is given, and CSINT?2 is used if data set (3) is given,

CSINT(X,Y, A, B,C,N,a,B)

Let N = n ~ 1. Then N is the number of polynomials f; that form the spline, X and
Y are arrays containing the abscissas z,, ...,znx and ordinates y;, ...,yn, and A, B,C are
arrays containing the coefficients a;,b;,¢,({ =1, ..., N). It is assumed that N > 1 and that

xy <+++ < zy. Then CSINT has the value ff [(t) dt.
Programming. CSINT czils the function INTRVL. CSINT was written by A. H. Morris.

CSINT1(X,Y,DY,n,q,)

X, Y, DY are arrays containing the abscissas z;, ..., z,, ordinates yy, ..., ¥,,, and first
derivatives f'(z,), f'(z,) respectively. It is assumed that n > 2 and z; < -+ < z,,.
Then CSINTL(X,Y,DY,n,a,0) = [f(¢)dt.

Programming. CSINT1 calls the function INTRVL. CSINT1 was written by A. H. Morris.

CSINT2(X,Y,DDY, n,a, 8)

X, Y, DDY are arrays containing the abscissas z,,...,z,, ordinates y;,...,y,, and
) ’ Y 1)
second derivatives f”{z1),..., f"(z,) respectively. It is assumed that n > 2 and z, <.+ <z,,.

Then CSINT2(X,Y,DDY, n,a,) - [7 f(t) dt.

Programming. CSINT?2 caulls the function INTRVL. CSINT2 was written by A. H. Morris.

PERIODIC CUBIC SPLINE INTERPOLATION

Given uy < -+ < z,. A function f(z) is a cubic spline huving the nodes (knots)
Ty, - ., 2 if [I8 a polynomial of degree < 3 on the interval [z;,2z;41] for § =1, ... ,n — 1,
and the first and second derivatives f'(z) and f'(x) exist and are continuous for all z. If
fi denotes the polynomial for the interval [z,, =;] then f; has the form:

Jilz) =y + aiz — =) + bi(z — 2.)* + ciz - 1;)°.

Consequently, the function f is obtained by fitting tue polynomials fy, ..., fn_1 tegether
at the points wy, ..., zp..3.

Normally, a cubic spline f is defined for z ¢ [zy,x,.] by letting f(x) = f1(z) for ¢ < x;
and f(r)} = fu._.1(z) for = > x,,. However, if

f(:l?;) - f(zn)
fl(xH’) = fl(xn_)
[m4) = "(za-)

are satisfiec then [may be defined for z ¢ [x,z,] by requiring thut f(z + p) = f(=) for
all z where p = z,, — z;. The function f is called a periodic spline when this is done.

Now if the values y1, ...,yn-1 ave given, then there exists a unique neriodic cubic
spline f having the nodes zy, ..., z, and satisfying flzs) =y, fori=1,. . ,n—1. The
following subrcutine is available for obtuaining the coefficients a;, b, ¢; of this spline,

CALL PDSPL(X,Y, 4, B,C,n,WK,IERR)

X is an array containing 2y, ...,#, and Y an array containing yy, ..., yn—1. It is
assumed that z; < -+ < z, and » > 3. 4, B,C are arrays of dimension % — 1 or larger,
and IERR a variable. When PDSPL is called, if ro input errors are detected then [ERR is
set to 0 and the coefficients a;, b;, ¢, of the interpolating periodic cubjc spline are stored in
A, B,C.

WK is an array of dimension n — 2 or larger that is » work space for the routine.

Ecror Return. IERR = 1ifn < 3 and IERR = 2 if z; > zi4 1 for some 1.

Remark. After A, B, and C have been obtained, then PSCMP may be used to evaluate the
periodic spiine at any point z. PSEVL may be used if derivatives are also desired.

Programmer. A. ll. Morris.

LEAST SQUARES PERIOBIC CUBIC SPLINE FITTING

Let t; < «-+ <ty be a sequence where £ > 2 and {(z;,1;) :1 =1, ...,m} aset of points
where t) < 2y < +++ < 2y, < tg. Then the following subroutine is available for ebtaining a
periodic cubic spline f(z) with the nodes ¢, ...,t, which minimizes 3_,(f(z;) — y:)%. This
spline is represented by

flz) =z +aj{z —t;) + bz - tJ')2 + ¢z — tJ')s

fort;<zr<ijp: (G=1,...,£—-1).
CALL PDFIT(X,Y,m,T,¢, Z, A, B,C,WK,IWK,IERR)

X is an array containing z;1, ...,Zm, Y an array containing y, -..,¥m, and T an array
containing ty, ...,ts. Z,A, B,C are arrays of dimension £ — 1 or larger. When PDFIT is
called, if tne desired pericdic cubic spline is obtained then the coefficients z;,a,.b;,¢c; of
the spline are stored in Z, A, B, C.

WK and IWK are arrays that are work spaces for the routine. On input TWK(1) is
the dimension of WK and IWK(2) the dimension of IWK. It is required that IWK(1) >
(¢+6)(€-+ 15) + 10 and IWK(2) > 2¢ 6.

IERR is a variable that reports the status of the resuits. When PDFIT terminctes,
IERR has one cf the following values:

IERR = 0 The desired spline was obiained.

IERR = 1 The spline could not be obtained.

IERR = 2 Either m <Q0or f < 2.

IERR =3 t; > t; for some j.

IERR = 4 The assumption t; < z; < -+ < z,, < t, I8 not satistied.

IERR =- 5 Insafficient storage was specified for the WK array. IWK({1) has
been reset to the amount of storage needed by WK.

IERR = 6 Insufficient siorage was specified for the IWK array. IWK(2) has
besn reset to the amount of storage needed by TWK.

If an error is detected, then IERR > 2 and the routine terminates.

Remark. After A, B,C, and Z have been obtained, then PSCMP may be used to evaluate
the poricdic spline at any point 2. PSEVL may be used if derivatives are also desired.

Programming. PDFIT employs the subroutines BSPP, BFIT, BFIT0, ENDACC, BNDSL,
BSPVB, BSPVD, LSEI, and the subroutines and functivns used by LSEL PDFIT was
written by A. H. Morris.

PERIODIC CUBIC SPLINE EVALUATION AND DIFFERENTIATION
Let z; <.+ < z, be a sequence where n > 2, and f a periodic cubic spline where
f(:l,‘) =y + ai(z — z;) + bi(z ~ :c;)2 + Cg(x - 2:;)3

forz; <z <zipy (=1, ... ,n~ 1). Then the subroutine PSCMP is available for evalu-
ating the spline for all points z, and the subroutine PSEVL is available for computing its
derivatives.

CALL PSCMP(X,VY, 4, B,C,n,XI,YI,m, IERR)

X is an array containing z, ...,z,, Y an array containing y;, ...,yn—-1, and A4, B,C
arrays containing the coefficients a,;,b;,¢; (1 = 1, ...,n—1). It is assumed that z; < --- < z,,
and n > 3.

Let Z;, ..., Z,, be the points at which the periodic spline is to be evaluated. XI is an
array containing Zi, ...,Zm, Y! an array of dimension m or larger, and IERR a variable.
When PSCMP is called, if no input errors are detected then IERR is set to 0 and f(Z;) is
computed and stored in YI(j) for =1, ..., m.

Error Return. IJERR =1ifn < 3 or m < 0.

Programmer. A. H. Morris.

CALL PSEVL(X,Y, 4, B,C,n,XI,YL,DYI,DDYI,m, IERR)

X I8 an array containing zy, ...,,, Y an array containing yi, ...,yn-1, and A, B,C
arrays containing the coefficients a;,b;,¢; (f = 1, ... ,n-1). Itis assumed that x; < --- < 2,
and n > 3.

Let Zy, ...,Zm be the points at which the periodic spline and its first two derivatives
are to be evaluated. XI is an array containing z;, ..., %m,, YI, DYI, DDYI are arrays of
dimension m or lavger, and IERR a variable. When PSEVL is called, if no input errors are
detected then IERR is set to 0 and f(&,), f'(x;), f"(2;) are coraputed and stored in YI(j),
DYI{7), DDYI(j) for j =1, ..., m.

Error Return. IERR = 1ifn < 2 or n < 0.

Programmer. A. il Morris.

471

N-DIMENSIONAL CUBIC SPLINE CLOSED CURVE FITTING

Given m > 2 points z; = (z;, ..., Tin) Where n > 2. One procedure for fitting a
closed curve to the points is to firsi let s; = 0,8; = g;_; + [|zi — zi1]| for £ =2, ..., m, and
Sm+1 = Sm + |[21 — Zn||,! next let t; = 8i/8m+1 fori =1,.. ,m+1, and then to find for
each j < n the periodic cubic spline ~,;{t) having the knots t,, . .. ytm41 where v;(t) = z,;
for ¥ < m. The mapping (t} = (v1(t), ..., vn(t)) then defines on the interval [0,1] a closed
curve which traverses the points {¢1,21), ..., (tm, Zm), (1, z1) and satisfies 7'(0) = 4'(1) and
7"(0) = 4"(1). Fort < 0 and t > 1, (t) is defined by periodicity (having period 1). The
subroutine CSLOOP is available for obtaining the derivatives 7;(ts) which characterize this
curve, the subroutine LOPCMP is available for computing the curve, and the subroutine
LOPDF is available for dif': rentiating the curve.

CALL CSLOO¥(m,n, X, kz, T, DX, kdz, WK,IERR)

X is an m x n matrix whose i*" row contains the point z; = (i1, .-, Zin), where 1n > 2

and n > 2. It is assumed ihat the points z,, ..., z,, are indexed in the order that they are
to be traversed by the curve ~(t). It is also assumed that z; # Zipyfora=1,...,m -1
and that z,, # z;.

DX is a 2-dimensional array containing at least m rows and n columns. The arguments
kx and kdz have the followi.g values:

kz = the number of rows in the dimension statement for X in the calling program

kdz = the number of r yws in the dimension statemeni for DX in the calling program
It 1s required that kxr - m ind kdz > m.

IERR 15 a variabl- and 7" an array of dimension m or larger. When CSLOOP is called, if
no input errors are deiected then IERR is assigned the value 0 and ¢, ... , ' m are computed
and stored in T'. Also, the derivatives 7;-(t,~) are computed wnd stored in DX, where the ¢*!
row of DX contains v'(t,} == (y{ (), ..., ¥4(t:)).

WK 1s ar array of dimension 4(m - 1) or larger that is a work space for the routine.

Error Return. 1ERR reporis the following input errors:

IERR - 1 iftm<2orn <2
IKRR - 2 iz, =, for some 1.

IERR - 3 ifz, .

Remark. Afier 7" and DX are obtained, LOPCMP may be used to compute the curve and
LOPDF may be used to differentiate the curve.

Programming. CSLOOP calls the subroutine CSLOPT and Tunction SNRM2. CSLOOP
and CSLOPT were written by A H. Morris

P \(/}.l,;rll forany + {1y, ..., 1m).

CALL LOPCMP(m, n, T, X, kz, DX, kdz, £, T1, Z, kz)

T is an array containing the knots ¢, .. .,¢,,, X an mx n matrix whose ¢*"

row contains
the point z;, and DX an m X n matrix whose £*® row contains the derivative v/(t;). The
arguments kz and kdz have the following values:
kz = the number of rows in the dimension statement for X in the calling program
kdz = the number of rows in the dimension stateient for DX in the calling program

It is assumed that m > 2, n > 2, kx > m, and kdz > m.

Let ¢y, ...,t, be the points at which the curve v is to be cvaluated. TI is an array
containing ¢y, ...,%s, and Z a 2-dimensional array containing at least £ rows and n columns.
The argument kz is the row dimension for Z in the calling program. It is assumed that

£> 1 and kz > £. When LOPCMP is called, v(t;) = (v1(%), - .., n(ti)) is computed and
stored in the ¢*" row of Z for 1 =1, ... L

Programmer. A. H. Morris.

CALL LOPDF(m, n, T, X, kz, DX, kdz, to, Z, DZ,DDZ)

T is an array containing the knots !y, ...,t,,, X an i X n matrix whose 1*" row
contains the point z;, DX an m x n martrix whose 1*" row contains the derivative v'(t;).
The arguments kz and kdzx have the following values:

kz = the number of rows in the dimension statement for X in the callinrg program

kdr = the number of rows in the dimension statement for DX in the calling program

It i3 assumed that m > 2, n > 2, kr > m, and kdz > m.

Z,DZ, and DDZ are arrays of dimension n. ¥For any real to, v{to) == (71(tc), - .., T {to)),

¥'(to) = (vi(to), .. -, 7a(ta)), and v"(t0) = (v{(ta), . ..,v!(to)) are computed and stored
i Z, DZ, and DDYZ respectively.

Programmer. A. . Morris.

SPLINE UNDER TENSION INTERPOLATION

Givenrealo and zy < --- < z,,. A function f(z) is a spline having the tenaion factor
o and the nodes (knots) z,, ...,z, if f(z) and ius first two derivatives are continuous on
[21,7n], and f(x) — ¢*f(z) = aix + b; on the interval [r;,zy41] for == 1,...,n- L
Here ¢ = |o|(n - 1}/{xy — z,) and a,,b; are constants. For z; < z < z,4; f(z) can be
represented by

f(z) = A;sinha(z — z;) + B;sinha(zs4) — z) ~ (a;z + b;)/5*
when o # 0, and by a cubic polynomial when ¢ == 0.

Azsume now that n ordinates y,, ..., y, are given. Then there exist an infinitude of
splines f(z) having tension o for which f(z;) = y; (f = 1, ...,r). However, if values y}
and y,, are given then ouly one of these splines will satisfy f/(z,) = y] and f'{z,) = y,,.
For convenience, denote this spline by f,. If ¢ = 0 then it is clear that f, iz the standard
cubic spline. Also it can be verified that when ¢ — oo, f, converges uniformly or [z, z,,]
to the piecewise iinear function £(z) where £(z) = y; + mi(z — z;) for z; < z < 241
(f=1,...,n—1). Here m, = (yiy1 ~ ¥i)/(Zi+1 — ;). The following subroutine is available
for obtaining the spline f,.

CALL CURVi(n,X,Y,SL¥F1,SLPN IND,DDY,TEMP, ¢, IERR)

X and Y are arrays containing the abscissas zy, ..., 2z, aud ordinates yy, ..., y.. It is
assuined that n > 2 and z, < -+ < z,,.

SLP1 and SLPN are assigned the values y; and y/. The user may omit values for
either or both of these arguments. IND specifies the information that is provided.
IND == 0 Values are supplied for SLPI and SLPN.
IND =1 A valie is sunphied for SLPi but not for SLPN.
IND = 2 A value is supplied for SLPN but not for SLP1.
IND == 3 Values are not supplied for SLP1 and SLPN.

If & value is not supplied by the user, then the routine provides a value.

DDY is an array of dunension n or larger, and IBKRR 1s an integer variable. When
CURVY 13 called, if no input crrors are detected then 11XRR is assigned the value 1) and the
second derivatives f)/(z1), ..., f){x,.) are computea and stored in DDY.

TEMP s an array of dimension n or larger that 18 used for a work space.

Error Return. [ERR reports the following input errors:
HeRR L if a2

IR 20 ey < oo <, 1w not yalistied

When either of taese errors s detected, the routin immediately terminates,

Remarks.
(1) After DDY is obtained then CURV?2 may be used to evaluate the spline at any point z.
(2) X, Y, n, SLP1, SLPN, IND, o are not modified by CURV1.

Programming. CURV1 employs the subroutinres CEEZ, TERMS, and SNHCSH. CURV1,
CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

Reference. Cline, A. K.,“Scalar and Planar Valued Curve Fitting using Splines under
Tension,” Comm. ACM 17 (1974), pp. 218-220.

476

SPLINE UNDER TENSION EVALUATION

Given o and z; < -+ < 2,. A function f{z) is & spline having the tension Factor
o end the nodes (knots) x,, ... 2, if f(2) and its first two derivatives are continuous on
(21, #n], and f"{z) - #2f(x) = a;z + b, on the interval [, 1] for ¢ == 1, ... ,n - 1. Here
& == |o](n —1)/(zn — 1) and a4, b; are constants. If f(z) = fi(z) for i<z <y then fi{z)
can be represented by

fi(z) = A;sinh@(z - 2;) + B;sinh F(xip1 — z) — (a;x + b)) /5?2

when 00, and by a cubic polynomial when ¢ = 0. For © < z, we let f{z) = fi(z), and for
z >z, welet f(z) = f,_(z).

Assume now that f(z;) = y; for ¢ = 1, ...,n. Then for a fixed o, f(z) is uniquely
defined by the points {z,,y;) and the seccond derivatives f"(z)(§ = 1, ...,n). When this
data is available, the following function may be used to compute the spline at any point ¢,

CURV2(t,n, X,Y,DDY, o)

X and Y are arrays containing the abscissas z;, ..., z, and crdinates y;, ey ¥, and
DDY i¢ an array containing the secord derivatives f"(z,), ..., f"(z,). It is assumed that
n>2and zy <. <2, CURV2(t,n, X,Y DDY,) = f(t) for any real t.

Remark. After DDY has been obtained, CURV2 may be repeatedly called to evaluate
the curve at different points s long as the tension factor ¢ remains fixed. However, if ¢ is
modified then the derivative information in DDY will have to be recomputed before CURV?2
can be used with the new tension factor.

Programiming. CURV2 employs the function INTRVL and subroutine SNHCSH. CURV?2
was written by A. K. Clire and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

Reference. Cline, A. K., “Scalar and Pianar Valued Curve Fitting using Splines under
Tension,” Comm. ACM 17 (1974), pp. 218-220.

DIFFERENTIATION AND INTEGRATION OF SPLINES UNDER TEMNSION

Let f(z) be a spline having the tensicn factor ¢ and the ucdes zq, ..., %n. Assume that
f(zs) =y for & =1, ... w. If the serond derivatives f'(z;), ... f"(z,) arc known then
the following functions may be used for difierentiating and integrating the spline.

CURVD(t, r, X,V,DDY, o)

X and Y are arrays containing the abscissas z,, ..., z, and ordinates yy, ...,yn, and
DDY is an array containirg the second derivatives f"(:1), ..., "{z,). It is sssumed that
n > 2and z; < -+ < ¢, For any real {, the derivative f'(#} is ccmputed and assigned to
be the value of CURVD(¢, n, X, Y, DDY, o).

Programming. CURVD employs the furction INTRVL and subroutine SNHCSH. CURVD
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

CURVl(a, b,n, X,Y,DDY, 0)

X and Y are arrays containing the abscissas z;, ..., z, and ordinates y;, .. ,y,., and
DDY is an array centaining the second derivatives f"(xy), ..., f"(z,). It is assumed thai
n>2andz; < < zy. CURVI(a,b,n, X,Y,DDY,0) - fz f(t)dt for any real 2 and b.

Note. It is not required that a < b.
Programming. CURVI employs the function INTRVL and subroutine SNHCSH. CURVI

was written by A. K. Cline and R. J. Renka (University of Texas at Austin). NTRVL was
written by A. H. Morris.

474

TWO DIMENSIONAL SPLINE UNDER TENS!ION CURVE FITTING

Given a sequence of points (z1,y1), ..., (Zn, yn). One procedure for fitting a curve to
the points is to let ay = ¢ and & = 8.1 + /(=i ~ 2o 1)? Ly - ¥io1)? for ¥ = 2,..,n,
and then to find two splines x(s) and y(s) with tension ¢ that satisfy =z{s;) == 2, and
ylo) =y for ¢ =2 1, ..., n. If 8; and 8, ere the desired angles for the curve & — (z(s), y(s))
at the points (x1,y1) and (Za,yn), then the splines z(s) and y(s) can be selected so that
z'(sy) = cost; and y'(sy) = siné; for ¢ == 1,n. The curve s — (z(s),y(s)) then passes
through the points (z,,y;) and has the required slopes at the end points. The subroutine
KURV1 is available for obtaining vhe second derivatives z/(s;),y"(s;){(= 1, ..., n) which
characterize this curve, and cvhe subroutine KURVZ is avaiiable lor cormputing the curve.

CALL KURV1(n, X,Y,SLP1,SLPN,IND,DDX,DDY,TEMP, 5, 0, IERK)

X and Y are arrays containing the abscissas zq, ..., 2, and ordinates y;, ...,y,. It is
assumed that n > 2 and that the points (= y,) are indexed in the order that they are to be
traversed by the curve. It is also assumed that {z;,y;) # (zs41,¥5+1) for i =1, ... ,n-- L.

SLP1 and SLPN are asssigned the values ; and 8,,. These angles are measured counter-
clockwige {in radians) frcm the positive x-axis. The user rnay omtit values for SLP1 and/or
SLPN. IND specifies the information that is provided.

IND == C Values are supplied for SLP1i ard SLPN.

IND = 1 A value is supplied for SLF1 but not for SLPN.
INTy = 2 A value is supplied for SLPN but not for SLP1.
IND = 2 Values are not supplied for SLP1 and SLPN.

If a value is not supplied by the user, then the routine provides a value.

o is the tension factor to be employed. If |¢i is small, say |o!| < 1073, then z(s) and
v(2) appreximate cubic splines. Otherwise, if |o]| is large, say |o| > 100, then the resulting
curve approximates the polygonal line from (z1,y1) to (2., yn).

IRR is an integer variable and S, LDX, DDY are arrays of dimension n or larger.
Whon KURV1 is called, if no input errors are detected then IERR is assigned the value

0 «ud the values sy, ..., ¢, are computed and stored in §. Also, the second derivatives
1

i) o, 2" (s.) and y'(s1), ..., ¥"(8s) are computed and stored in DDX and DDY.

TEMP 18 an array of dirmension n or larger that is used for a work space.

tError Return. IERR reports the following input errors:
IERR =1 ifn < 2
ERR = 2 0f (x4, 9) = (2541, ¥y i) for some 1.

When either of these errors 18 detected, the voutine immediately terminates.
Remark. After S, DDX, DDY are obtained, KURV2 may be used to compute the curve.

Programming. KURVI employs the subrontines CEEZ, TERMS, and SNHCSH. KURVI,

48!

CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

CALL KURV2(t,XT,YT,n, X,Y,DDX,DDY, S, 0)

X and Y are arrays containing the abscissas =,, ...,z, and ordinates y;, ..., y,, S
is an array containing 8;, ...,8,, and DDX and DDY are arrays containing the second
derivatives z''(s1), ...,z"(s.) and y"{s1), ..., y¥"(34).

Now consider the change of variables t = g/s,, and let ¢ — (Z(t), §(t)) denote the curve
in terms of the new parameter t. XT and YT are real variables. For any 0 <t < 1, KURV2
computes the point (£(t), §(t)) on the curve and assigns XT the value Z(t) and YT the value

g(t).

Remark. After DDX and DDY have been obtained, KURV2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor ¢ remains fixed. However,
if ¢ is moJdified then the derivative information in DDX and DDY will have to be recomputed
before KURVZ can be used with the new tension factor.

Prograraming. KURV2 employs the function INTRVL and subroutine SNHCSH. KURV2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

482

TWO DIMENSIONAL SPLINE UNDER TENSION
CLOSED CURVE FITTING

Given n > 2 points (z1,¥1), ..., (Za, yn). One procedure for fitting a closed curve to the
points is to let §; = \/(;:1 - xn)? + (91 - y,,)‘b and 3; = ;.1 + \/(:c,- —x-1)% + (y; ~ yi_1)? for
1 =2,...,n,and then to find periodic splines z(s) and y(s) with tension o that pass through
the points (si,7.), ..., (90,20}, (31 + 8u,21) and (8y,y3), . oy (8n,Yn), (81 + 8n,y1). The
mapping s ++ (2(s), y(s)) then defines a closed cutve that passes through the points (x4, y5).
The subroutine KURVP1 is available for obtaining the second derivatives z"(s,), y'(s)(s =
1, ...,n) which: characlerize this curve, and the subroutine KURVP2 is available for com-
puting the curve.

CALL KURVP1(n, X,Y,DDX DDY,TEMP, S, s, IERR)

X and Y are arrays containing the abscissas x4, ..., 2, and ordinates y;, cey Yne L s
assumed that n > 2 and that the points (2, y;) are indexed in the order that they are to be
traversed by the curve. It is also assumed that (i, yi) # (i1, ¥i1) for i =1, ...,n - L.

@ is the tension factor to be cimployed. If |o] is small, say |o| < 10?3, tlen 2(s) aud
y(s) approximate periodic cubic splines. Otherwise, if |o| is large, say |o| > 100, then the
curve approximates the closed polygonal path that traverses the points (24, %)

IERR is an integer variable and S, DDX, DDY are arrays of dimension n or larger.
When KURVP1 is called, if no input errors are detected then IERR ie assigned the value
0 and the vaiues sy, ... 3, are computed and stored in S. Also, the second derivatives
z"(s1), . ,a'(sn) and y"(s1), ..., y"(sn) are computed and stored in DDX and DDY.

TEMP is an array of dimension 2n or larger that is used for . work space.

Error Return. [ERR reports the following input errors:

[ERR =1 ifn < 2.
IERR = 2 if (2, y:) = (Zi41, Ys41) for some 1.

When either of these errors is detected, the rouiine immediately terminates.
Remark. After S, DDX, DDY are obtained, KURVP2 may be used to cornpute the curve.

Programming. KURVP1 employs the subroutines TERMS and SNHCSH. KURVP! and
TERMS were written by A. K. Cline and R. J. Renka (University of Texas at Austin).

CALL KURVP2(t,XT,YT,n, X,Y, DDX DDY, S, 0)

X and Y are arrays containing the abscissas zq, ..., z, and ordinates y,, . Y, S
is an array containing sy, ...,s,, and DDX and DDY are arrays containing the second
derivatives £(s1), ..., 2”(sn) and ¢"(s1), ... y"(s,).

. ST e e

Now consider the change of variables t = (s - 81)/#5,, and let ¢ v+ (Z(¢),%(t)) denote

the curve in terms of the new parameter ¢{. Then ¢+ (%{t),y(¢t)) maps 0 and 1 onto the
point (x1,y1), and t ~» (Z(t),¥(t)) is a periodic function (with period 1).

XT and YT are real variables. For any real ¢, KURVP2 computes the point (Z(¢),(¢))
on the curve and assigns XT the value z(t) and YT the value y(t).

Remark. After DDX and DDY have been obtained, KURVP2 may be repeatedly called to
evaluate the curve at different points so long as the tension factor o remaiuns fixed. However,
if v 13 modified then the derivative information in DDX and DDY will have to be recomputed
before KURVPZ2 can be used with the new tension factor.

Programming. KURVP2 employs the function INTRVL and subroutine SNHCSH. KURVP2

was written by A. K. Cline and R. J. Renka (University of Texas at Austin). INTRVL was
written by A. H. Morris.

184

THREE DIMENSIONAL SPLINE UNDER TENSION CURVE FITTING

Given n > 2 points (zy,y1, z1), -3 (®n, Y, 2a). One procedure for fiiting a curve to
the points is to let s; = 0 and 8; = 8, + Vi i) + (% — vic1)? + (2 —7:_1)7 for
t == 2, ...,n, and then to find splines z(s), y(s), z(s) with tension o that satisfy z(s;) =
2o, Y(8:) = wi, and 2(s;) = zy fori =1, ... n. If (21, ¥1,2) and (z,,y/,,2.), are the desired
slopes for the curve s — (z(s), y(s), 2(s)) at the points (z1,y1,21) and (Zu, Yn, zn), then the
splines z(s}, y{s), 2(s) can be selected so that z'(si) == 2}, y'(s:) = y!, and 2'(s;) = 2! for
1 = 1,n. The curve s v+ (2(s), y(s), 2(s)) then passes ¢ ough the points {x;, y,, 2;) and has
the required slopes at the end points. The subroutine QURV1 is available for obtaining the
second derivatives z(s;), y"'(s;),2"(s;) (f = 1,...,n) which characterize this curve, and
the subroutine QURV?2 is available for computing the curve.

CALL QURV1(n, XY, Z, SLP1X,SLP1Y SLP1Z,SL.PNX,SLPNY,
SLPNZ,IND,DDX,DDY,DDZ,TEMP, S, o, IERR)

X 1s an array containing zy, ...,. Y an array containing yg, ...,y,, and Z an ar-
ray containing zi, . ,2, It is assumcd taat n > 2 and that the points (z;,y,,2) are
indexed in the orde: ihai they are to be traversed by the curve. It is also assumed that
(31,‘, yiazf)#(zi+l?yi+1>zi+l) for ¢ = 1: coon— 1

SLP1X, SLP1Y, SLP1Z and SLPNX, SLPNY, SLPNZ are assigned the values z,y1, 24
and z),yh,z!,. The user may omit values for SLP1X, SLP1Y, SLP1Z and/or SLPNX,
SLPNY, SLPNZ. The argument IND specifies the information that is provided.

IND = (0 Values are supplied for SLP1X,SLP1Y,SLP1Z and SLPNX,SLPNY,
SLPNZ.

IND = 1 Values are supplied for SLP1X,SLP1Y,SLP1Z but not for SLPNX,
SLPNY, SLPNZ.

IND = 2 Values are supplied for SLPNX SLI'NY,SLPNZ but uot for SLP1X
SLPLY, SLPiZ.

IND =3 No values are supplied for SLPIX, SLP1Y, SLP1Z and SLPNX,
SLPNY, SLPNZ.

If a value is not supplied by the user, then the routine provides a value.

H

o 18 the tension factor to be « mployed. If |7| is umall, say |o| < 1073, then z(s),y(s), z(s)
approximate cubic splines. Otherwise, if o] is large, say |o| > 100, then the resulting curve
approximates the polygonal line from (v, y,,2;) to (Zn, Yn, 2).

IERR 1s an integer variable and S, YOX, DDY, DDZ are arrars of dimension n or
farger When QURV is called, if no input - rors are detectod then HSKR is assigned the
value Oant the values sy, ... s, are computed ud stored in S. Also the second derivitives
&), y"00), 2" () (6 L n) are compute and stored in Di X, DDY, Dby,

TEM 15 an array of dimension noor la ger 4 4 s esed for a work space.

3354

Error Return. IERR reports the following input errors:
IERR =1 ifn < 2.
IERR = 2 if (z;,vs, 2) = (€i+1, Yi+1, 2i41) for some s.
When either of thes errors is detected, the routine immediately terminates.

Remark. After S, DDX, DDY, DDZ are ocbtained, QURV2 may be used to compute the
curve.

Programming. QURV1 employs the subroutines CEEZ, TERMS, and SNHCSH. QURV,
CEEZ, and TERMS were written by A. K. Cline and R. J. Renka (University of Texas at
Austin).

CALL QURV2(t,XT,YT,ZT,n, X,Y, Z,DDX,DDY,DDZ, S, o)

X is an array containing =y, ...,Z,, Y an array containing yi, ...,yn, and Z an array
containiug 21, ...,2,. S i an array containing s;, ...,8, and DDX, DDY, DDZ are arrays
containing the second derivatives z'/(s;},y"(s:),2"(ss) (1 = 1, ... n].

Now consider the change of variables t = s/s, and let t — (Z(t),y(¢),2(t)) denote the
curve in terms of the new parameter t. XT, YT, Z7T are real variablea. For any 0 < ¢ < 1,
QURV?2 computes the point (Z(t),y(t),z(t)) on the curve and assigns XT, YT, ZT the
values (1), y(t).Z(¢).

Rermark. Afier DDX, DDY, DDZ have been obtained, QURV2 may be repeatedly called
to evaluate the curve at different points so long as the tension factor ¢ rernains fixed.
However, if ¢ is modified then the derivative information in DDX, DDY, DIDZ will have to
be recomputed before QURVZ can be used with the new tension factor.

Programming. QURV2 employs the function INTRVL and subroutine SNHCSH. QURV2
was vritten by A. K. Cline and R. J. Renka (University of Texas at Austin).

186

B-SPLINES

For k > 1let f(t) = (t - 2)*"! when t > z and f(t) = 0 when t < z. Then for
any sequence t; < -+ < t,+k where t; < t; g, let Bix(z) = (igx — ti) f[ts, ...ty k] where
fltiy - tizk] is the &t order divided difference of f{t). The function B;; is called &

B-sgpiine of order k. For k == 1 it follows that
1 ift; <z < i1
0 otherwise.

By (z) = {

More generally, for k > 2 B(z) = 0 when z & [¥;,ti1x). For t; <z <ty

k-1

ik —x

B,'k(x) = (Z’—j:——t—) when ty =+ = t¢+k_..; and
L]

k—1

-t

B,’k\:l‘ = < s > when tipr = = bk
..‘+ —

Otherwige, if no point appears more than k - 1 times in the sequence {¢;, ...,t;;x} then

T~ 1y tigi —
Tl Biae)

tt+ic 14 s{»k_t Lk 1()

B,-k(a:) =
From these relations it follows that B;c(z) > G when #; < z < t; 4.

Now let £: < .-+ < €41 be a sequence of poiuts where £ > 1. If m; is an integer where
lL<my <k-1liory=2,...,¢let Plér, ... E¢i1;ma, ..., my denote the collection
of piecewise polynomials p(z) where p(z) is a polynomial of order < k (degree < k — 1)
on each interval [£;,€;41) (7 = 1,...,£), and p(z) is of class C¥~1=™s at each point &;
(7 =2,...,€). Then &, ...,& 4, are called the knots or break points for these piece-
wise polynomials, £, ..., &, the tnterior knots, and m,, ... ,m, the multipliciiies of the
interior knots.

If n=4Fk+my 4 -+ my, consider any sequence t; < --- < t,, where
(1) ¢t <-o0 <ty < &y,
(2) tii1, ..., i, are the inierior knots, where each interior knot &; appears
exactly rn; times, and

(3) i <tppr <o Stngke
'Then the B-splines By, ..., Bax 2ve piecewise polynomials in P, [\1, o €epme, oo myl,
forming a basis for this ve(‘tor space. Consequently, any piecewise polynomial p(z) in the
space can be represented uniquely in the forrap = 357 | a,B,.. This representation is called
a 13-spline representation for p(z). fp - 57 | a, B, then we note that p(z) = 0if z < ¢
or T k.

Remark. [f¢, -7 x < t;, where k 3 < n, then By(s) / Oonly whend 510 k.. 5
Also };‘ B{x) !

AK7

FINDING THE INTERVAL THAT CONTAINS A POINT

Let t; < ... <t,, be a sequence where t; < t,,. Then for any ¢; < 2 < t,,, the funciion
INTRVL finds the interval [t,,¢,41) that contains z.

INTRVL(z, T, m)

T is an array containing ty, ...,t,, and z a real number. If t; < z < ¢t,,, then INTRVL
has the value 1 where t; < z < t;4;. Otherwise,

1 ifz<t1

INTRVL(x,T,m):{e ooy
ifz2>t,

where £ is the integer such that t, <ty and tyy; = - = t,,.

Programmer. A. H. Morris.

484

EVALUATION AND DIFFERENTIATION OF PIECEWISE POLYNOMIALS
FROM THEIR B-SPLINE REPRESENTATIONS

Forn > k> 1lett; < .-+ < t,,x be a sequence where ¢y < t,,; and ¢ < t;ix

n

fort =1,...,n. If f(z) = 3.7, aiBix(z) then the following subroutine is available for

)
evaluating f(z) and computing i¢s derivatives.

CALL BVAL(T, A,n,k,z,j,w,WK)

T is an array containing ¢1,...,t,4x and A an array containing ay,...,a,. The
argument j is a nonnegative integer, z is a real number at which f(z) or its 5t derivative
fU)(2) is to be computed, and w is a variable. If z # t,, then w is assigned the value
f(z+) if 7 = 0 and the value f(9)(z+) if 7 > 1. Otherwise, if £ = t,,, x then w = f(t,1x~)
if j=0and w = f(j)(t,,_Hc~) if 5> 1.

WK is an array of dimension 3k or larger that is a work space for the routine.

Remark. The left limits f(t,x—) and fO)(t,;x—) are the only limits of interest when
T =tyyk since f(z) =0 for all z > t,4.

Programming. BVAL employs the function INTRVL. BVAL is a modified version by
A. H. Morris of the function BVALUE, written by Carl de Boor {University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978.

491

EVALUATION OF THE INDEFINITE INTEGRAL OF A PIECEWISE
POLYNOMIAL FROM ITS B-SPLINE REPRESENTATION

Forn >k >1lett; < --- < t, r be a sequence where tx < t,y; and t; < t;;x for
t=1,...,n If f =731, a;Bi then the following subroutine is available for computing

Fz) = [T () de.
CALL BVALI(T, A, n,k,z,w,WK)

T is an array containing t;,...,t,,x and A an array containing ag, ...,a,. The
argument z is a real number and w is a variable. When BVALI is called, w is assigned the
value F(z).

WK is an array of dimension n+ 3(k + 1) or larger that is a work space for the routine.

Algorithm. For m = n + k, let t,, 11, ..., tm4x be any sequence where t,, <tmyy <-00 =
tmik. If £ < t,, then F(z) = Z:":—ll biBs k+1(z) is used where b; = { E;:l a.(tys6 — t)
fori=1,...,nand b; = b, fors =n+41,...,m—1

Programming. BVALI einploys the subroutine BVALIO and the function INTRVL. BVALL
was written by A. H. Morris.

CONVERSION OF PIECEWISE POLYNOMIALS FROM
B-SPLINE TO TAYLGOR SERIES FORM

Forn > k > 1let ¢y < .-+ < ¢,k be a sequence where t; < ¢, for v = 1,...,n.
k13

Furtlier assume that ¢y < ¢, andlet f(z) = 3 a;Bix(z) for te <z <ty If €y <00 <
1= 1

€441 are the distinct points in the sequence {tk, ..., t,1} then the piecewise polynomial f

k .
can be represented in the form f(z) = 3, ¢ii(z — &) tior & <z < €40 (G =1, ...,8).
=1
The following subroutine is available for obtaining the coefficients ¢,; of this representation.

CALL BSPP(T, A, n, k, RBREAK,C, L, WK)

T is an array containing t;, ...,t,+x and A an array containing ay, ...,a,. BREAK
is an array of dimension € + 1 or larger, C a 2-dimensional array of dimension k x £, and
L a variable. When BSPP is called then L is assigned the value £ (which is computed by
the routine), the break points &; < «-- < &4 are found and stored in BREAK, and the
coefficients ¢,; are computed and stored in C. The 7t* column of the matrix C then contains
the coefficients ¢ the j** polynomial forming f (7 =1, ...,).

WK is an array of dimension k(k + 1) or larger that is a work space for the routine.

Remarks.

(1) Since £ < n - k+ 1, BREAK may be declared to be of dimension n — k 4+ 2 and C to
be of dimension k x (n — k + 1).

(2) After C is obtained, then PPVAL may be used to evaluate f(z) for any z € [£;1, £¢44]-
However, PPVAL canuot be used for evaluating f(z) if z << £ or z > £44;. BVAL
must be used it this case.

Programming. BSPP is a modified version by A. H. Mornis of the subroutine BSPLPP,
written by Carl de Boor (University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978,

EVALUATION OF PIECEWISE POLYNOMIALS FROM
THE!R TAYLOR SER!ES REPRESENTATIONS

k .
Given 7y < -+ < z44y. If [is a piecewise polynomial where f(z) = Y, ci;{x — z;)*!
=1
forz; <z < zy4y (F =1, ...,¢), then the following subroutine is available for computing
f at any point z.
CALL PPVAL(X,C, k, ¢, X1,YI,m)
X is an array containing the knots z,,...,x, and C a k x € matrix containing the
coefficients c,;. It is assumed that k > 1 and £ > 1. Let z,, ..., %,, be the points at which
[is to be evaluated. X1 is an array containing %,, ..., Z,, and YI an array of dimension m

or larger. When PPVAL is called, f(Z;) is computed and stored in YI(j) for j=1,...,m.

Remarks.

(1) X need not contain the knot z,; ;.

(2) It is not required that f be continuous at an interior knot z,. If 2, appears in XI then
[(z:+) is computed.

(3) It is not required that the ouiput points Z, in XI be in the interval |z, z444). If
I, < 1y then_z‘» ca(z — 71)'7! is evaluated at Z,. Otherwise, if T, > z44; then
3o, raelx - 1)* "1 s evaluated at 7.

Programming. PPVAL is an adaptation by A. H. Morris of code written by Rondall E. Jones
(Sandia Laboratories).

PIECEWISE POLYNOMIAL iNTERPCLATION

Forn >k > 1liet t; € -+ € t,4x be a sequence where t; <ty ford =1,... n.
Consider a set of points {(z,,y;) : ¢ =1, ...,n} where t;, < z; < -+ < z, < t,4;. Then
we wish to find a piecewize polynomial f = } 7, aiBx which satisfies f(z;) = y: for
¢ = 1,.. ,n.! This problem has a unique : .lution when t; < z;, < ti;x for 1 <1 < n. The
following subroutine 18 availabie for obtaining the coefficients a;, ..., a, of the interpolating

piecewise polynomial,
CALL BSTRP(X,Y,T,n, k, A, WK, IFLAG)

X is an array containing z,, ...,7,, Y an array containing y;, ...,y,, and T an array
containing ty, ...,tn4x. A is an ar-sy of dimension » or larger, and IFL...G an integer
variable. On an 1initial call to the routine the user may assign IFLAG any noazero value. In
this case, if no errors are detected then IFLAG is reset by the routine to 0 and the B-spline
coefficients ay, ..., a, are computed and stored in A. The routine may be recalled with
IFLAG = 0 on input when only Y is modified. In this case, no error checking is performed
and IFLAG = 0 on output. Also the B-spline coefficients ay, ..., a, of the new interpolating
piecewise polynomial are computed and stored in A.

WK is an array of dimension (2k — 1)n or larger that is used for temporary storage
by the routine. When BSTRP terminates, WK contains information needed for subsequent
calls to the routine.

Error Return. IFLAG is assigned the value 1 if any of the conditions

T, <<z,

<
Ly <z <liyq
t, <z, <t,,x forl <i<n

t, < 1, < tn&l
18 violated. When an error is decected, the routine immediately terminates.

Remarks.

(1) It is recommen ed that ¢; - -~ = (g and t,,; = - = t, k.
(2} After the B-spline representation }:' a, B,k 15 obtained, then the subroutine BVAL can
be used to evaluate or differentiate the precewise polynomial.

Exampie Given n > 4 data points (2, y,), then for X 4 one may set ¢ et x
| Y J ! [1,

Li v xr,,q for I, . ..,n k, and 1, iy = e Lo Yhen xy, 01, 4 are
the intenior knots for the interpolating piecewise polynomizl o Here we have cebic spine

iterpolavon wheee the date points 12 and 5, are not kuots for

Yoy a toyg then by flog) we e {1)

4L

Programming. BSTRP calls the subroutines BSP Y1, BANFAC, and BANSLV. BSTRP
is a modified version by A. H. Morris of the subroutine SPLINT, written by Car! de Boor
{University of Wisconsin}.

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Veriag, 1078,

WEIGHTED LEAST SQUARES PIECEWISE POLYNOMIAL FITTING

Forn >k > 1let iy < --- < t,4x be a sequence where t; < t.y) fors = 1,...,n.
Consider aset of points { (#;,y:):1=1,...,m} wherety <z < - <z, <tpypandm >
max{2, k}. Let w; > 0 (¢ =1, ..., m) be weights. Then the {ollowing subroutine is available

for finding a piecewise polynomial f = 377" | a; By, which minimizes 3577 | wi(f(=zi) — yi)?.!
CALL BSLSQ(X,Y, W, m, T, n k, AWK ,Q,IERR)

X is an array containing z, ...,Zm,, Y an array contalning yi, ..., Y%m, W an array
containing wy, ..., Wy,, and T an array containing ty, ...,t,4x. A is an array of dimension
n or larger. When BSLSQ is called, if no input errors are detected then the coefficients
c1, -.-,8n of & least squares approximation f are computed and stored in A.

WK is an airay of dimension n or larger, and Q an array of dimension kn or larger.
WK and @ are work spaces for the routine.

IERR is a variable that reports the status of the results. When BSLSQ terminates,
IERR has oxe of the following values:

IERR = O The coefficients were obtained. The least squares approximation
is unique.
IERR = 1 The coefficients for a least squares approsimation were obtained.

The approximation is not unique.
IERR = —1 (Input error) Either i, < zy <+ < 2y < tpyp or m > max{2,k}
is violated.

Selection of t;, < ... < t,;, given the data (z,,y;). It is recommended that the knots
t, be selected so that there are data points z;, < .-+ < z;, satisfying {, < 7,, < t,4k
for v == 1, ...,n. If these conditions are satisfied then the least squares approximation i3
unique.

Remark. After the B-spline representation is obtained, then the subroutine BVAL can be
used to evaluate or differentiate the piecewise polynomial.

Programming. BSLSQ calls the subroutines BSPVI3, BCHFAC, and BCHSLV. BELSQ is
a modified version by A. H. Morris of the subroutine LZAPPR, written by Carl dz Boor
(University of Wisconsin).

Reference. de Boor, Carl, A Practical Guide to Splines, Springer-Verlag, 1978,

Y, o taer Aea by F(L) we menn Sz,)

LEAST SQUARES PIECEWISE POLYNOMIAL FITTING WITH
EQUALITY AND INEQUALITY CONSTRAINTS

Forn >k > 1 let tl < -+« < 1,4k be a sequence where t; < tiyx ({ = 1,...,n).
Consider a set of points { (z,,y:) i =1,...,m} where iy <z, < - <z i_ n+1. Then
the subroutine BFIT is available for obtammg a piecewise polynomial f = Y " | a,Bu
which minimizes 3 (f(z:) — yi)? subject to a set of constraints.

Netation. If t, < z < t,y; then fU)(z) will denote the value f(z+) if § = 0, and the right
4t derivative f(jl)(z—{—) if 7 > 1. Otherwise, if 2 = t,,;; then fU}(z) = f(tps1~)if 5 =0
and fU)(z) = fO(t, 1 -)if 5> 1.

CALL BFIT(T',n, k, X, Y, m XCON,C,NDER, £,IND, A, r, WK ,IWK)

T is an array containing ty, ...,t,4+%, X an array containing «j, ...,Zm,, and Y an
array containing v;, ...,Ym. The argument £ is the number of constraints to be satisfied
(¢ > 0) and XCON, C, NDER are arrays of dimension max{1, £} or larger.

If £ > 1 then XCON contains the points Z,;, ..., Z, at which the constraints are placed.
The points %, may be given in any order and need not be distinct. It is assumed that
ty <Fi Ltpyy fori =1, ,€. At %; any of the following types of constraints
itype = 0 fU)(z,)
itype = 1 fU)(z,)
stype = 2 fU)(%)
itype = 3 [U)(z,) = f“ (ci)
can be imposed where j is a nonnegative integer. For the selected constraint, it is assumed
that C(¢) = ¢; and NDER(") = itype + 43. If an itype 3 constraint is imposed then it is
further assumed that ty < ¢; < t, ;.

H lV l/\

WK and IWK are arrays that are work spaces for the routine. On input, IWK(1) is the
dimension of WK and IWK(2) the dimension of INK. If £ == 0 then one may set IWK(1) -
NB and IWK(2) = 2 where NB = (n+ 3){k + 1) t k*. € therwise, let v == n { 1, m, be the
number of equality (i.e., itype 2 and 3) constraints, and m, the number of inequality (itype
0 and 1) constraints. Then one must set

IWK(1) > NB + (v+ &v t2lme tv)+ (g b)ty 4 2) (et 6)
IWK(2) > m, + 2v.

Remarks.

(1) If € t then one can let the routine determine the amount of storage that is needed
for WK and IWK, Set IWKI1) NDB and IWK(2) -2, m which cave errors will oceur
(see the IND -6, 7 error values below).

(2) NDER(1) may be assigned a negative value (i oo L) I NDERE) - 6 then e

0 constraint s ignored

IND i3 a variable used for input/output purposes, 4 an array of dimension n ur larger,
and r a variable. IND must be set to 0 on an initial call to BFIT. When the routine is
called, if f 1s found then IND is assigned the value 0 or 1, the coefficients. ay, ..., un are

/ B
stored in A, and r is assigned the value \/Z‘(f(x,) y,-)z.

After an initial call to BFI'T, if only the consiraints are modified, then the informatic.
in WK concerning X and Y can be rcused. In this case, one may set IND to a noun.ero
value and recall BFIT to solve the new problem. The input setting IND # 0 can be used
only when T, n,k, X, Y, m, and WK have not been modified since the last call to BIFI"

When BFIT terminates, IND reports the status of the results. IND is assigned one of
the following values:
IND = 0 The piecewisc polynomial f was obtained.
IND = 1 The equality (i.e., ityps 2 and 3) constraints are contradictorv.
The solution f was obtained where the equality constraints were
satisfied in a least squares sensc.

IND = 2 The problem could not be solved. T'he constraints are contradic-
tory.

IND=-1k<lork>n.

IND = -2 m<0orf<O.

IND = -3 t; > i1 for some 1.

IND = —4 The assumption ¢ty < 27 < -+ < 2, < U, 41 18 not satislied.

INI' = —5 The i*" constraint is incorrect for the value of 1 stored in IWK(2).

IND) = -6 Insufficient storage was specified for the WK array. TWK(1) has
been reset to the amount of storage needed by WK.

IND = -7 Insufficient storage was specified for the IWK array. IWK(2) has
been reset to the amount of storage needed by TWK.

IWK(1) and IWK(2) are not modified when IND # -5, -6, --7.

Example. If one wants f to be convex on an interval [¢;,¢;41), then this is equivalent to
requiring that f"(z) > 0 on the interval. Thus, if & 4 then 1t suffices to require that
fUt) = 0and 7ty 1) > 0. For these two conswraints, 9 is the appropriate value for
the NDER array.

Programming. BIFI'T employs the routines BFITO, BNDACC BNDSL, BSPVB, BSP\ D,
LSE]L and the subroutines and functions used by LSEL BFIT s o modification by A L
Morris of the sabrovtine FC, written by Richard J Hanson (Sandia Laboratories). The
subroutimmes BNDACC and BNDSL were written by Rickard J Huanson and Charles 1
Lawson (Jet Propulsion Laboratory), and are described in reference ().

Reicrences

(1) Hanson, R.J | Constratned Least Squares Curve Fitting to Diserete Data using 13
Splines A User’s Gurde, Report SAND 78 1201, sandia baboratories, Atbuaguerque,
New Nexico, 1979

(&) Lawson, €1 and Hanson. RO Solving Least Squaves Problems, Prentice tall

Englewood Cliffs) New Jeraey, 1071

BICUBIC SPLINES AND BISPLINES UNDER TENSION

Given a real value ¢ and a set X = {2y, ...,z,n} where 21 < -+ < z,,,. Let S,(X)
denote the collection of splines having the tension factor o and knots z;, ...,2,,. Ifo =0
then S,(X) 1s the collection of cubic splines with the krots zy, ..., 2.

Now S,(X) is a vector space, where each of its splines f() is uniquely characterized
by the values f(z1), ..., f(zm) and derivatives f'(z,) and f'(zm). Let ¢(z) (=1, ...,m)
be the spline in S, (X) wlere

lf)"(.’lf.) =1

Yi(zk) =0 fork #:

Yi(z1) = Yi(zm) = 0.
and let Y, 11,%m 2 be th splines where

d)mﬁ-l(zi) =0 Q,/),,“_,,g(:l:,') =0 (l = 1, e ,771)
'rb:nﬂ(zl) =1 ¥, ,+2(I1) =0
'/);nﬂ(f"m) =0 1,14.2(17771) = 1.

”m

Then {¢1, ..., %ma2}is a basis for S,(X) and f = [0+ F(2)mr1+ [{@Zm)¥ms2
1=1
{or each spline f(z) in S,(X).

LetY = {y1, . .,yn} whereyy < -+- < y, andlet {py, ..., %, ,,} be the corresponding
basis for S,(Y). Then a function of the form

m+2nt2

Flr,y) = 0 5 agbu(a)h,(v)

=1 3=1

is called o bispline with the tension factor o (also, bicubie spline when o == 0). A bispline

F{r, y) has the following properties:

(1) F(z,y) s a C? mapping on |z1,2,] < |1, ¥n].

(2) For each fixed y the mapping z v F(r,y) is a spline in S, {X), and for cach fixed
the mappit 2y« » F(z,y) is a spline in S, (V).

(3) ¥ is uniqu ly characterized by the values F(x,,y,), D F(ri,y,), D2l'(xr,,ye), and

DiDyF(zk, g¢) wherer 1, ...,m, 5 1, .. n, k~ Lym and € = ¥ n!
If ¢ G then alcubic spline Fir.oy) hos he value
3 3
TN k t
Fleg) D D el sy 1)
A Of
for sy o sy rand i, oy e by where o) wre conbe st 0 b)

l/’t Foandd féf denate the }-.‘kli‘\[derivatives of F

WEIGHTED LEAST SQUARES BICUBIC SPLINE FITTING

Given wy < «++ Z Uy, and vy < -+« < v, where m,n > 2. Let {(zr ¥6,2r0) 1 7 =
L ...,i9 = 1, ... v} be aseb of points where p,v > 4, uy <2, < - < Ty < Uy, and
Ui S Y1 Sy 5 ovg. Also let wy, ..., w, and Wiy, ..., W, be positive weights. Then
the following subrcutine is available for finding a bicubic spline f(z,vy) having the knots
13
w,v; ¢ = L, o,m,y =1, ..., n) which minimizes Y 37 W W[f(Zr, Ys) — wral?.
r=1e=1

CALL SPFIT2(X,WX,,Y WY 1, Z,kz,U,m,V,n, F,S,T,WK,NUM IERR)

X 1s an srray cootaining xy, ..., z,, WX an array containing wy, S, Wy, ¥ an array
ontainiv iy, ..,y,., WY an array cortaining Wi, ...,®,, Z the u X v matriv (2re), U
A array conbaining iy, ..., %m, and V' oan array containing vy, ..., v,. It is assumed that
kz > p, wheve kz is the number of rows in the dimension staterment for 2 in the calling
program.

& 13 a 3-dimensional array of diiiension mxnx 4, and IERR a variable. When SPFIT2

r

is called, if no input errors are deiccted then IERR is set to O and the values Fug,v5),

Dy fue,vs), Dy f(us,vy), DDy (1, v;) of a weighted least squares bispline approximation
AN

f(x.y) are computed and stored in 2! Specifically,

(1) = f(u") UJ)
LS E /
k (%,],.Z) f')flfi"\”i)t"j)
v . N R —_
P(i,5,3) = 2 flug,v))
Fs,g,4) = 1y Dyf(uy,v,)
oy cacht = 10 meand 3o 1, L n.
Soas an array o dunension v b6, T an array of dimension no¢ 6, and WK an array
ot mension NUM where NUM > max {0)0 SV 2 i Smax{m | 2 n 4 23}

S and WK are work spaces for the routine

Error Return. 1KRI has one of the followine values if an mput error 15 delected

KRR 1 Bithov wy ~ -0 v w erme 2s violated.

iR v Bevuy ay s a0 ag, or > A violated.

HOeRR 0 therwy - o e, 0orn 0 e vidated,

HeRR 4 dther vy oy, sy, v or 1 4 s violated
T Y "

HICEC 5 NUM s oo sieall "The oo pernssible vidue for NUA has

Voo stored s AR Resor VURY WK{1).

deeneke After the aoray P s obtaveed, hea the suiroutine CLURET can by aved 1o
vote or b flerentiate Che binpone [y)

PO deno e e partis] deo v atives of f

Programming. SFFIT2 employs the routines CSSP, BSLSQ2, BSLSQ1, BSPVB, BCHFAC,
and BCHSV1. SPFIT2 was written by A. li. Morris.

EVALUATION AND DIFF=RENTIATION OF BICUBIC SPLINES

Given u; < +++ < 4, and v; < -+ < »,, where m,n > 2. Then a bicubic splme f(z,y)
having the knots (u;,v,) is uniquely deﬁned by either of the following sets of data:!
(1) the values f(u.,v,) and derivatives Dy f(uq,v;), D2 f(ui,v;), Dy Da f(u,, v;) for

t=1,...,mand =1, ...,n
(2) the values f(u,,vj) and derlvatlves D? f(us,v;), D2 f(ug,v,), DED3 flu;,v;) for
t=1,...,mand3=1,...,n

The subroutmes CSURF and CSURFI are available for computing f(z,y) or its derivative
D¥DEf(z,y) if data set (1) is given, and the subroutines CSRF and CSRF2 are available
for computing f(z,y) or its derivative if data set {2) is given.

CALL CSURF(k, 8, X, 1, Y, v, 2, kz, U, m,V, n,W, kw,
Wi, kwy, Wa, kug, Wig, kwys)

U is an array containing uy, ...,%,;, V an urray containing vy, ..., v,, and W, ¥y,
W,, W12 the m X n matrices (f(u,.-,uj)), (le(u,-,v_,-)), (D2f(‘(t,‘,llj)), (Dngf(u‘,cjl‘.).
The arguments kw, kwy, kw,, and kw;, have the following values:

kw = the number of rows in the dimension statement for W in the calling program

kw; = the number of rows in the dimension statement for W, in the calling program

kwy = the number of rows in the dimension statement for W, in the calling program
kw2 = the number of rows in the dimension statement for Wi in the calling program
It i3 assumed that kw > m, kw, > m, kwy > m, and kwi > m.

The arguments k and £ are nonnegative integers. Let (x,,y,) (r = 1, ..., u, s
1, ...,v) be the points where D¥D4f is vo be compuied. X is an array containing ry, ...,
z,, Y an array containing yy, ...,y,, and Z a 2-dimensional array of dimension xz x v

where kz > u. When CSURF 1s called, the values 1){‘[)5/(:,,;/5) are computed and stored
in Zfory - 1,.. ,pand s — I,

Programming. CSURF calls the function INTRVL. CSURFEF w5 written by AL . Morris,

CALL CSURF1(k, ¢, X, u, Y, v, Z k2, U s,V n W,

[/ 1s an array containing uy, ..., u,,, ¥ an array contaming vy, .., v,, and W a 3-
dimensional array of dimension m x n x 4 s assumed that

W 1) flu,v,)
W) Daf (i)
Wi, 5.3 Dif(u,v,)
Wi, g, 1) DyDyflu,)
for v - 1, ymoand 31, o n
Yy f x;l\(i [, f denote the partial derivatives of f, and I?Tllij ARk Gy kot T b

or ¢ 3 then l’:‘l’ﬁf(x,y) denates the right Lt Ilf‘l’if(: oy)

SUK

The arguments k and £ are nonnegative integers. Let {(z,,y,) (r = 1,...,pu, 8 =
1,...,v) be the points where DfD%f is to be computed. X is an array containing z,,
..., Ty, Y an array containing yi, ..., Y., and Z a 2-dimensional array of dimension kz X v
where kz > 4. When CSURF1 is called, the values D¥ D} f(z,,y,) are computed and stored
inZforr=1,...,uands=1,...,v.

Programming. CSURF1 is a driver for the subroutine CSURF. The tunction INTRVL is
used. CSURF'1 was written by A. H. Mcrris.

CALL CSRF(k, ¢, X, n, Y, v, Z, k2, U,m,V,n, W, kw,
le kwl;W-27 kw2>W127kwl2)

U is an array containing uj, ...,%,, V an array conéaining vy, ...,v,, and W, Wy,
Wi, Wiz the m ¥ n matrices (f(u,v;)), (D?f(ui.s,y)), (D3/f(w,v;5)), (DEDEf(ui,v;)).
The arguments kw, kwy, kws, and kw,, have the following values:

kw = the number of rows in the dimension statement for W in the calling program

kw; == the number of rows in the dimensicn statement for W, in the calling programn

kw,; = the number of rows in the dimension statement for Wy in the calling program
kw;q == the nuruber of rows in the dimension statement for Wy, in the calling program
It is assumed that kw > m, kw, > m, kwy > m, and kw;s > m.

The arguments k and € are nonnegative integers. Let (z,,y,) (r = 1, ..., p, s
. I . - . . .
1, ...,v) be the points where D¥D%f is to be computed. X is an array containing z,, ...
)] p 1 2 F g 1,)
x,. Y an array containin and Z a 2-dimensional arriy of dimension kz x v
n B Vi, y Yo, A

where kz > . When CSRF is called, the values DYDSf(x,,ya) sre computed and stored
inZforr=1,...,uand s 1, ... ,v.

Programming. CSRF calls the function INTRVL. CSREF was written by A. . Morris.

CALL CSRF2(k, b, X, pu, Y, v, Z kz UiV on W kw DDW)

U is an array contalning uy, ..., Uy, ¥ an array contaning vy, ..., v, ¥ the moon
mainix (f(u,,v,)), and DDW a 3-dimensional array of dimension i~ oo 3 wlore
W) D3 ()
Wi, 5.2) Diffu,v,)
Wii,5,3) DID]f(u,v,)

v
forv 1, mandj 1, n Phe argument kw has the followiny, value:
fw the number of rows n the dunension statement for Woan the calling proyran

It 18 assumed that ke o

The arguments & and £ are nonnegative atepers Lot {0, y) (7 1 TS
I, 1) be the pomts where DY D0 f s to be compated X 18 anarray contuning oy,
c I Y an array contaming yp, Cyes and a2 dinensonal arcay of dimiensaon A e
where k2 0 When OSRE2 i calied, the values DY DS (r, vl are compnted and e
in S forr 1,0 pand s 0 Y

ol

Programming. CSRF2 is a driver for the subroutine CSRF. The function INTRVL is used.
CSRF2 was written by A. H. Morris.

Sl

BISPLINE UNDER TENS!ON SURFACE INTERPOLATION

Given z; < :++ < Zp, and Yy < +++ < y,. Also assume that we are given the values
z; (1 =1,...,m; 7 = 1,...,n) and a tension factor 6. Then the subroutine SURF is
available for finding a bispline F(z,y) with tension o that satisfies F(z,,y;) = z, for each
1,7. Boundary conditions can be imposed on the surface F(z,y) if desired.

CALL SURF(m,n, X,Y, Z kz,OPT,DDZ,WK, o, [ERR)

X is an array containing zy, ..., Zm, Y an array containing 1, ..., yn, and Z the mxn
matrix (z;;). The argument kz is the number of rows in the dimension statement for Z in
the calling program. It is assumed that m > 2,n > 2, and kz > m.

OPT is an array, called the option vector, whick permits the user to specify any
boundary conditions that are to be imposed on the surface. If no boundary conditions
are to be spccified then OPT may be declared to be of dimension 1 and OPT(1) must be
assigued the value 0. The details concerning the specification of boundary conditions in
OPT are given below.

DDZ 1s a 3-dimensional array of dimension m X n x 3 and IERR is a variable. When
SURF 1s called, if no input errors are detected then IERR is assigned th» value ® and the
partial derivatives D}F(z,,y,), D3 F(z.,y,), PDEDIF(2,,y,) (1 = 1, ...,m;5 = 1, ..., n)
are computed and stored in DDZ. DDZ(i,7,1) D2F(x,,y,), DDZ(s,5,2) = D?F(z,,y,),
and DDZ(1,7,3) - DED2F(z,,y,) for each 1, 7.

WK 13 an array of dimeasion m | 2n or Yargee that s used for a work space.

Error Return. [ERR reports the following input errors:
IERR T dm< 2orn« 2
IERR 20f Ly v o Ty OD Y o oo 0 Yy 18 not satisfied
IERR 3 f OPT contiuns an error

When an ervor s detected) the routine immediatedy teronnas <

Remark After DB v chtamed, then the Tunction SURFY miay be used to evaluate the
bisphne F(r y). Also, of o O then the subrontine CSREF2 may be used to evaluate or

differentiate Fr y)

The option vector CPT If no bonndary conditions are to be nmposed thens OPT may be

declared to be of dimension 1 and O 0) snust Bave the vadue 0 Otherwime, OPT 18 an

arcay contanng the wformcan key o dat o Nevy data,, kv, odatag ot The b

ety i O v the value 0 Vawh yronp of date key, . davy, | Ca) s catled an
1 3

optton Fach key, moan anteyer and datay voa st of partiad denvatinie vadnes b by

surface Flr y) s required to satisty The following aptions are avarlabie

key VoThe values 1 F sy y)) (0 L noast beosanstoed

kv_y N ’!‘lfn‘ saltles l”l f"(i‘,_‘_ y‘,) (] ', _H) st he o salished

heey A The salaes DR, v) 1 et st b wati el
NN

key =4 The values Dy F(z,y,) (1 == 1, ..., m) must be satisfied.
key == 5 The value Dy Dy F(¢,,y;) must be satisfied.
key == 6 The value)1 Dy F(z,n,y1) must be satisfied.
key =7 The value Dy D3 F(z,,y,) must be satisfied.
key = 8 The value D, D; F(z,., y,) must be satisfied.

The order of the options in OPT is arbitrary. It an unrecognized key is used then the error
indicator IERR is assigned the value 3 and the routine terminates.

Example. Assume that we have an array DY1 containing values Dy F(z,,y1) (1 = 1, ..., m)
which are to be satisfied, and that we also want DDy F(z,n,y,) = — 1.3 to be satisfied.
Then OPT must be of dimension > m + 4 and OFT can be defined as follows:

orT(1) = 3.0 (First option)
DO 10T = 1M
10 OPT (I + 1) =DYL{I)
OPT (M + 2) = 8.0 (Second option)
OPT (M + 3) = -1.3
OPT (M + 4) = 0.0 (Terminates the option vector)

Background. The evaiuation of D?F(z,,y;), D2F(z,,y;), and D} D F({z,,y,) reduce to the
evaluation of second derivatives of splines. Speciiically, for each ¢ < m D2F(z;,), ...,
D2F(z:,yn) are the second derivatives that characterize the spline y F(z;,y), and for
each j < n D}F(zy,y;), ..., D}F(z,,,y;) are the second derivatives that characterize the
spline £ — F(z,y;). Also Dy D2F(z1,y;) and D1 D} F(zy,y,) (= 1, ..., n) are the second
derivatives that characterize the splines y — D17 (z,,y) and y -+ Dy F(z,,y). For each
J < m, after one obtains the values D} F(z,,vy;) through which the spline z —» D} "(z,y;)
will pass and the end slopes Dy D} F'(z,,y;) and Dy D2 F(«,,,y;) which this spline must have,
then the second derivatives that characterize this spline can be computed. D?DZF(2y,y,),
..y DED2F(zm,y;) are the second derivatives that characterize z — D2F(z,y,).

Programming. SURF empioys the subroutines CEEZ, TERMS, and SNHCSH. SURF was
written by A. K. Cline and R. 4. Renka {University of Texas at Austin), and modified by
A. H. Morris.

al4

BISPLINE UNDER TENSION EVALUATION

Given £y < +++ < & and y; < -+ < yy,, and let F{z,y) be a bispline with tension o. If
the partial derivatives DIF(z;,y,), DiF(2,y;), D?D}F(z;,y;) are knownfori =1,...,m
and 7 == 1, ..., =, then the function SURF2 may be used for evaluating F{z,y) at a single
point, and the subroutine NSURF2 may be used for evaluating F(z,y) on a grid of points.

SURF2(s,t,m,n, XY, Z kz,DD7,0)

X is an array containing zp, ...,Z;,, Y an array conisining yj, ...,Yn, and £ an
m X n matrix containing the values F'(z,y;j. The argument kz is the number of rows in
the dimension statement for Z in the calling program. It is assumed that m > 2, n > 2
and kz > m.

DDZ is a 3 dimensional array of dimension m x » x 3 containing the partial derivatives
where
DDZ(")j) 1) = D;F(Ig, y.?')
DDZ(i,7,2) = DIF(zi, y;)
DDZ(i,4,3) = DID2F(z,y;)

for each 1,7. SURF2(s,t,m,n, XY, Z kz,DDZ,0) = F(s,t) for any point (o,1).

Remark. After DDZ has been obtained, SURF2 may be repeatedly cailled to evaluate the
bispline at different points so long as the tension tactor ¢ remains fixed. However, if o is
modified then the derivative information in DDZ will have to be recomputed before SURF2
can be used with the new tension factor.

Programming. SURF2 employs the function INTRVL and subroutine SNHCSH. SURF?2
was written by A. K. Cline and R. J. Renka (University of Texas at Austin).

CALL NSURFZ(Sminy Smax)Ms, fmin, tmax: T, "Va ku’, m,n,
X,Y, Z,kz,DDZ%,WORK, o)

The arguments 8,4;n and Smax are the lower and upper limits of the z-coordinates of
che grid on which F(x,y) is to be evaluated, and the arguments t,,;,, and t,,,x are the lower
and upper limits of the y-coordinates. The purpose of the routine 1s to evaluate the bispline
at the points (s,,t;) where

§ = Smi
3¢ 2T 8 i {1 y Tlnax min
8y == Smin + - 1) - L

M, ~ 1

) tmr.x - tmin

t, = tga bl 1
7 nin (.7 ng - |

fori—i,...,myand 71, ...,n, Itis assumed that rn, > L and n, > 1.

W is a 2-dimensional array of dimension kw x n, where kw = m,. When NSURFZ 1o
called W (s, 7) is assigned the value F(s,,t,) for« =1, .. . m,and 7= 1,.. . n,.

HY

The arguments m,n, X, Y, 7, k2, DDZ, o are the same as in SURF2. WORK is an array
of dimeansion 4m, or larger that is vsed for a work space.

Programming. NSURF2 empioys the subroutine SNHCSH. NSURF?2 was written by
A. K. Cline (Universiiy of Texas at Austin).

516

BIVARIATE B-SPLINE PIECEWISE POLYNOMIAL INTERPOLATION

Form>k>1landn>£€>1let 9 < -+ < 8k and t; € ... < t,4¢ be sequences
where s; < 8,44 (1 =1, .,m)and t; < t;4. (=1,...,n). Let Bk, ..., Bmi be the
B-splines for the knots s; < -+ £ 8,1 and Byy, ..., By the B-splines for the knots
by € Ctpge. Given 83 €21 < v+ < Zyy € Sy, te S y1 < o+ < yn < ipy1, and the
values z;; {1t =1, ...,m, 7 =1,...,n). Then we wish to find a piecewise polynomial of the
form

m n
f(z,9) = D ai;Bir(z) Bje(y)
1=1j5=1
which satisfies f(zi,y;) = 2z, fori =1,...,mand j = i,...,n.! This problem has a
unique solution when s; < z; < s; xand t; <y; <tjyefori=1,... mandj=1,...,n
The following subrcutine is available for obtaining the coefficients a;; of this piecewise
polynomial.

CALL BSTRP2(X,Y, Z,kz,S,m,k,T,n, £, A, ka, WK,NUM,IERR)

X is an array containing z;, ...,Zm, Y an array containing yy, ...,¥Yn, £ the m x n
matrix (z;;), S an array containing 81, ..., Sm+k, and 7 an array containing ty, ..., tnqe
It is assumed that kz > m, where k2 is the number of rows in the dimension statement for
Z in the calling program.

A is a 2-dimensional array of dimension ka < n where ka > m, and IERR is a variable.
When BSTRP2 is called, if no errors are detected then IERR is set to C and the desired
coefficients a,; are computed and stored in A.

WK is an array of dimension NUM where NUM > mn + max{2km,2¢n}. WK is a
work gpace for the routine.

Error Return. IERR has one of the following values if an input error iy detected.

IERR =1 s €2y <+ < ZTpy < 8pp1 OF 8 <23 < 845 (1 =1,...,m) is
violated.

IERR =2 t, < yp < v <y, Ctpgrorty <y; <tyel(g=1,...,n)is
violated.

IERR = 3 NUM < mn + max{2km, 2nf}.

Remarks.

(1) One may set A = Z, thereby replacing the data z; with ay;.

(2) After th~ coefficients a,; are obtained, then the subroutine BVAL2 can be used to
evaluate or differentiate the piccewise polynomial f(z,y).

Programming. BSTRPZ employs the subroutines BSTRP, BSTRP1, BSPVB, BANFAC,
and BANSLV. BSTRP2 was written by A. H. Morris.

" 2 o 8y 1 then by f(2,,,y) we niean f{on, -, v} and if ye — inyy then by f(z,y,) we mean f{z,yn-).

-

H17

BIVARIATE B-SPLINE PIECEWISE POLYNOMIAL
LEAST SQUARES FITTING

Form>k>landn>€>1let sy <+-<spypandt <. .- < !n+¢ be sequences
where s; < s;1x (1 = 1,...,m) and t; < t;4, (j = 1,...,n). Let By, ..., B be the
B-splines for the knots s; < -+- < 8,44 and By, ..., B, the B-splines for the knots
ty S s Stpye Given s <7y <0 <2y < Smpr, te <Y1 <00 <y < taya, and the
values z, (r = 1,...,1, 8 = 1,...,v) where 4 > max{2,k} and v > max{2,£}. Also let
wi, ...,w, and Wy, ..., W, be positive weights. Then the following subroutine is available
for finding a piecewise polynomial of the form!

f(z9) =D > ai; Bul(z) Byely)

=1 5=1

u
which minimizes 3 3 w,W,[f(z,,ys) — 2,4)%.
r=18=1
CALL BSLSQ2(X,WX,u,Y , WY, Z, k2,5, m, k,T,n, ¢,
A, ka,WK NUM,IERR)

v

X is an array containing zy, ...,z,, WX an array containing w;, ..., Wy, Y an array
containing yi, ..., Y., WY an array containing Wy, ...,w,, Z the pu x v matrix (2rs), S an
array containing sy, ..., 8myx, and T an array containing ¢y, ...,t,4¢ It is assumed that
kz > p, where kz is the number of rows in the dimension statement for Z in the calling
program.

A is a 2-dimensional array of dimension ka x n where ka > m. When BSLSQ2 is called,
if no input errors are detected then the coefficients a;; of a weighted least squares piecewise
polynomial approximation f(z,y) are computed and stored in A.

WK is an array of dimension NUM where NUM > mv +max{(k + 1)m, (£ + 1)n}. WK

is a work space for the routine.

IERR is a variable that reports the status of the results. When BSLSQ2 terminates,
IKRR has one of the following values:
IERR = 0 The coefficients were obtained. The least squares approximation
is unique.

IKRR =+ 1 The coeflicients for a least squares approximation were sbtained.
The approximation is not unique.

IERR — -1 (Input error) Either s, < z; < ... < Ty < Sy or > max{2, k}
is violated.

IERR - 2 (Input error) Bither ty < y; < -+ <y, <t orv > max {2, £}

1s viclated
TERR = -3 (nput error) NUM 15 too small. ‘The minimum permissible value

"z sy then by fx,,y) we mean fleg)y and if gy - tayy then by flr, y,) we miean f(x, u.).

519

for NUM, namely mv + max{(k -+ 1)m, (€4 1)n}, has been stored
in WK(1). Reset NUM > WK(1).

Remark. After the coefficients a;; are obtained, then the subroutine BVAL2 can be uscd
to evaluate or differentiate the piecewise polynomial f(zx,y).

Programming. BSLSQ2 employs the routines BSLSQL, BSPVB, BCHFAC, and BCHSV1.,
BSLSQ2 was written by A. H. Morris.

H20

EVALUATION AND DIFFERENTIATION OF BIVARIATE PIECEWISE
POLYNOMIALS FROM THEIR B-SPLINE REPRESENTATIGNS

Form>k>landnrn>€>1let sy < .- < ik and ty < .- < t,,, be sequences
where s; < sy (f=1,...,m) and t; < tj40 (j = 1,...,n). Let Bix, ..., Bk be the
B-splines for the knots sy < -+ < s, 4 and By, ..., B, the B-splines for the knots

)=)Y @i Bia(z) Bly)

+=21 5=1

ty <o <tpge If

then the following subroutine is available for computing f(z,y) and its partial derivatives.
CALL BVAL2(4,ka,8,m k,T,n, €, z,y, p,v,w,WK)

A s the m x n matrix (a,;), S an array containing s, .., 8Sm4k, and T an array
containing ¢y, ...,t, .. It is assumed that ka > m, where ka is the number of rows in the
dimension statement for A in the calling program.

The arguments p and v are nonnegative integers, (z,y) is the peint at which f orits
partial derivative 9% *¥ f /3#23"y is to be evaluated, and w is a variable. When BVAL?2 is

called, then w is assigned the value ¥ a.; B(“)()B(’)(). Here B‘(:) denotes B if u =0

and the p' derivative of By if u > 1. If 2 # s, 44 then by B(“)(x) we mean the right
limit B(“)(rif) and if z == s, ; x then by B(“)(a') we mean the left limit B()(-). Similar
comments hold for P()().

WK is an array of dimension €+ max{3k,3¢} or larger that is a work space for ihe
routine.

Programming. BVALZ2 employs the function INTRVL and subroutine BVAL. BVAL2 was
written by A. H. Morris.

SURFACE INTERPOLATION FOR ARBITRARILY
POSITIONED DATA POINTS

Let { (zi, %) :¢=1,...,n} be aset of n > 3 distinct pc'nts whick are not collinear and
21, ...,2, asequence of values. Then the problem is to find a smooth mapping z = I'(z, y)
for which z; = F(z,,y) fori=1,...,n.

A triangle based procedure for constructing a smooth interpolating mapping z =
F(z,y) contains the following components:

(1) An algorithm for forming a triangular grid for the convex hull of the data points (zi, ;)
and a procedure for locating any point ir the grid. If extrapolation is to be permitted,
then the region outside the grid must also be partitioned and a procedure provided for
locating anv point in the region.

(2} A procedure for estimating the first (and possibly higher order) partial derivatives of
F(z,y) at the data points (z;,).

(3) A smoocth interpolating routine for computing F(z,y) on each triangular cell of the
grid. If extrapolation is to be permitted, then a routine must also be provided for
computing F(z,y) on each cell of the partitioned region outside of the grid.

With regard to (2), it should be noted that no derivative estimation procedure is known
that is appropriate for all applications. This 18 unfortunate, since the derivative values can
significantly affect the recults obtained from any interpolating procedure.

The subroutine TRMESH is available for obtaining a triangular grid, and the sub-
routines GRADG and GRADL are available for derivative estimation (perforimed in two
different manners). After the grid has been obtained and the derivatives estimated, then
the subroutines SFVAY, and SFVAL2 are available for compuling a continuously differen-
tiable mapping z = F(z,y) for which z; = F(z;,y) for 1 = 1, ..., n. Extrapolation is
permitted.

CALL TRMESH(n, X, Y ,IADJ IEND,JERR)

X is an array containing z1, ...,z,, and Y an array containing y;, ...,y,. IADJ is an
array of dimmension 6n or larger, IEND an array of dimension n, and IKRR a variable, When
TRMESH is called, if no input errors are detected then 1ERR s set to 0 and a Thiessen
triangulation of the convex huil is obtained. The triangulation is stored in TADJ and TISND.

Error Return. IERR 1 if n < 3 and IBRR - 2 if the data points (o, y,} are collinear.

Remark. For efliciency, it s recommended that the data points (£,,y,) be ordered so that
ry Tt Ty

Programming. TRMESH emiploys the routines ADNODE, BDYADD, INTADD, SHIFTD,
SWAPD, TRFIND and functions SWPTST and TINDX. These routines were wiitter by

lubert J. Renka (University of North Texas, Denton, Texas).

523

References.

(1) Cline, A. K. and Renka, R. J., “A Storage-Efficient Method for Construction of a
Thiessen Triangulation,” Rocky Mountain J. Math 14 (1984), pp. 119-139.

(2) Renka, R. J., “Algorithm 624. 'Triangulation and Interpolation of Arbitrarily Dis-
tributed Points in the Plane,” ACM Trans. Math Software 10 (1984), pp. 440-442.

CALL GRADG(n, X,Y, Z IADI,IEND,DZ,IERR)
CALL GRADL(n, X,Y, Z 1ADJ IEND DZ IFRR)

X is an array containing zy, ...,T,,Y an array containing v, ..., ¥n, and Z an array
containing 2y, ..., z,. 1ADJ is an array of dimension 6n or larger, and IEND an array of
dimension n. IADJ and IEND contain the grid information given by the routine TRMESH.

DZ 1s a 2-dimensional array of dimension 2 x n. When GRADG or GRADL is called,
if the partial derivatives of F(z,y) are computed at the data points then the deriva-
tives D1 F(zy,y1), ..., Di F(z,,yn) are stored in the first row of DZ and the derivatives
DeF(z1,y1), ..., D2F(z,,yn) in the second row of DZ.

Error Return. IERR is a variable that rcports the status of the results. When the subroutine
terminates [ERR has one of the following values:
IERR = 0 The partial dertvatives of ¥ were evaluated and stored in DZ.
IERR - 1 (Input Error) n < 3.
IERR == 2 The partial derivatives could not be estumated by GRADL. Either
the data points are almost collinear, or the abscissas and ordinates
of the data peints are too poorly scaled for the derivatives to be
computed (see remark (2) below).
Algorithm. GRADCG employs the global derivative estimation procedure and GRADI, the
local dertvative estunation procedure given in reference (1).

Remarks.

(1) GRADG is faster than GRADL, but it frequently is less accurate,

{2) The local dertvative estimation procedure can be quite sensitive to the scaling of the
abscissas ry and ordinates y, of the data points. Frequently, rescaling the abscissas and
ordinates will have no effect on the accuracy of the results obtained by GRADG, but
1t miay 1terease or decrease the accuracy of the results obtained by GRADIL by several
decimal digits (or make 1t impossible to estimate the derivatives locally).

Programming. GRADG and GRADL are interface routines for the subroutines GRADG]

and GRADUL, written by Robert J. Renka (University of North Texas, Denton, Texas),

GRADLI calls the subroutines GETNE, SE'TRM, SROT, and SROTG.

References.

(1) Renka, R.J. and Cline, ALK YA Triangle Based O Tnterpolation Method” Roecky
Mouniain J. Math 14 (198Y), pp. 223 237.

(2) Renka, R. J.) “Algorithm 624 “Triangulation and Interpolation of Arbitrarily Dis-
tributed Points in the Plane,” ACM Trans. Math Software 10 (1984), pp. 410 442,

H24

CALL SFVAL(n, X,Y,2,m, XI,Y I, Z1 JADJ,JEND,DZ,IERR)

X is an array containing z;, ...,2,,Y an array containing y;, ...,y., and Z an array
containing 2y, ...,2,. IADJ is an array of dimension 6n or larger, IEND an array of
dimension n, and DZ an array of dimension 2 X n. It is assumed that IADJ and IEND
contain the triangulation given by the subroutine TRMESH, and that DZ contains the
partial derivatives computed by GRALG or GRADL.

It is assumed that F(z,y) is to be evaluated at (Z1,91), ..., {Zm,¥m). X1 is an array
containing i, ..., Z,,, Y [an array containing §y, ..., Jm, and ZI an array of dimension m
or larger. IERR is a variable. When SFVAL is called, if no errors are detected then IERR
is set to 0. Also F(Z,,¥:) is computed and stored in ZI(f) for ¢ = 1,...,m.

Error Return. IERR = 1if n < 3 or m < 1, and IERR = 2 if the data points (z, ;)
(f =1, ...,n) are collinear.

Programming. SFVAL is a driver for the subr sutine INTRCL. INTRC1 employs the
subroutines GRADL1, GETNP, SETRM, SROT, ROTG, TRFIND, and TVAL. INTRC1
was written by Robert J. Renka (University of Norvh Texas, Denton, Texas).

References.

(1) Renka, R. J., and Cline, A. K., “A Triangle Based C! Interpolation Method,” Rocky
Mountain J. Math 14 (1984), pp. 223-237.

(2) Renka, R. J., “Algorithm 624. Triangulation and Interpclation of Arbitrarily Dis-
tributed Points in the Plane,” ACM Trans. Math Software 10 (1984), pp. 440-442.

CALL SFVAL2(n, X, Y, Z,€,m, kz, X I,Y I, Z1,JADJ IEND, D% IERR)

X is an array contalning zp, ...,T,,Y an array containing yi, ..., Y., and 2 an array
containing z,...,2,. lADJ is an array of dimension €n or larger, IKND an array of
dimension n, and DZ an array of dimension 2 x n. It 18 assumed that IADJ and TKND
contain the triangulation given by the subroutine TRIESH, and that DZ contains the
partial derivatives computed by GRADG or GRADL.

It is assumed that F(r, y) is to be evaluated at (o, y,) fore 1, . fandy 1 s
X1 18 an array containing =, ...,T¢, Y[an array containing yp, ..., ¢m, and 2 a *
dimensional array of dimension kz x i where k2 > € [IXRR 18 a vartable. When SFVA© 2
is called, if no errors are detected then ITERR is set to 0. Also F(x,,y,) 18 computed and
stored in ZI1{(i,) fors 1, ... €andy 1, ... m.

Error Return, TKRR 1if < 3,0« 1 Lorkz < € and IBRR O 20f the data ponts
(ro,) (1 1, ... n) are collinear.

Programming. SFVAL2 1s a driver for the subroutine INTRCI INTRCI employs the
subroutines GRADLL GNP, SETRM, SROT, SROTG, TREIND, and 'TVAL INTRC!
was written by Robert J. Renka (University of North Texas, Denton, Texas)

or
920

WEIGHTED LEAST SQUARES FITTING WITH POLYNOMIALS
OF N VARIABLES

Let {(zl('), ...,z:,,(‘)) o= 1, ...,f.} be a set of £ distinct points, zy, ...,z, be the
corresponding function values to be approximated, and w;, ..., w, be positive weights.
Then for any nonzegative integer IDEG where (®*1DEG) < ¢! the subroutines MFIT and
DMFIT are available for obtaining the coeflicients of the unique polynomial F(zy, ..., z,)

L) ()

of degree IDEG which minimizes) w[#(z,", .. ,zn"") ~ 2;]%. Also, the subroutines

J

t:=1
MEVAL and DMEVAL are available for computing this polynomial. MFIT and MEVAL
yield single precision results, and DMFIT and DMEVAL yield double precision results.

CALL MFIT(n,IDEG, m, ¢t X, kz, Z,W, R, IER,IWK, WK LIWK LWK,
MIWK MWK)

CALL DMFIT(n, IDEG, 1, £, X ko, 2, W, RIER WK WK LIWK, LWK,
MIWK MWK)

th

It 1s assumed that n > Land € > 1. X 1s an £ x n matrix whose '* row contains the

. (s) (v, - g CY . ' . 23 ; N
point {z;7, ...,za"); e, X{4,5) z " ford I, ... fandy - 1,... ,n The drg‘umcnt
kx i1s the number of rows in the dimension statement for X in the calling program. Z is an
array containing zy, ..., 2z, and W oan array containing wy, ..., w,. X and Z are modified

by the routine.

Remark. For IDEG ~ 0, ("' PESY polynomials 1y, o 7, 202 0 2y, .. are needed for
a basiy of the space of polynonials of degree - IDEG) The basis polynomials are ordered.
For k > 1, the degree k1 basis polynomiads precede the degree & polynomials. The
degree k basis polynomals are o, -o-ry, where B0y« oo« 4 < 0 For any two such
polynomials xy -+, and o, oo let v be the smallest integer such that 1, 4 7,0 Then
£y, o wy, precedes oy - whenr, o gy

IDEG and rmoare varables. [IDEG - 0 then the routine attempts to obtain the
polvnomial F(xy, ... r,) of degree IDEG winch is the best least squares fit. Otherwise, if
IDEG - 0 then it s assumed that o - 1 and that the first e basis polynonals are to be
used to obtain the least squares lit. When the routine ternnnates, 1DEG the depree of
the polynonual F(ry, o 1) obtamed and v the number of biasis polynomials that are

actually used.

. . . , N {s} (s} - ,
ft s an array of dunensaon # or Larper. V) o Ple, o ora) fora 1, N

when the routine ternmnates

IWK 15 an array of dunensaon CEWHR aod WK an array of dumeraon WK When
the rovtine ternnmates, WK and Wh contan thenformation needed for computing the
polvnommal F(oy, o) Suflirent aoroee for IWHR and SWR o can be assured by setting
LIWK and LWHK as Dollows 1 THbe O then fet A mm{l (" lva‘l \;)} atid o D

l(l“’) lu:\](:‘} ‘ ‘ - v P P

Otherwise, if IDEG < O then let N = m and & be the smallest nonnegative integer such
that ("*¢) > m. Then set

LIWK > 4N + én
LWK > 2N +n+ 1+ €N + %(N~ 1)(N - 2).

N is the maximum number of basis polynomials that will be used, and & is the degree of
the polynomial F(z,, ...,z,) if N basis polynomials are used.

MIWK and MWK are variables. MIWK is set by the routine to the dimension needed
for IWK, and MWK is set to the dimnension nceded for WK. MIWK and MWK depend
only on n, £,IDEG, and m.

If MFIT is called then X, Z, W, R, and WK are single precision real arrays. Oiherwise,
if DMFIT is called then X, Z, W, R and WK are double precision arrays.

IER is a variable that reports the status of the results. When the routine terminates,
JER has one of the following values:
IER = 0 The desired polynsrmial was obtained.
IER = —1 Not all the basis polynomials could be ased. IDEG is the degree
of the polynomial obtained. This setting occurs when the problem
18 not solvable or 1s Ltoo ill-conditioned for the requested degree.

IER = 1 Only € basis polynomials were used. A polynomial F(zy, ... z,)
was obtained which solves the equations F(:rl(‘ s Ta) = o2y
fors -1, ...,¢

IER == 2 (Input error) IDEG < 0 and m < 0.

1IER 3 (Input error) n << Lor €< 1.

IR - 4 (Input error) LIWK or LWK is too small. Set LIWK > MIWK
and LWK > MWK,

When an mput error s detected, the routine immediately terminates.

Remark. When IER < 1 then MEVAL or DMEVAL may be used to vompute the polyno-
mial obtained.

Algorithm. The revised Gram-Schmidt erthogonalization procedure is used,

Programming. MFIU'I employs the routines ALLOT, BASIZ, MTABLE, GNRTE INCDHO
SCALPMSCALDN jand DMEFPT employs the routines ALLOT BASEZ MTABLE, DGNRTP,
DINCDG, DSCALP, DSCALD. METT and DMETT are modifications by A H. Morns of
CONSTR, written by Richard i Bartels (University of Waterloo) aud John 1 Jezioransk
(Ontario Cancer Institute)

References.
(1) Bartels, ROt and Jezioranski, JoJ 0 " heast Sopares Fitting asing Orthoponasd Ml
nomnais,” ACM Trans Math Software UL (1080, ppo 200 217,
(<) U Alonthn B3 CONSTR and EVAL Rontines for Fitoay, Multinonuals
i a Least Squuares Sense” ACM Tvans. Math Software $0 (1S85), pp. I8 208

LN

Cha

CALL MEVAL{n KDEG,m,, X1, kzi, ZLIND,IWK, WK, LIWK, LWK,T)
CALL DMEVAL{n, KOEG, i, 1, XI, kzi, ZLIND IWK, WK LIWK LWK, T)

MEVAL (DMEVAL) computes the polynomial obtained by MFIT (DMFIT), or a por-
ticn thersof. Let IDEG and m be the output values given by MFIT (DMFIT).

The argument i is a variable. I KDEG < 0 then it is assumed that 1 < m < m and
that the polynomial using the first ¥ basis polyromials is to be computed. In this case,
the polynomial computed is the best least squares fit for the basis polynomials involved.

If KDEG > O then it is assumed that KDEG < IDEG. In this case, when the routine
terminates, M = the number of basis polynom Is used. If m < m (which will be the case
when KDEG < IDEG), then the polynomial computed is the polynomial of degree KDEG
which 13 the best least squares fit.

Usage. If IER = +1 wher MFIT(DMFIT) terminates, then the sett'ng KDEG = IDEG
normally causes an error to occur since m > m. Hence, if it is desired that the full
polynomial obtained by MFIT(DMFIT) be computed, no matter whether the value for IER
is 0 or :+1, then KDEG should be assigned a negative value and i = m.

It is assumied that the polynomial is to be computed at the points (fl(‘), ...,E,,(‘))
forv =1,...,€ Xlis an € x n matrix whose i** row contains the point (5:'1(‘), ...,"1?,,(‘)).
The argument kz¢ is the number of rows in the dimension statement for XI in the calling
program. ZI is an array of dimension £ or larger. When the routine terminates, ZI(x)
containg the value of the polynomial at the point (El(i), o ,En(")) fori=1,...,¢

IWK and WK are the arrays obtained from MFIT or DMFIT. LIWK is the dimension
of IWK and LWK the dimension of WK. T is an array of dimension n or larger that is a
work space for the routine.

If MEVAL is called then XI, ZI, WK and T are single precision arrays. Otherwise, if
DMEVAL is called then XI, ZI, WK and T are double precision arrays.

IND is a variable that reports the status of the results. When the routine terminates,
IND has one of the following values:

IND = {0 The desired computation was performed.

IND = -1 (Input error) i < I or ni > m.

IND = 2 (Input error) n << L or £ < 1.

Programming. MEVAL calls the subroutine MEVALL and DMEVAL calls the subroutine
DMEVL1. MEVAL and DMEVAL are modifications by A. H. Morris of EVAL, written
by Richard H. Bartels (University of Waterloo) and John J. Jezioranski (Ontario Cancer
Institute).

929

EVALUATION OF INTEGRALS OVER FINITE INTERVALS

QAGS, QXGS, QSUBA, DQAGS, and DQXGS are available for computing integrals
f: F(z) dx over finite intcrvals. The subroutines QAGS and QXGS and the function QSUBA
yield single precision results. These procedures are adaptive. In such procedures, the
selection of the points at which the integrand is evaluated depends on the nature of the
integrand. DQAGS and DQXGS are double precision versicng of the subroutines QAGS
and QXGS.

QSUBA is applicable only when F and its derivatives have no singularities in the closed
interval [a,b]. Otherwise, QAGS or QXGS should be used. These subroutines are appro-
priate when F(z) is continuous except possibly for a finite number of singularities. QAGS
and QXGS generally yield accurate results when any singularities which exist are 'ocated
at the endpoints of the interval [a,b]. However, if ' has an exceedingly narrow spike which
contributes significantly to the value of the integrai, then the subroutines may overlock the
spike and produce incorrect results. QAGSE and QXGS normally have approximately the
same accuracy. QAGS uses less storage than QXGS, but it frequently requires considerably
more iunction evaluations than QXGS. Consequently, QXGS is recommended when the
integrand F{z) is expensive to cornpute.

CALL QAGS(F,u, b,AERR,RERR,z,ERROR,NUI4,IERR,?, m, n, IWK, WK)

F(x) is a user defined function whose arguments and values are assumed to be rezl
numbers. The purpose of QAGS is to compute the integral f: F(z)dz. F need not be
defined at a and b, and it is not required that a < b. F must be declared in the calling
pregram to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used, and z is a
variable. When QAGS is called, z 1s assigned the value obiained for I = f: F(z)dz. The
subroutine attempts to obtain a value z which satisfies |I — 2| < max{AERR, RERR- ||}
It is assumed that AERR > 0 and RERR > 0. If one wants accuracy to k significant digits
then set NERR = 107%, If RERR = 0 then it is assnmed that machine accuracy is desired.

ERROR and NUM are variables. When QAGS terminates, ERROR is the estimated
absclute error of 2 and NUM the number of points at which ¥ was evaluated.

IWK is an array of dimension £ and WK an array of dimension m. IWK and WK are
work spaces for the routine. The input argument £ is the maximum number of subintervals
in which the interval of integration may be partition-:d. It is assumed that £ > 1 and rn > 4¢.
The argument n i1s a vartable. When QACS terminated, n = the number of subintervals
that appeared in the partition. Normally n < 100.

[ILRR is a variable that reports the status of the results. When the routine terminates,
KRR has one of the following values:

IERR = O The routine ¢ satisfied that the integral has been computed to the
desired accuracy.

531

[ERR = 1 The interval of integration was partitioned into £ subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR == 2 The integral has been computaed, but becavse of roundofl error
QAGS 18 not certain of the azcuracy of the result. The error may
be greater than that reported by KERROR.

IERR == 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. I i3 assumed that the requested
accuracy cannot be achieved and that the result ig the best which
can be obtained.

IERR = 5 The integral may be divergent or it, may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR == 6 (Input Error) Either £ < 1, m < 4£, AERR <« 0, or RERR < 0.
In this case, the variables z, ERROR, NUM, and n are set to 0.

Remark. NUM < 42(€ - 1) + 21
Algorithm. The 21 point Kronrod rule and e-algorithm of P. Wynn are used.

Programming. QAGS employs the subroutines QAGSE, QK21F, QPSRT, and QELG.
These routines were developed by Robert Piessens and Elise de Doncker-Kapenga (Katholiek
Universiteit Leuven, Belgium), and modified by A. H. Morris and Los Alamos National Lab-
oratory. The function SPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

CALL QXGS(F, a,b,AERR,RERR,z, ERROR,IERR,£,1,m, n,IWK, WK)

F 18 a user defined function whose arguments and values are assumed to be real
numbera. The purpose of QXGS is to compute the integral f: F(z)dz. F must be defined
at o and b, but it 1s not required that a < . F must be declared in the calling program to
be of type EXTERNAL.

AFRR and RERR are the absolute and relative error tolerances to be used, and z is a

variable. When QXGS is called, z 1s assigned the value obtained for [= fab F(z)dz. The
subroutine attempts to obtain a value 2 which satisfies | — z| < max{AERR, RERR - |I|}.
It is assumed that AERR > 0 and RERR > 0. If one wants accuracy to k significant digits
then set RERR = 107 %, If RERR = 0 then if, is ass. ned that maching accuracy is desired.

ERROR 1is a variable. When QXGS terminates, ERROR 1s the estimated absolute
error of z.

IWK is an array of dimension je and WK an array of dimension m. IWK and WK are
work spaces for the routine. The input argument € is the maximuin number of subintervals

532

in which the interval of integration may be partitioned. It is assumed that £ > 1, u > 3¢,
and m > 46£. The argument n is a variable. When QXGS terminates, n = the numnber of
subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that rernrts the status of the results. When the routine terminates,
[ERR h:t one of the followin €8;

IERR = 0 The routine . 1ed that the integral has been computed to the
desired accur .

IERE = 1 The interval :gration was partitioned into € subintervals.
More subinte ;¢ re needed to compute the integral to the de-

sired accurac .

IERR = 2 The integral hus »en computed, but because of roundoff error
QXGS is not ner 1 of the accuracy of the result. The error may
be greater than : i reported by ERROR.

IERR = 3 Extremely bad in gzrand behavior occurs in the interval of inte-

gration. The r 2 18 not certain of the accuracy obtained.
IERR = 4 The algorithn: aot converge. It is assumed that the requested
accuracy can!| achieved and that the result is the best which

can be obtain.

[ERR = 5 The integral ma ' be divergent or it may converge extremely slowly.
Ir this case, the value for z may be meaningless.

IERR = 6 (Input Error). Either £ < 1, 4 < 3¢, m < 46¢, AERR < 0, or
RERR < 0. In this case, the variables 2, ERROR, and n are set
to 0.

Remarks.

(1) If F is unbounded at a or b, then set F(a) or F(b) to a dummy value, say O.
(2) The first 4£locations of WK serve the same purpose for QXGS as for QAGS. Functiona!
values are stored in the remaining 42€ locations of WK.

Algorithm. The recursive monotone quadrature formulas of P. Favati, G. Lotti, and F.
Romant, and the e-algorithm of P. Wynn are used.

Programming. QXGS emplovs the subroutines QXGSE, QXCPY, QXLQM, QXRUL,
QXRRD, QPSRHT, and QELG. QXGS is an adaptation of QAGS where the Gauss-Kronrod
formulae have been replaced with the recursive monotone formulze. QXGS wag desigred by
Paola Favati (Instituio di Elaborazione dell’ Informazione, CNR, Pisa), Grazia Lotti, and
Francesco Romani (Universita di Pisa, Italy), ard modified by A. . Morris. The function
SPMPAR 1s also used.

Reference. Favati, P., Lotti, G., and Romani, F., “Algorithm 691. Iimproving QUADPACK
Automatic Integration Routines,” ACM Trans. Math Software 17 (1991), pp. 218252
QSUBA(F,a,b RERR MCOUNT,ERROR,IERR)

F(z) is a user defined function whose arguments and values are assumed to be real

533

numbers. The purpose of QSUBA is to compute the integral f: F{x)dzr. F need not be
defined at the points a and b. However, it is assumed that ¢ < b. F must be declared in
the calling program to be of type EXTERNAL.

RER is the relalive error tolerance to be satisfied. 1t is assumed that RERR > 0. If
ne wants accuracy to k significant digits then set RERR = 10™%,

The input argument MCOUNT is the maximum number of points at which F may be
evaluated. It is recommended that MCOUNT > 1000.

ERBOR is a variable that is set by QSUBA. If the value of QSUBA is not O then
ERROR is an estimate of the relative error of the computed result. Otherwise, if the value
of OSUBA is 0 then ERROR is an estimate of the absclute error.

IERR is a variable that reports the status of the results. When QSUBA terminates,
IERR has one of the following values:

IERR = 0 The function QSUBA is satisfied that the integral has been com-
puted to the desired arccuracy.

IERR = 1 The integral has been computed, but QSUBA is not certain of the
accuracy of the result.

IERR = 2 F(z) was evaluated at MCOUNT points. More evaluations are
needed to complete the computation of the intagral.

IERR = 3 The function QSUBA cannot compute the integral to the desired
accuracy.

If IERR == 0 or 1 then the function QSUBA is assigned the value obtained for the integral.
If IERR = 2 then QSUBA has for its value the most recent acceptable partial estimate made

the value of the integral that it can make.

Remark. QSUBA assumes that F and its derivatives have no singularities in the closed
interval |a, b]. If this is not the case then QAGS or QXGS should be used.

Algorithm. Gaussian guadrature is employed.

Programming. QSUBA calis the subroutine QUAD. QSUBA and QUALI were written by
T. N. L. Patterson (Queen’s University, Belfust, Northern Ireland}), and QSUBA was mod-
ified by A. rl. Morris. The function SPMPAR is used.

’

Reference. Patterson, T. N. L., “Algorithm for Automatic Numerical Iutegration Over a
Finite Interval,” Cornm. ACM 16 (1973), pp. 694- €99,
CALL DQAGS(F, a, b ABRR, RERR,z, ERROR,NUM,IERR,, mi, v, IW K, WK)

F{z) is ¢ user defined function whose arguments and values are assumed to be double

. b e
precigion numbers. The purpose of DQAGS is to compute the integral ju F{r)dr. The
arguments a and b are double precision numbers. # need not be defined at a and b, and

Hud

it is not required that a < . F must be declared in the calling program to be of types
DOUBLE PRECISION and EXTERNAL.

AERR and RERR are double precision numbers and 2 a double precision variable.
AFERR and RERR are the absolute and relative error tolerances to be used. When DQAGS
is called, z is assigned the value obtained for I = f: F(x)dz. The subroutine attempts
to obtain a value z which satisfies |[I — 2| < max{AERR, RERR - |I|}. It is assumed that
AERR > 0 and RERR > 0. If one wants accuracy to k significant digits then set RERR =
10~*. If RERR = 0 then it is assumed that machine accuracy is desired.

ERROR is a double precision variable and NUM an integer variable. When DQAGS
terminates, ERROR is the estimated absolute error of 2 and NUM the number of points at
which F was evaluated.

IWK is an integer array of dimension £ and WK a double precision array of dimension
m. IWK and WK are work spaces for the routine. The argument £ is the maximum number
of subintervals in which the interval of integration may be partitioned. It is assumed that
£ > 1 and m > 4£. the argument n is a variable. Wher DQAGS terminates, n = the
number of subintervals that appeared in the partition. Normally n < 100,

IERR is a variable that reports the statug of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into £ subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been compuied, but because of roundoff error
DQAGS is not certain of the accuracy of the result. The error
may be greater than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

TERR = 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR == 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for 2 may be meaningless.

IERR = 6 (Input Error) Either £ < 1, m < 4, AERR < 0, or RERR « 0.
In this case, the variables z, ERROR, NUM, and n are set to 0.

Remark. NUM < 42(€ - 1) 4 21.

Algorithm. The 21 point Kronrod rule and e-algorithm of P. Wynn are used.
Programming. DQAGS employs the routines DQAGSE, DQK2I, DQPSRT, and DQELG.
These subroutines are double precision versions by A H. Morris of the routines QAGSE,

QK21F, QPSRT, and QELG. The function DPMPAR 18 also used.

535

Reference. Picssens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automatic Integration, Springer- Verlag, 1983.

CALL DQXGS(F,a,b,AERR,RERR,2,ERROR IERR,£, 4, m, n,]IWK WK)

F is a user defined function whose arguments and values are assumed to be double
precision numbers. The purpose of DQXGS is to compute the integral f: F(z)dz. The
arguments a and b are double precision rumbers. F must be defined at a and b, but it is
not required that a < b. F must be declared in the calling program to be of types DOUBLE
PRECISION and EXTERNAL.

AERR and RERR are double precision numbers and z a double precision variable.
AERR and RERR are the absolute and relative error tolerances to be used. When DQXGS
is called, z is agsigned the value obiained for I = f: F(z)dz. The subroutine attempts
to obtain a value z which satisfies | — z| < max{AERR, RERR - |I|}. It is assumed that
AERR > 0 and RERR > 0. If RERR = 0 then it is assumed that machine accuracy is
desired.

ERROR is a double precision variable. When DXQGS terminates, ERROR is the
estimated absolute error of z.

IWK is an integer array of dimension u and WK a double precision array of dimension
m. IWK and WK are work spaces for the routine. The argument £ is the maximum nurmnber
of subintervals in which the interval of integraticn may ke partitioned. It is assumed that
£>1,u > 34 and m > 46¢. The argument n is a variable. When DQXGS terminates, n =
the number of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR = 0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR = 1 The interval of integration was partitioned into £ subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error
DQXGS is not certain of the accuracy of the result. The error
may be greater than that reported by ERROR.

IERR = 3 Extremely bad int:grand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR == 4 The algorithm does not couverge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR - 5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR = 6 (Input Error). Either € < 1, y < 3/, mi < 467 AFRR < 0, or
RERR < 0. In this case, the variables z, EKROR, and n are set
to 0,

536

Remarks.

(1) If F is unbounded at a or &, then set F(a) or F(b) to a dummy value, say 0.

(2) The first 4£ locations of WK serve the same purpose for DQXGS as for DQAGS.
Functional values are stored in the remaining 42¢ locations of WK.

Algorithm. The recursive monotone quadrature formulas of P. Favati, G. Lotti, and F.
Romani, and the ¢-algorithm of P. Wynn are used.

Programming. DQXGS employs the routines DQXGSE, DQXCPY, DQXLQM, DQXRUL,
DQXRRD, DQPSRT, and DQELG. DQXGS is an adaptation of DQAGS where the Gauss-
Kronrod formulae have been replaced with the recursive monotone formulae. DQXGS was
designed by Paola Favati (Instituto di Elaborazione dell’Informazione, CNR, Pisa), Grazia
Lotti, and Francesco Romani (Universita di Pisa, Italy) and modified by A. H. Morris. The
function DPMPAR is also used.

Reference. Favati, P., Lotti, G., and Romani, F., “Algorithm 691. Improving QUADPACK
Automatic Integration Routines,” ACM Trans. Math Software 17 (1991), pp. 218-232.

537

EVALUATION OF INTEGRALS OVER INFINITE iINTERVALS

The subroutines QAGI and DQAGI are available for computing integrals over infinite
intervals. QAGI yields single precision results and DQAGI yields double precision results.
QAGI and DQAGI are adaptive routines.

CALL QAGI(F,a,MO AERR,REKR,z,FRROR NUM,IFRR,¢,m n,]WK, WK)

F(z) is a user defined function whose arguments and values are assumed to be real
numbers. The argument a ig a real number, 2 is a variabie, and MO may be 1, —1, or
2. When QAG] is called, z is assigned the value [° F(z)dz if MO = 1 and the value
J2. F(z)dzif MO = —1. Otherwise, if MO = 2 then z is assigned the value [°. F(z)dz.
If MO = 1 then F need not be defined at a. Otherwise, if MO = 2 then a is not used. F'
must be declared in the calling program to be of type EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used. The
subroutine attempts to obtain a value z which satisfies | [F(z) dz—2| € maz{AERR,RERR-
| [F(z)dz|}. It is assumed that AERR > 0 and RERR > 0. If cne wants accuracy to &
significant digits then set RERR = 10~%. If RERR = 0 then it is assumed that machine
accuracy is desired.

ERROR and NUM are variables. When QAGI terminates, ERROR is the estimated
absolute error of z and NUM the number of points at which ¥ was evaluated.

IWK is an array of dimension £ and WK is an array of dimension m. IWK and WK are
work spaces for the routine. The input argument £ is the maximum number of subintervals
in which the interval of integration may be partitioned. It is assurned that £ > 1 and m > 4£.
The argument n is a variable. When QAGI terminates, n == the number of subintervals
that appeared in the partition. Normally n < 100,

IERRK is a variable that reports the status of the results. When the routine terminates,
IERR has one of the following values:

IERR =0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR =1 The interval of integration was partitioned into £ subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR == 2 The integral has been computed, but because of roundoff error
QAGI i8 not certain of the accuracy of the result. The error may
be greater than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine 18 not certain of the accuracy obtained.

IERR == 4 The algorithin does not converge. It 15 assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR = & The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

3¢

539

IERR = 6 (Input Error, Either £ < 1, m < 4¢, AERR < 0, or RERR < 0. In
this case, the variables z, ERROR, NUM, and n are set to 0.

Note. F may have a singularity at a when MO = *1. However, it is recommanded that no
singularities appear 1n the interior of the interval of integration.

Algorithm. The integrals are transformed as follows:

oo ~1

r dt
| F) da::/ Fla—1+1/t)3
a Q

./;“w F(x)dz:AlF(a+-1_ l/t):_ﬂ:.

oo 1
-\, dt
/_w F(z)dz = /0 [P(-1+ 1/ + F(L - 1/)] 5
The transformed integrals are computed by the 15 point Kronrod rule and the e-algorithm
of P. Wynn.

Programming. QAGI employs the subroutines QAGIE, QK151, QPSRT, and QELG. These
rcutines were developed by Robert Piessens and Eiise de Doncker-Kapenga (Katholieke
Universiteit Leuven, lieverlee, Belgium), and modified by A. H. Morris and Los Alamos
National Laboratery. The function SPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, E., Uberhuber, C. W., and Kahaner, D. K.,
QUADPACK: A Subroutine Package for Automalic Integration, Springer-Verlag, 1983.

CALL DQAGI(F,a,MO,AERR,RERR,z, ERROR,NUM IERR ¢,m,n,]WK ,WK)

F(x) is a user defined function whose arguments and values are assumed to be double
precision numbers. The argument e is a double precision number, z is a double precision
variable, and MO may be 1, -1, or 2. When DQAGI is calied, z is assigned the value
[7 F(z)dz if MO = 1 and the value J2.. F(z)dz if MO = —1. Otherwise, if MO = 2
then z is assigned the value ffow F(z)dz. If MO = +1 then F need not be defined at a.
Otherwise, if MO = 2 then a is not used. F must be declared in the calling program to be
of types DOUBLE PRECISION and EXTERNAL.

AERR and RERR are the absolute and relative error tolerances to be used. The sub-
routine attempts to obtain a value z which satisfies | [F(z)dz - 2| < mar{AERR,RERR-
| / F(z)dz|}. It is assumed that AERR and RERR are nonnegative double precision num-
bera. If one wants accuracy to k significant digits then set RERR = 10" % If RERR 0
then it is assumed that machine accuracy is desired.

FRROR is a double precision variable and NUM an integer variable. When DQAGI
terminates, ERROR is the estimated absolute error of z and NUM the number of points at
which F was evaluated.

IWK is an integer array of dimension £ and WK a double precision array of dunension
m. IWK and WK are work spaces {or the routine. The argument €13 the maxinnim number

540

of subintervale in which the interval of integration may be partitioned. It is assumed that
£> 1 and m > 4£. The argument n is a variable. When DQAGI terminates, n= the number
of subintervals that appeared in the partition. Normally n < 100.

IERR is a variable that reports the status of the results. When the routine terminates,
IERR has of the fellowing values:

IERR =0 The routine is satisfied that the integral has been computed to the
desired accuracy.

IERR =1 The interval of integration was partitioned into £ subintervals.
More subintervals are needed to compute the integral to the de-
sired accuracy.

IERR = 2 The integral has been computed, but because of roundoff error
DQAGI is not certain of the accuracy of the result. The error
may be greater than that reported by ERROR.

IERR = 3 Extremely bad integrand behavior occurs in the interval of inte-
gration. The routine is not certain of the accuracy obtained.

IERR = 4 The algorithm does not converge. It is assumed that the requested
accuracy cannot be achieved and that the result is the best which
can be obtained.

IERR =5 The integral may be divergent or it may converge extremely slowly.
In this case, the value for z may be meaningless.

IERR = 6 (Input Error) Either £ < 1, m < 4¢, AERR < 0, or RERR < 0. In
this case, the variables 2, ERROR, NUM, and n are set to 0.

Remarks. F imay have a singularity at ¢ when MO = +1. However, it is recommended
that no singularities appear in the interior of the interval of integration. DQAGI is a double
precision version of the routine QAGI.

Programming. DQAGI employs the routines DQAGIE, DQKI15I, DQPSRT, and DQELG.
‘These subroutines are double precision versions by A. H. Morris of the subroutines QAGIE,
QK15I, QPSRT, and QELG. The function DPMPAR is also used.

Reference. Piessens, R., de Doncker-Kapenga, 15, Uberhuber, C. W., and Kahaner, D. K |
QUADPACK: A Subroutine Package for Automatic Integration, Springer-Verlag, 1983

EVALUATION OF DOUBLE INTEGRALS OVER TRIANGLES

Let f(z,y) be a real-valued function defined on a triangle T. Then the subroutine
CUBTRI is available for computing the integral ffT f(z,y)dzdy. CUBTRI is an adaptive
routine.

CALL CUBTRI(F,T,e, MAX,A,ERR,»,W £ IDATA ,RDATA,IERR)

T is a 2-dimensional real array of dimension 2 x 3 where T'(1,7) and T(2,5) are the z
and y coordinates of the 7** vertex of the given triangle (5 = 1,2, 3).

IDATA and RDATA are arrays provided by the user containing any integer or real data
needed for computing the integrand f(z,y). The arrays may be of any size. F is a user
defined real-valued function having the arguments =, y,IDATA,RDATA. It is assumed that
F(z,y,IDATA,RDATA) = f(z,y) for any point (z,y) in the triangle of integration 7'. F
must be declared in the calling program to be of type EXTERNAL.

The input argument € is the error tolerance to be satisfied, and A is a variable. When
CUBTRI is called, A is assigned the value obtained for [[. f(z,y)dzdy. The routine
attempts to obtain a value A which satisfies | [f(z,y)dzdy — A| < meaz{e, e|/A|}. Thus
if |[A] < 1 then ¢ is an absolute tolerance, whereas if |A] > | then ¢ is a relative tclerance.
If one wants k digit accuracy then set € = (07%. ERR is a variable. When CUBTRI
terminates, ERR is the estimated error | [f(z,y) dx dy - A of the result.

The input argument MAX is the maximum number of points {x,y) at which F may
be evaluated, and n is a variable. On an initial call to CUBTRI, the user must set n + Q.
When the routine terminates, n will have for its value the number of points at which ¥ was
evaluated. (For subsequent calls concerning the same integral, see below.)

W i3 an array of dimension ¢ for internal use by the routine. The input argument ¢
specifies the maximum number of subtriangles in which the triangle of integration 7" may
be partitioned. The subtriangles are stored in W, ecach subtriangle requiring 6 storage
locations. Thus €/6 13 an estimate of the maximum number of subtriangles that nught have
to be stored (£ mar{1,3m i 1} where i (MAX/19 1)/4).

IERR i3 an integer variable that reports the status of the results. When the routine
terminates, IKRR has one of the following values:

IERR O The intepral was computed to the desired accuracy.

IERR I MAX is too smalll £ must be evaluated at more paints.

IERR 2 The storage space W os full Its dimension £ must be mereased.

IERR 3 Further subdivision of the subtriangles impossible. This normally
osceurs when f{r,y) has a singulonty w the region. The situation
can frequently be ehiminated by placing the singulanty at a vertex
of the tniangle of mtepration 7

IERR 4 Nolurther unprovement o acouracy s possibile because of ranndolf

error 1n the compntation of P or the trepalar behavior of F

O3

IERR =5 No further improvement in accuracy is possible because subdivi-
sion does not change the estimated integral value A. Machine
accuracy has probably been reached.

After an initial call to CUBTRI, the routine may be recalled to continue the compu-
tation of [f. f(z,y)dzdy. When the routine is recalled, the value of n obtained on the
previous call to CUBTRI is used for the next call. This value for n tells the routine where
computation should be resumed (using the information previously stored in W). At least
one of the values ¢, MAX, or £ must be modified before CUBTRI is recalled. F, T, n, W,
IDATA, and RDATA may not be changed when the routine is recalled.

Remark. F may have a singularity at one of the vertices of T (such as in the case when we
are computing fol Jo (z*+3y?)~1/2 dy dz). However, it is recommended that no singularities
appear in the interior of the triangle of integration.

Algorithm. The 7-point degree 5 rule of Raden and a new 19-point degree 8 rule are used.

Programming. CUBTRI calls the function RNDERR and subroutine CUBRUL. Informa-
tion is saved in labeled common blocks. The block names are CUBSTA and CUBATB. The
routines were written by D. P. Laurie (National Research Institute for the Mathematical
Sciences, Pretoria, South Africa).

Reference. Laurie, D. P., “Algorithm 584, CUBTRI: Automatic Cubature over a Triangle.”
ACM Trans. Math Software 8 (1982), pp. 210-218.

Htd

SOLUTION OF FREDHOLM INTCGRAL EGUATIONS
OF THE SECOND KIND

If k(s,t) and f(s) are continuous real-valued functions for a2 < s < b and « <t < b,
then the equation to be solved is

z(s) — / k(s,t)z(tjdt = f(s)

fora < 5 <b. Let K be the operator defined by (Kz)(s) = f: k(s,t)z(t) dt for any real-
valued function z continuous on [a,b]. Then (Kz)(s) is continuous for « < s < b, and
k is called the kernel of K. Also the above integral equation can be written in the form
(I - K)z = f where I is the identity operator. This equation has a unique solution if and
only if I — K is 1 — 1, in which case z = (I — K)~!f. The subroutine IESLV is available
for computing this solution.

Remark. If C{a, b] is the normed space of real-valued functions z continuous on (a, b]
and having the norm |jz|| = max{|z(t)] : @ < ¢t < b}, then K is a compact mapping

Cla,b] —+ Cla, b] having the norm ||K|| - maz f: lk(s,t)| dt.

CALL IESLV(k, f,a,b,EPS,IFLAG,S, X, £, N, M ,NF MF NORMK WK IERR)

It is assumed that a < b, and that k(s,t) and f(s) ace user defined real-valued functions
fora < s,t <b. It is recommended that k and f be several times continuously differentiable.
‘The functions k and f must be declared in the calling program to be of type EXTERNAL.

KPS is a variable and IFLAG an input argriment whose values are 0 and 1. Oun mput
EPS 1 the error tolerance that the solution must satisfy. If IFLAG 0 then EPS 15 an
absolute tolerance. Otherwise, if IFLAG | then EPS is a relative tolerance. 1f 1ESLV
solves the equation, then on output EPS is the estimated error of the result,.

Before the remaining arguments s, o f, . can be deseribed, it is necessary to give
a brief outline of the algorithm used When 1ESLY is called, the mtegral equation is
approxunated by

(t) In(*“) }\“'mk(“’W[m)fn(!n‘) f(ﬁ)

foca~ s b dlere w,,, and t,,, are the weights and aodes of Coanss Lependre quadeatiire
This equation s treated as an nterpolation for () in terms of the values sultn) These

values are obtained by solving the cquations

(+°) Dl N e K)) L)
!

A
!

fori =1, ...,n. This system of equations can be solved directly or iteratively. The following

algorithm is used:

(1) Set n =2 and go to (2).

(2) The n equatione are solved directly. Then set m = 2n and solve the m equations (%}
iteratively. if the rate of convergence is sufficiently rapid or n cannot be increased,
then go to (3). Otherwise, set n = m, and go to (2).

(3) Here n remains fixed. Repeatedly double the value of m and solve the m equations ()
iteratively until convergence occurs, m cannot be increased, or the iterations diverge.

When the algorithm terminates, values z,,{t;m) wili have been computed for the nodes
tim(f =1, ...,m). Then from (%), z(8) & z,,(s) can be interpolated for a < s < b.

N and M are input arguments, and WK is an array that is a work space for the
routine. N and M are upper limits for n and m in the algorithm, and WK is of dimension
5N? + 9(N + M) or larger. It is assumed that M > N > 2. Since n and m are always
powers of 2, N and M need only be set to powers of 2. However, this is not required.

S and X are arrays, and £ is a variable. On input, it is assumed that £ > 6. If £ > 0 then
S i3 assumed to contain £ points sy, ..., 8, at which the solution z(s) is to be evaluated.
Also X is assumed to be an array of dimension ¢ or larger. When IESLV terminates, X
contains the values obtained for z(s;), ...,z(s¢). (This is true irregardless of whether or
not the desired accuracy has been achieved.) Gtherwise, if € = 0 then S and X are assumed
to be arrays of dimension M or larger. When 1ESLV terminates £ = the final value obtained
for m, § contains the Gaussian nodes t;,(+ = 1, ..., £), and X contains the values obtained
for z(t.).

NF and MF are variables. When the routine terminates, NF is the final value for n
and MF the final value for m.

NORMK 1s a real variable. If £ >> 0 on input, then when IESLV terminates, NORMK
is an approximation for || K||. Otherwise, if £ = 0 then NORMK = 0.

IERR is a variable that reports the status of the results. When the routine terminates,
[ERR has onz of the {ollowing values:

IERR = 0 The solution was obtained to the desired accuracy. EPS is the
estimated error of the resull.

IERR == 1 'The sclution was not obtained to the desired accuracy. EPS is the
estimated error of the result.

IERR := 2 The solution was not obtained to the desired accuracy. It is not
clear what accuracy (if any; has been achieved. EPS has been set
to 0.

IERR = 3 The input value for EPS was too small. This may be due to ill-
condit*oning of the integral equation. The value of KPS was raset
to a more realistic tolerance, which the solution satistied.

IERR 4 The solutica z(s) was obtained at the Gaussian nodes to the de-
sired precision. However) the interpolation process may not pre-
serve this accuracy for the evaluation of r(s) for other points s

EPS s the estunated error of the solution at the Gaussian nodes.

He6

IERR = 5 The solution z{s) was not obtained to the desired accuracy at
the Gaussian nodes. EPS is the estimated error at these nodes.
The interpolation process may not preserve thie accuracy for the
evaluation of z(s) for other points s.

IERR = 6 The input value for EPS was too small. This may be due to ill-
conditioning of the integral equation. The value of EPS was reset
to a more realistic tolerance, which the solution z(e) satisfied at
the Gaussian ncdes. The interpolation process may not preserve
this accuracy for the evaluation of z(a) for other points s.

Difficulties can arise, causing IERR > 1, when the integral equation is ill-conditioned or
the kernel k(s,t) is not appropriate f{or standard Gaussian quadrature. Ill-conditioning can
occur whe the operator I - K is near singular or the norm ||K|| is exceedingly large.
Inappropriate kernels k(s,t) include those which are highly oscillatory or not continucusly
differentiable for s and t in the open interval (a,b).

Program:ming. IESLV employs the subroutines lEGS, NSTERP, WANDT,LEAVE, ITERT,
LNSYS and functions RMIN,RNRM,CONEW. The routines save and exchange information
in fabled common blocks. The block names are XXINFO and XXLIN. The routines were
written by Kendall E. Atkinson (University of Iowa), and modifiedl by A H. Morris. The
function SPMPAR is also used.

Reference. Atkinson, K. E.,“Ar Automatic Program for Linear Fredholm Integral Equa-
tions of the Second Kind,” ACM Trans. Math Software 2 (1976), pp. 154-171.

547

THE INITIAL VALUE SOLVERS — INTRODUCTORY COMMENTS

where f(t,y) = (f1(t,y), ..., fa(t, y)) Assume that y(a) is known. Then for b # a the sub-
routines ODE, BRKF45, RKF45, GERK, SFODFE, and SFODET1 are available for computing
y{b). These routines are adaptive variable step, multistep differential equations sclvers. 'The
remaining subroutines (RK and RK8j are one step procedures. Given the values y(t) and
h, the one step solvers compute a value for y(t + h). The problem of selecting a suitable
value for h is left to the user. Given y{a) and b, the one step solvers must be repeatedly
called to step along the interval from a to b. In contrast, given y(aj, b, and error tolerances
that are to be satisfied, the adaptive sclvers continually adjust their step size (and possibly
order) as they automatically step along the interval from a to b.

The adaptive subroutines differ in their capabilities. ODE, BRKF45, RKF45, and
GERK are recommended for nonstiff equations, and SFODE and SFODE1 for stiff equa-
tions. If one does not know whether the equations are stiff, then ODE should be tried.
ODE maintains greater accuracy than the other subroutines, and it notifies the user if the
equations appear to be stiff. ODE, BRKF45, RKF45, and GERK are able to handle mildly
stiff problems satisfactorily, but SFODE and SFODEL are the only subroutines that can be
used for solving extremely stiff problems.

If the equations are nonstiff, then ODE and BRKF45 should first be considered for
solving the equations. If accuracy to 10 or more digits is needed then CDE should be used.
Otherwise, if accuracy to 8 or fower digits is desired and the derivative evaluations are
inexpensive, then BRKF45 may be the most efficient subroutine for solving the problem.
BRKF45 normally requires more derivative evaluaticus than ODE, but its overhead is less
than thay for ODE. The nonstiff solvers RKF45 and GERK may also be used if accuracy to 8
or fewer digits is desired. However, these routines are not recommended since interpolation
is not employed (see the output comments below).

When the user specifies error tolerances to be satisfied, normally he ts interested only in
the global error (the error of y(b)). However, the adaptive subroutines employ the tolerances
for controlling local error (the errcr generated at each step in the interval from a to b). No
attempt is made to control the pro ressive erosicn of accuracy that can vceur when the steps
accumulate. GERK is the only su. routine that estimates the global error. This subroutine
empleys the same Runge-Kutta-Fehlberg formulae used by RKF45, GERK i3 2-3 times
slower than RKF45, but it is more accurate. RKIE45 and BRKFA45 take roughly the same
amount of time, and have approximately the same accuracy.

Output Considerations. Generally, when the equations y/'(t) - 7(t,y(t)) are to be solved
and y(ap) is known, then solutions will be needed at a sequence of points ay, .., a4, If
ODE, BRKF45, SFODE, or SFODEL iy used, then the closeness of the output points a,
should be of no concern. The subroutines partially ignore «, ;¢ in the selection of the step
size when going from a, to «, ;. lIustead) they step along the tnterval using the largest
steps that are appropriate (accuracy and efliciency are the prime concerns). Normally a,

will be passed in the process If a, ;) v passed then a quick interpolation yields the duesired

549

result for y(a;+1). Thus, the process of solving the equations at a4 ; when y(a;) is known
may require that no sieps be taken {a,;; may have been passed on a previous cail to the
routine), or it may rsquire that one or more steps be taken.

The situation is considerably different when RKF45 or GERK is used. Since these
subroutines do not have an interpolatioa procedure, they must select a step size so as not
to bypass a; 11 when going from a; to a;+1. Thus, the output points a; may be so close to one
another that inordinately small step sizes are required. If this occurs then the performance
of RKF45 and GERK may deteriorate dramatically. The subroutines notify the user when
this occurs.

Hot)

ADAPTIVE ADAMS SOLUTION OF
NONSTIFF DIFFERENTIAL EQUATIONS

Let y'(t) == f(t,y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f1(t,¥), ..., fa(t,y)) and y() = (vi(t), ..., yu(t)). Assume that y(a) is
known. Then for b # o the subroutine ODE is available for computing y(b). ODE is
recornmended for nonstiff equations. The algorithm used is a variable order, variable step
Adarus predictor-correcter procedure.

CALL ODE(F,n,Y,T, TOUT,RERR,AERR,IND, WK IWK)

The argument F' is the name of a user defined subroutine that has the format:
CALL F(t,Y,DY)
Y and DY are arrays of diraension n. On input Y containg the values yy(t),...,y,(t) for the
argument t. F computes the derivatives yi(t}, ...,y (¢) using y'{t) = f(t,y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

WK is ap array of dimension 100 + 21n or larger, and IWK is an array of dimension
5 or iarger. WK and IWK contain information needed for subsequent calls to ODE.

It is assumed that a 3 b. The argument ¥ of OD¥ is an array of dimension n, and
the arguments T, REBRR,AERR,IND are variablez. {TOUT need not be a variable.) When
ODE is initially called, it is assumed that:

T=aua

TOUT == b

Y (1), ...,Y(n) contain the values y;(a), ..., yn(a)

RERR = the relative error tclerance to be satisfied

AERR = the absolule error tolerance to be satisfied

IND = -1
It is preferable, both for efficiency and accuracy, that QDE be permitied to step along the
axis from a to b using the largest steps that are aporopriate. This is what 18 done when
INTY 18 set to 1. If INDD = 1 then ODE will step along the axis, possibly passing b and
going &g far as the point a + 10{b ~ a). If b is passed, then the solution for the equations

not deiined at all poiniz hetween b and a + i0{b - a}. In a situation such =zs this, when
interration cannot be permitted to step internally past TOUT, IND must be set to ~ 1. If
IND == —1 then it is required that the subrcutine F be defived at TOU'T. However, F need
not be defined at points ¢ past TOUT. If the equations y'(¢) = f(¢, y(t)) are not defined at
t = TOUT, then it should suffice to let ¥ set each DY(r) - 0 when t = TOUT. A solution
(if one exists) will be obtained by extrapolation.

If IND ig positive (negative), then when ODYE terminates IND will have been reset by
ODE to one of the values 2,34 56,7(2,--3, -4, -5, --6,7). These values have the following
meanings:

IND = 2 The equations have been solved ot TOUT. 7" now hag the value

TOUT sand ¥ contairs the solution ot 'TOUT,

IND = 43 The error tolerancesr RERK and AERR are too smalll 113 set to

the point closest to TOUT for which the equations were solved

ey
e

and Y contains the solution at the point. RERR and AERR have
been reset to larger acceptable values.

IND = 4 MAXNUM steps were performed.! More steps are needed to reach
TOUT. T is set to the point closest to TOUT for which the equa-
tions were solved and Y contains the solution at the point.

IND = +5 MAXNUM steps were performed. More steps are needed to reach
TOUT. T is set to the point ciosest to TOUT for which the equa-
tions were solved and Y containg the solution at the point. The
equations appear to be stiff,

IND = +6 ODE did not reach TOUT because AERR = 0. T is set to the
point clogsest to TOUT for which the equations were solved and Y
contains the solution at the point.

IND = 7 Nocomputation was performed. Aninput error was detected. The
user must correct the error and call ODE again.

If IND = +3,+4,+5 then to continue the integration just call ODE again. Similarly, if
IND = 46 then reset AERR to be positive and call ODE again. In these cases do not modify
T,Y,IND. The output values for these parameters are the appropriate input values for the
next call o ODE. However, AERR and RERR may always be modifed when continuing an
integration.

If the equations appear to be stiff (i.e., if IND = 15) then ODE may not be suitable
for solving the equations. In this case it is reconmended that a routine designed specifically
for stiff equations be used.

Whenever IND = 2 occurs, then the equations have been solved at TOUT = 4. WK
and 1WK contain information that can often be reused in continuing along the axis and
solving the equations at a new point ¢. To continue the integration, normally one need only
reset TOUT to the new value ¢ and call ODE again. Do not medify T, Y,IND. The output
values for these parameters are normally the appropriate input values for the next call to
ODE. The one exception is when the equations are not defined at points past ¢. If this
occurs, then one should also reset the output value IND = 2 (from the last call to ODE) to
the input value IND = -2 for the next call to ODE. If IND is reset to --2, then integration
will not proceed internally past the new TOUT when ODE is recalled. In this case, the
subroutine F need not be defined for points past TOUT. However, it is required that F be
defined at TOUT.

If after going from a to b, ODE is recalled to continue the integration and solve the
equations at a new point ¢, then it is important that IND be set to £2 for the next
call to ODE. Setting IND to +1 causes the integration procedure to be restarted, thereby
elitninating the information being saved in WK and IWK. Restarting not only can take more
time, but also can lead to less accurate results. H IND ig set to £ 2, then the integration
procedure restarts itself only if the direction of integration is being reversed or IND was
negative when QDE was lagt recalled. The direction of mtegration is reversed whei b doces
not lie between a and c.

'F.ach step normally requires two calls to the subroutine F. Currently the internal parasmeter MAXNUM

18 set at 500,

o
(S5

If one has a choice between setting IND to be positive or negative, then always set IND
to be positive. Extrapolation is normally involved when IND is negative. The extrapolation
can require more time and be less accurate than the procedures employed when IND is
positive.

Input Errers. IND = 7 when one of the following conditions is violated:

(1) n>1

(2) T # TOUT

(3) RERR > 0 and AERR > 0

{4) RERR and AERR are not both 0

(5) 1 < |IND| < 5,0r IND = +6 and AERR > 0

(6) When continuing an integration, the input value for 7' is the output value of TOUT
from the previous call to ODE.

The last condition is automatically satisfied if the user has not inadvertently modified 7.

Error Control. Assuming that ODE has obtained the correct value for y(t), let e; denote the
error generated in the computation Y (5) of y;(t+h) for i = 1, ..., n when ODE steps from ¢
to t + h. The routine attempts at each step to maintain the accuracy Z;(e;/w;)? < 1 where
wy =RERR |Y (1)|+ AERR. When this criterion is satisfied, then |e;| < w; for v =1, ...,n.
This criterion includes as special cases relative error (AERR = 0) and absolute error (RERR
= 0). However, if AERR = 0 and Y (i) = O for some ¢, then w; = 0 and IND = 6.

When going from T to TOUT, ODE continually adjusts its order and step size so as
to maintain accuracy at each step. However, no attempt is made to control the progressive
erosion of accuracy that can occur when the steps accumnulate. Since the erosion of accu-
racy can be sigrificant, at times cne may wish to double-check the resuits by rerunning the
problem. If this is done, then in the second run ask for greater accuracy.

Programming. ODE employs the subroutines DE1, STEPI, and INTRP. These routines
were written by L. F. Shampine and M. K. Gordon (Sandia Laboratories). The function
SPMPAR is also used.

Reference. Shampine, L. F., and Gordon, M. K., Computer Solution of Ordinary Dif-
ferential Equations, W. H. Freeman and Company, San Francisco, 1975.

ADAPTIVE BLOCK RKF SOLUTION OF NONSTIFF
ODIFFERENTIAL EQUATIONS

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (fi(t,y), ..., fa(t,y)) and y{t) = (vi(t), ..., yn(t)). Assume that y(a) is
known, and that f is defined and continuous on the interval from a to TIEEND. Then for any
b in this interval the subroutine BRKF45 13 available for computing y(b) and its derivative
y'(6). BRKF45 was designed for solving ncnstiff differential equations when derivative
evaluations are inexpensive and the accuracy requirements are low (8 or fewer significant
digits). The subroutine employs the Cash block Runge-Kutta—Fehlberg procedure.

CALL BRKF45(F,n,Y, T, TOUT TEND,DY RERE, AERR,IND, WK, ,IWK)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Y,DY)
Y and DY are arrays of dimension n. On input ¥ contains the values y;(t), ..., ya(t) for the
argument t. F computes the derivatives y' (1), ..., y',(t) using y'(t) = f(¢,y(¢)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

WK is an array of dimension 6 + 9n or larger, and IWK an array of dimension 5 or
larger. WK and IWK contain information needed by subsequent calls to BRKF45.

The arguments Y and DY of BRKF45 are arrays of dimension n, and the arguments 7T,
RERR, and IND are variables. (TOUT, TEND, and AERR need not be variables.) When
BRKF45 is initially called, it is assumed that:

T=a

TOUT = b

TEND = end of the interval of integration (TEND # a)

Y (1), ...,Y(n) contain the values y((a), ..., yn(a)

RERR = the relative error tolerance to be satisfied (RERR > 0)

AERR = the absolute error tolerance to be satisfied (AERR > 0)

IND = +1
For efficiency, BRKF45 will step along the iuterval (in 2-step blocks) from a to b, using the
largest steps that are appropriate. 1F IND = --1 then only a single 2-step block will be
taken. Otherwisge, if INDI} = 1 then BRKF45 will step along the interval, possibly passing
b (but never passing TEND). If § is passed then the solution for the equations at b will be
obtained by interpolation.

On output T 1s sct to the point closest to TOUT for which the equations were solved,
Y contains the solution y(7') at 7', and DY contains the derivative y'(7') at T'. Also, IND
reports the status of the results. BRKF45 sets IND to one cf the following values:
IND - 2 Either the equations were solved at TOU'T (in which case, T now
hag the value 'TOUT), or TOUT was beyond TEND and the equa-
tions were solved at TEND (in which case, T now has the value
TEND).
IND 2 A single 2 step block in the direction of FOUT was taken.

~

IND == 3 The error tolerance RERR was too small. RERR has been reset
to a larger acceptable value.

IND = 4 18000 derivative evaluations (involving approximately 2000 2- step
blocks) were perforiued. More derivative evaluations are needed
to reach TOUT.

IND == § BRKF45 did not reach TOUT because AERR = 0. AERR must
be made positive.

IND == 6 Too much accuracy was requested. RERR or AERR must be
increased in value.

IND = 7 An input error was detected (see below).

&

If IND = 2 and T now has the value TOUT, then the equations have been solved at
TOUT = b. The arrays WK and IWK contain information that can be reused in continuing
along the interval from b to TEND and solving the equation at a new point ¢. To continue
the integration the user need only reset TOUT to the new point ¢ and call BRKF45 again.

If IND = —2 then to continue the integration another 2-step block just call BRKF45
again. In the single 2-step block mode (IND = —1, —2) the user must keep in mind that
each step taken is in the direction of the current TOUT. Upon reaching TOUT (which is
indicated by IND = 2 and T = TOUT), the user may define a new TOUT and set IND =
+2 for further integration.

If IND = 3 or 4 then to continue the integration just call BRKF45 again. However if
IND = 5 then the user must first reset AERR to be positive before BRKF45 can be recalled.
If this is not done then the run will be terminated by a STOP instruction! If IND = 6 then
it is required that IND be reset to 42 and that AERR or RERR be increased in value, If
this is not done then the run will be terminated by a STOP instruction.

If after going from a to b, BRKF45 is recalled to continue the integration and solve
the equations at a new point ¢, then it is important that IND be set to 42 instead of
+1. Setting IND = :£1 causes the integration process to be restarted, thereby eliminating
the information being saved in WK and IWK. Restarting wastes time and is norm.aliy not
needed. The only excepticns are when the direction of integration is reversed or TEND
is modified. Then the integration must be restarted. (TEND must be modified when the
direction of integration is reversed.)

The purpose for the argument TEND is to ensure that no integration is performed past
this point. This is important since F may not be continuous at TEND, or F may not be
delined beyond TEND. When the equations are solved at TEND (which is indicated by IND
= 2 and T = TEND), then no ‘urther integration can be performed. It is always assumed
that T # TEND on input.

Notes.

(1) T, n, WK, IWK must never be modified on a continuation call to BRKF45. However,
AERR and RERR may be modified at any time.

(2) When continuing an integration, one may switch from the standard multistep mode
(IND - 2) to the single 2- step block mode (IND - - 2) when it is convenient to do so.

lnput Evrors. IND = 7 when one of the following errors is detected:

(1) n <0
(2) T = TEND
(3

(4) TOUT and TEND are in opposite directions from T.

(5) IND = O or |IND| > 7.

If (2) occurs then integration cannot be continued. Otherwise, the error must be corrected
and IND reeet to +1 (or +2 when the previous call was a continuation call). If this is not
done then the run will be terminated by a STOP instruction when BRKF45 is recalled.

)
) Either AERR or RERR is negative.
)

Error Control. When going from T to TOUT, BRKF45 continually adjusts its step size
so as to maintain accuracy at each 2-step block. However, no attempt is made to control
the progressive erosion of accuracy thak can occur when the steps accumulate. Since the
erosion of accuracy can be significant, at times one may wish to double-check the results
by rerunning the problem with BRKF45 or ODE. If this is done then in the second run ask
for greater accuracy.

Programming. BRKF45 employs the subroutines RKFC and EXTRA. These routines were
written by J. R. Cash (Imperial College, London), and inodified by Desmond J. Higham
and A. H. Morris. The function SPMPAR is also used.

References.

(1) Cash, J.R.,“A Block 6(4) Runge-Kutta Formula for Nonstiff Initial Value Problems,”
ACM Trans. Math Software 15 (1989), pp. 15-28.

(2) Higham, D.J., “Remark on Algorithm 669,” ACM Trans. Math Software 17 (1991),
pp. 424-426.

957

ADAPTIVE RKF SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order differential equations
where f{t,y) = (f1(t,y), ..., fa (t,y)) and y(t) = (y1 (¢), ..., yn {t)). Assume that y(a) is
known. Then for b # a the subroutine RKF45 is available for computing y(b). RKF45 was
designed for solving nonstiff differential equations when derivative ¢cvaluations are inexper.-
sive and the accuracy requirements are low (less than 8 significant digits). The routine
employs the fourth-fifth order Runge-Kutta-Fehlberg formulae.

CALL RKF45(F,n,Y, T, TOUT, RERR,AERR,IND, WK ,IWK)

The argument F is the name of a user defined subroutine that has the fecrmat:
CALL F(t,Y,DY)
Y and DY are arrays of dimension n. On input Y contains the values y;1(t), ..., y,(t) for the
argument t. F computes the derivatives y{(t), ...,y (t) using y'(t) = f(¢,y(¢t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

WK is an array of dimension 3 + 6n or larger, and IWK is an array of dimension 5 or
larger. WK and IWK contain information needed for subsequent calls to RKF45.

The argument Y of RKF45 is an array of dimension n, and the arguments 7', RERR,
IND are variables. (TOUT and AERR need not be variables.) When RKF45 is initially
called, it is assumed that:

T=a

TOUT = b

Y (1), ...,Y(n) contain the values y(a), ...,y.(a)

RERR = the relative error tolerance to be satisfied (RERR > 0)

AERR = the absolute error tolerance to be satisfied (AFRR > 0)

IND = 11
Normally IND) = 1. However, if only a single step in the direction of TOUT is to be taken,
then set IND == — L

On output T 1s set to the point closest to TOUT for which ihe equations were solved,
and Y containg the solution at 7. Al-o IND reports the status of the reselts RKEFAD sets
IND to one of the following values:

IND - 2 The equations were successfully solved at TOU T, T now has the

value TOUT.

IND - 2 A single step in the direction of TOU'T was taken.

IND 3 The error tolerance RERR was too small. RERR has been reset

to a larger zeceptable value.

IND 4 3000 derivative evaluations were performed. More derivitive eval-

uations are needed to reach TOUT,

IND 5 PKEF4b did not reach TOUT because ABRR 00 AERR mast be

made positive

IND 6 Too much accuracy has been requested. AEREK o RERR must be

increased movaloe

rr
HHY

IND = 7 The closeness of the output points is restricting the natural atep
size choice.
IND = 8 An input error was detected (see below).

If IND = 2 then the equations have neenr solved at TOUT == 5. The arrays WK and
IWK contain information that can often be reused in continuing along the axis and sclving
the equations at a new point ¢. To continue the integration the user need only reset TOUT
to the new point ¢ and call RKF45 again.

If IND = -2 then to continue the integration another single step just call RKF45
again. In the single step mode (IND = -1, —2) the user must keep in mind that each step
taken is in the direction of the current TOUT. Upon reaching TOUT (which is indicated by
IND being set to 2), the user may then define 2 new TOUT and set IND to +2 for further

integration.

If IND = 3 or 4 then to continue the integration just call RKF45 again. However, if
IND =5 then the user must first reset AERR to be positive before RKF45 can be recalled.
If this is not done then the run will be terminated by a STOP instruction! If IND == 6 then
it is required that IND be reset to 2 and that AERR or RERR be increased in value. If
this is not done then the run will be terminated by a STOP instruction.

If IND = 7 then the user should switch to a routine (such as ODE or BRKF45) which
performs interpolation. If the user insists on continuing the integration with RKF45 then
1t is required that IND be reset to 12 before RKF45 is recalled. If this is not done then the
run will be terminated by a STOP instruction.

If after going from a to b, RKF45 is recalled to continue the integration and solve
the equations at a new point ¢, then it is important that IND be sct to 2 justead of
4:1. Setting IND == b1 causes the integration process to be restarted, thereby eliminating
the information being saved in WK and IWK. Restarting wastes time and is noermally not
needed. The one exception ts when the direction of integration is to be reversed. Then the
integration must be restarted.

Notes.

(1) AERR and RERR can be maodified each time that RKi745 is called.

(2) When continuing an integration, one may switch from the starsiard multistep mode
(IND 2) to the ane step mode (IND 2} whenever it s convenient to do so.

Input Errors. IND) - 8 occurs when one of the followiny conditions is violated:

(l) n o1

(2) 7/ TOUT when IND /1]

(3) RERR - 0 and ABRR -0

(4) IND 112,34, .. .8

HIND % then the error must be carrected and IND reset. to 01 (or 12 when the previous
call was wcontinnation call). H this s not done then the ron will be terminated by a STQP

mstraction when REKEFAL 1w recatled

Lo

Error Control. When going from T to TOUT, RKF45 continually adjusts its step size so as
to maintain accuracy at each step. Assuming that RKF45 has obtained the correct value
for y(t), let e; denote the error generated in the computation of y(¢ + h) fori=1,...,n
when RKF45 steps from ¢ to t + A. Then at each step the error is controlled so that

o] < 1T I3t + b)
= 2

RERR + AERR

fors =1, ...,n. However, no attempt is made to control the progressive erosion of accuracy
that can occur when the steps accumulate. Since the erosion of accuracy can be significant,
at times one may wish to double-check the results. This can best be done by comparing the
results obtained by RKF45 with those obtained by ODE or GERK. If ODE is used then
ask for greater accuracy. However, if GERK is used then the current error tolerances can
be used. GERK is more accurate than RKF45, and it estimates the global error generated.

Programming. RKF45 employs the subroutines RKFS and FEHL. These routines wer=
written by H. A. Watts and L. F. Shampine (Sandia Laboratories). The function SPMPAR

is also used.

References. Shampine, L. F.,and Allen, R. C., Numerical Compuiing: An Introduction,

W. B. Sanders, 'hiladelphia, 1973.

Hol

ADAPTIVE RKF SOLUTION OF NONSTIFF DIFFERENTIAL EQUATIONS
WITH GLOBAL ERROR ESTIMATION

Let y' (¢) == f(t,y(t)) denote a system of n ordinary first order differential equations
where f(t,y) = (f1(t,y), ..., fn (t,¥)) and y(t) = (y1 (t), ..., yn (t)). Assume that y(a) is
known. Then for b # a the subroutine GERK is available for computing y(b). GERK was
designed for solving ncastiff differential equations when derivative evaluations are inexpen-
sive and the accuracy requirements are low (less than 8 significant digits). The routine
employs the fourth-fifth crder Runge-Kutta-Fehlberg formulae. GERK estimates the accu-
racy of the solution y(b).

CALL GERK(F,n,Y,T, TOUT,RERR,AERR,IND,GERROR,WK,IWK)

The argument F' is the name of a user defined subroutine that has the format:
CALL F(t,Y,DY)
Y and DY are arrays of dimension n. On input Y contains the values y; (¢, ..., yn (¢)
for the argument t. F computes the derivatives y)(t), ...,y (t) using y'(t) = f(¢,y(¢))
and stores the results in DY. F must be declared in the calling program to be of type
EXTERNAL.

WK is an array of dimension 3 +4- 8n or larger, and IWK is an array of dimension 5 or
larger. WK and JWK contain information needed for subsequent calls to GERK.

The argument Y of GERK i3 an array of dimension n or larger, and the arguments 7’
and IND are variables. (TOUT, RERR, AERR need not be variables.) When GERK is
initially calied, 1t is assumed that:

T a

TOUT - b

Y (1), ... Y(n) contain the values y; (a), ..., y, (a)

RERR - the relative error tolerance to be satisfied (RERR > 0)

AERR - the absolute error tolerance to be satisfied (AERR > 0)

IND bl
Normally IND 1. However, if only a single step i the disection of TOUT is to be taken
then set IND I

GERROR s an array of dunension noor larger. Qo outpat 17 s set to the point closest to
TOUT for which the equations were solved, Yo contains the solution at 7', and GERBOR(1)
boan estimaie of the error of Y{1) for 1 b, o n Also IND reports the statas of the
results, GERK sets IND to one of the followimg values:

IND 2 The equations were saccesstully solved at TOUT P now has the
value TOUT

IND 2 A simple stepon the direction of TOUT was tiwken.

IND 3 0000 dertvative evaluations wers performed More derivative eval

wations are needed to reach TOUT
IND 1 GERRK did not reach TOUTT becanse ARLRR O ARERR s be

i le postinve

and

IND = 5 Too much accuracy has becn requested. AERR or RERR must be
inicrensed In value.

IND = 6 The closeness of thz ouiput points is restricting the natural step
size chol e.
IND = 7 An input error was detected (see below)

If IND = 2 then the equations have been sclved at TOUT = b, The arrays WK and
{WK contair informatiou thai can ofien be reused in continuing along the axis and solving
the equations at a new point ¢. To continue the integrstion the user need only reset TOUT
to tne new noint ¢ and call GEDK again.

If IND = —2 then to continue the integra‘icn anotner single step just call GERK again.
In the singl. step mode (IND = —1,—2) the user must keep in mind that each step taken

1s in the direction of the current TQUT. Upon reaching TOUT (which is indivated by IND
being set to 2), the user may then define & new TOUT and cet IND to +2 for further
integration.

If IND = 3 then to continue the integration just call GERK agzin. However, if IND =
4 then the user must first reset AERR to be positive before GERhK can be recalled. 1f this
iz not done then the run will be terminated by a STOP instruction! If IND = 5 then it is
required that IND be reset to 1:2 and that AERR or RERR be increased i value. 1F this
is not dene then the run will be terminated by a STOP instr. =tion.

If IND := 6 then the user should switch to a routine (such as DD or BRKF45) which
performs interpolation. If the user insists on cor‘inuing the integration with GERK theun
it is required that IND be reset to 2 before GERK is recalled. I” this is not dene then the
run will be terminated by a STOP (astruction.

If after going from a to b, GERK 1is recalled to continue the integration and solve
the equations at a new point ¢, then it is important that IND be set to 42 instead of
1. Setting IND = *1 causes the .ategration process to be restarted, thereby eiiminating
the information being saved in WK and IWK. Restarting wastes time and is normally not
needed. The one exception is when the direction of inteeration is to be yeversed. Thexn the
integration must be restarted.

Notes.

(1) AERR and RERR can be modified each time that GERK is called.
(2) When continuing an integration, cne may switch from the standard multistep mode
(IND - 2) to the one step mode (IND = - 2) whenever it is convenieat te do so.

Input Errors. IND - 7 occurs when one of the following conditions is violated:

(1) n > 1

(2) T/ TOUT whon IND /£ 11
(3) RERR = 0 and AERR >0
(1) IND © 11, 02,8,4,7

ITIND 7 then the error must be corrected and INDY reset to 10 {or 2 when the proc . oos
cell was a continuaaan 2all). If this s not done then the run will be terminated by & 8100

H64

instruction when GERK is recalled.

Accuracy Considerations. Error control in GERK is almost identical ¢t that in RKF45.
One minor difference is that GERK never einploya relative error tolerances less than 3-10~11,
whereas RKF45 never employs relative error tolerances less than 10712,

The only significant difference between GERK and RKF45 is that GERK generates
two solutions for the differential equations, whereas RKF45 generates only one. Let y(t)
and §(t) denote the solutions generated by GERK at point t. One of these solutions, say
y(t), will frequently be identical to the soiution computed by RKF45. When going from ¢
to ¢t + h, the step size h is selected so thai y(t + &) satisfies the local error criterion. After
a suitable A is found then GERK takes two steps, each of length h/2, to generate §(t+ h)
from §(t). When GERK terminates, say au point 7', then the §(T') solution is storad in the
Y array and GERK estimates the error of §,(T) to be (y;(T) — 9:(T))/3L fori =1, ...,n.

Programming. GERK employs the subroutines .xERKS and FEHL. These routines were
written by H. A. Watts and L. F. Shampine (Sandia Laboratories}. The function SPMPAR

is also used.

Reference. Shampine, L. F., and Allen, R. C., Numerical Computing: An Introduction,
W. B. Saunders, FPhiladelphia, 1973.

560

ADAPTIVE SOLUTION OF STIFF DIFFERENTIAL EQUATIONS

Let y'(t) = f{t,y(t)) denote a system of n ordinary first order differential equations where
fle,9) = (f1(t,y). ..., [a(t,y)) and y(¢) = (y1(t), ..., yn(t)). Assume that y(a) is known.
Then for b # a the foilowing subroutines are available for computing y(b). These routines
are designed for stiff differential equations. The algorithm used is a variable order, variable
step backward differentiation procedure.

CALL SFODE(¥, n,Y,T,FOUT,INFO,RERR,AERR,IER,
WK,£IWK,m RD,ID)

RD and ID are arrays lefined by the user containing any real and integer datz that is
needed for computing f. These arrays may contain any information that the user desires.
The argument F is the naine of a user aefined subroutine that has the format:

CALL F{t,Y ,DY,RD,ID)
Y and DY are arrays of dimension n. On inpui Y contains the values y;(t), ..., y,(t) for the
argument t. F computes the derivatives yi(t), ..., y.(t) using y'(t) = f(¢,y(t)) and stores
the results in DY. F must be declared in the calling program to be of type EXTERNAL.

INFQ is an array of dimension 4, WK an array of dimension £, and IWK an array of
dimension m. WK and IWK are work spaces for the routine, and INFO is an array defined
by the user containing information on how the equations are to be treated.

INFO(1): Set INFO(1) = 0 cn an initial call to the routine. On a continua-
tion call INFO(1) = 1.

INFO!(2): Normally INFO(2) = 0. However, INFO(2) = 1 when the inter-
mediate output mode is desired (see below).

INFO(3): When INFO(3) = 0, 3FODE proceeds from a to b using the largest
steps that are appropriate. If b is passed then y(b) is obtained by
interpolation. However, for sume problems the routine cannot be
permitted to step past a point TSTOP because y'(t) = f(t,y(t))
18 discontinu-. s or not defined beyond TSTOP. When this is the
caze set INFO(3) = 1 and WK(1) = TSTOP.

INFO(4): When procceding from a to b, the n x n Jacobian matrix Jf(t) =
(8f,:/0y,) is computed and stored in WK. Normally it is assumed
that

INFO(4) = 0

£ > 250+ 10n +n?

m > 554 n.
However, if J f(2) is banded for all ¢, having the lower and upper
band widths my, and m, where 2riy + my, < n, then the following
setup can he used:

INFO(4) - 1

IWK(1) iy

IWK(2) - on,

& 22504 100 b (Zrsg b b e

moo Lo n

T, TOUT, RERR, and AERR are variablen, and the argument ¥ of SFODE is an

array of dimensior n. On an initial call to the routine it is assumed that

INFO(1) = 0

T=¢

TOUT = b

Y (1), ...,Y(n) contain the valaes y1(a), ...,yn(a)

RERR = the relative error tolerance to be satisfied (RERR > 0)

AERR = the absolute error tolerance to be satisfied {AERR > 0).

IER is a variable. When SFODE terminates T is the final point where the equations
were solved, Y contains the solution at T, and IER reports the status of the results. [ER
is assigned one of the following values:

IER = 1 A step was taken in the intermediate output wode. TOUT was
not reached. To continue, call the routine again.

IER = 2 The solution at TOUT was obtained by stepping exactly to TOUT.

IER = 3 The solution at TOUT was obtained by stepping past TOUT and
then interpolating. On output T = TOUT.

IER = -1 500 steps have been taken. TOUT has not been reached. To
continue, call the routine again.

IER = —2 The tolerances RERR and AERR were too stringent. RERR and
AERR have beea modified by the routine. The tclerances may be
further modified by the user if he desires. To continue, call the
routine again.

IER = —3 In this case AERR = 0. SFODE stopped when y; became O.
INFO!{1) was set to —¢. To continue set AERR to be positive,
INFO(1) = 1, and call the routine again.

IER == —6 Convergence failed on the last attempted step. An inaccurate
Jacoblan matrix may be the problem. To continue, restart the
routine by setting INFO(1) = 0 and call the routine again.

IER = —7 Repeaied error test failures cccurred on the last attempted step.
The problem should he reexamined. A singularity may be present
in the solution. To continue, restart by setting INFC(1) = 0 and
call the routine again.

IER < --33 An input error was detected (see below),

When IER > -2, then INFO(1) == 1 on cutput.

When the equations are solved at TOUT (15K == 2 or 3), integration can be continued
along the uxis to solve the equetions ai a new point ¢ beyond TOUT. To continue, one
need only set TOUT to the new value ¢ and call the routine again. When continuing an
integration where INFO(1) = 1, never modify 7, Y, WK, IWK, INFO(3), and INFO/4).
However, INFO{2), RERR, AERR, RD, and D may be modified at any time.

Intermediate Qutput Mode. Il one wishes to study the behavior of the solution y(t) as
thie routine steps from 7" to VOUT, Lhen sei INFO(2) - 1. Then SFODE will stop aiter
cach gsuccessful step (ylelding IBR 1) untd TOUT is reached. One may switch from the
stendard mode of operation (INFO(2) - 0) to the intermediate vutput mode {(INFO(2)

1) or visa versa al any tie

H6i

Remark. The diagnostic IER = -1 does not state that 500 steps have been taken on
the current call to SFODE. On an initizl call to the routine the step counter is set to O,
On continuation calls, the counter continues to increase until 500 steps have accumulated.
When IER = ~1 is reported, the counter is reset to 0, and only then does the step counting
begin again.

Inpat Errors. IER is set to one of the following values when an input error is detected.

IER = -33 n< 1

IER = -34 RERR < 0

IER = —35 AERR < 0

IER = —36 The routine has been called with TOUT, but it has also been told
not to step past the point TSTQP.

IER == ~37 T == TOUT. This is not permitted or continuation calls.

{ER == 38 The user has modified 7.

IER == -39 TOUT is not beyond T. An attempt is being made to change the
girection cf integration without restarting.

IER = —40 The Jacobian msxtrix is banded. However, m, and m, do not
satisfy 0 < my < 2 and 0 < m, < n.

IER = —41 £ < 250 + 10n + n?

TER = —42 € < 250 + 10n + (2m¢ + m, + 1)n

IER = -43 m < 85+ n

IER = —44 INFO(1) is incorrect.

After the error is corrected, set INFO(1) = 0 and call the routine again.

Error Contrel. Assuming that SFODE has the correct value for y(t}, let e; dencte the
error generated in computing y;(t + k) for 1 = 1, ..., n when SFODE steps from ¢ to ¢ + h.
The routine attempts at each step to maintain the accuracy L¥i(es/wij? < 1 where w; =
RERR |yi(t)| +- AERR. When this criierion is satisfied, les] < /nw; fori=1,...,n. This
criterion includes as special cases relative crror (AERR = 0) and absolute error (RERR ==
0). However, if AERR = 0 and y:(t) = O for some :, then this criterion cannot be applied
and JER = -3 occurs.

When proceeding from 7' to TOUT, the routin» continually readjusts its order and step
size 50 as to maintain accuracy at each step. However, no attempt is made to contro! the
progressive erosion of acrcuracy that can occur when the steps accumulate. Since the erosion
of accuracy can be signifi.ant, at times one may wish to double-check the results. If the
problem is nonstiff or mildly stiff fur an interval, then the best procedure 13 to compare the
results obtained by SFODE with those obtained by ODE for the interval. ODE normally
maintains greater accuracy than SFODE, However, if the problem is extremely s.iff then
rerun the problem with SFODE. On the second rup, request greater accuracy,

Programming. SFODE calls the sabroutines STFODE and 2YZJAC. STFODE ernploys
the subroutines LSODU, HSTART, iNTYD, STOD, CFOD, PIAC, SLVS, SGBFA, SGBSL,
SGEFA. SGESL, SAXPY, and SSCAL, and the functions VNORM, VNWRMS, ISAMAX,
SDOT, and SPMPAR. The routines save and exchange information in a lsbeled common
block having the block name DEBDF{ STRFODE i a modification by A. H Morris of the

H6Hu

subroutine DEBDF, designed by L. F. Shampine and H. A. Watts (Sandia Laboratories).
DEBDF appears in the SLATEC library. STFODE is a driver for a modification of the
code LSODE, written by A. C. Hindmarsh (Law:ence Livermore Laboratory).

CALL SFODE1(F,n,Y,T,TOUT,INFO,RERR,AERR, [EK,
WK, £,IWK,m,RD,ID)

SFGDEI1 differs from SFODE only in the treatment of RERR and AERR. In SFODE1,
RERR and AERR are arrays of dimension n. RERR(t) and AERR(?) are relative and
absolute error tolerances to control the accuracy of the i** solution component y(t) for
i =1,...,n. Let e; denote the error generated in the computation of y;(t + h) from y(t)
when SFODEI steps from ¢ to ¢t -+ h. Then SFODEL attempts at each step to maintain the
accuracy ~Z;(e;/w;)? < 1 where w; = RERR(#)|y;(t)] + AERR(f). When this criterion is
satisfied |e.[< Vnw; fori =1, ..., n. However, if AERR(:) = 0 and y;(t) = O for some 1,
then the criterion cannot be applied and [ER = --3 occurs.

When IER references RERR and AERR, the settings for IER provide the following

information:

IER = -2 The accuracy required by RERR and AERR is too stringent.
RERR and AERR have been modified by the routine. RERR
and AERR may be further modified by the user if he desires.

To continue, call SFODE1 again.

IER = --3 SFODELI stopped when y; became 0 and AERR(s) = 0. INFO(1)
was set to —1. To continue set AERR(f) to be vpositive, INFO(1)
= 1, and call the routine again.

IER = --34 (Input error) RERR(f) < 0 for some 1.

IER = —35 (Input error) AERR(f) < O for some 1.

RERR and AERR may L modified on any continuation call to SFODEL.

Programming. SFODE] calls the subroutines STFODE and ZZZJAC.

FOURTH-ORDER RUNGE-KUTTA

Let y'(t) = f(t,y(t)) denote a system of n ordinary first order nonstiff differential
equations where f(t,y) = (fi(t,y), ..., fa(t,y)) and y(t) = (ye(t), .. .,yn(t)). Assume
that y(to) is known. Then for a small real number A, the subroutine RK is available for
computing y(to + k). RK employs the standard fourth-order Runge-Kutta procedure.

CALL RK(n,T,h, A, F)

The argument F is the name of a user defined subroutine that bas the format:
CALL F'(t, Z)
Z is an array of dimension n containing the values y;(t), .. . Yn(t) for the rgument t. F
computes the derivatives y1(t),...,y,(t) using y'(t) = f(t, y(¢)) and stores the results in Z,
thereby destroying the original data in Z. F must be declared in the calling program to be
of type EXTERNAL.

T is a variable having the value ¢, and A an array of dimension 3n or larger. It
is assumed that A(i), ..., A(n) contain the values y;(¢0), ..., yn{to). If h = O then RK
computes the derivatives yi(to), ..., ¥, (to) and stores therm in A(n + 1), ..., A(2n). If
h # 0 then it is assumed that the derivatives y}(t;), .. ., . (to) have aiready been computed
and stored in A(n + 1), ..., A(2n). In this case, when RK is called, the values y1(to +
h), ..., ya(to + h) and derivatives y{(to + h), ... yUn(to + h) are computed and stored in
A(1), ..., A(2n). Also T is reset to the value to + h.

Note. The area 4(2n + 1), ..., A(3r) serves as work space for the routine.

Example. Consider the equations

z'(t) = y(t)

v'(t) = ~a(t)
where 2(0) = 0 and y(0) = 1. The following code may be used for solving these equations
at the points .01,.02, ..., 1.00, and storing the results in the arrays X and Y.

DIMENSION A(6), X(100), Y(100)
EXTERNAL FUN

T == 0.0
H = 01

A(1) = 0.0
A(2) - 10
A(3) - 1.0
A(4) - 00

DO 10T - 1, 100
CALL RK('Z,'[‘,”,/\,}"‘UN)
X(I) - AQ)

WooY(l) o A(2)

Yl

Here FUN may be defined by:

SUBROUTINE FUN(T,Z)
DIMENSION Z(2)

X = Z(1)

Y = 7(2)

Z(1) = Y

7(2) = -X

RETURN

END

Note that the statements A(3) = 1.0 and A(4) = 0.0, which store the derivatives z/(0) and
y'(0) in A(3) and A(4), can be replaced with CALL RK(2,T,0.0,A,FUN).

Programmer. A.H. Morris.

=

572

EIGHTH-GRDER RUNGE-KUTTA

Let ¢'(t) = f(t,y(t)) denote a system of n ordinary first order nonstiff differential
equations where f(t,y) = (fi(t,y), ..., fa(t,y)) and y(t) = (y1(t), .-, ¥n(t)). Assume
that y(to) is known. Then for a small real number h, the subroutine RK8 is available for
computing y(to + h).

CALL RK8(n,T,h,Y,DY,WK, F)

The argument F is the name of a user defined subroutine that has the format:
CALL F(t,Z)
Z is an array of dimension n containing the values y;(¢),...,yn(t) for the argument t. F
computes the derivatives yi(t),...,y,(¢) using y'(t) = f(t, y(¢)) and stores the results in Z,
thereby destroying the original data in Z. F must be declared in the calling program to be
of type EXTERNAL.

T is a variable having the value ¢o, and Y and DY are arrays of dimension n. It is
assumed that Y contains the values yi(to), ...,yn(to). If A = O then RKS8 computes the
derivatives yj(fo), ..., y,(to) and stores them in DY. If k # O then it is assumed that the
derivatives yj (o), ..., y,(to) have already been computed and stored ir DY. In this case,
when RKS8 is called, the values y;(to + k), ...,y.(to + h) and derivatives vi(to +h), ...,
Yn(to + h) are computed and stored in ¥ and DY, thereby destroying the original data in
Y and DY. Also T is reset to the value to + h.

WK is an array of dimension 8n or larger that is used for a work space by the routine.
Algorithm. The routine employs formulae (8-12) given on p. 34 of the reference.

Remarks. RKS8 is used in the same manner as the routine RK. RK8 takes more time and
storage than RK, but may be more accurate.

Reference. Shanks, E. B., “Solutions of Differential Equations by Evaluations of Functions,”
Math. Comp. 20 (1966), pp. 21-38.

Programmer. A. Il. Morris.

573

SEPARABLE SECOND-ORDER ELLIPTIC EQUATIONS
ON RECTANGULAR DOMAINS

Given a separable elliptic equation

&(2) Uz + b(2)uz + of2)u + d(v)uyy + e(v)uy + f(y)u = g(z,y)

on the rectangle a; < z < ay,b; <X y < by, where u is periodic in z or Y, Or u or its normal
derivative du/dn is given on each of the edges. For m,n > 1 let z; = ay + (¢ — 1)h and
yj = b1+ (5 — 1)k where h = (a3 — a,)/(m — 1),k = (b3 — b)) /(n - 1), § = 1, ...,m,and
J=1,...,n. Then the subroutine SEPDE is available for computing u at the points (z,, y,}.

CALL SEPDE(COFX,COFY,¢,ITYPE,BVAL,IORD,ay, az, m, by, by, n,
U ku,W, £,IND)

It is assumed that m > 7 and n > 6. U is an m X n matrix. The argument ku is the
number of rows in the dimension statement for U in the calling prograni. When SEPDE
i called, if the elliptic equation is solved then U(i,7) = u(zi,y;) for ¢ = 1,...,m and
7=1,...,n.

The input argumeni IOKD is the order of the approximation procedure to be used.
IORD may have the values 2 or 4.

The argument COFX is the name of a user defined subroutine that ha: the format:
CALL COFX(x, A, B,C)
A, B, and C are variables. COFX sets A = a(z), B = b(z), and C = c(z) for the argument
z. COFX must be declared in the calling program to be of type EXTERNAL.

The argument COFY is the name of a user defined subroutine that has the format:
CALL COFY(y,D, E, F)
D, E, and F are variables. COFY sets I = d(y), E = e(y), and F = f(y) for the argument
y. COFY must be declared in the calling program to be of type EXTERNAL.

The argument g is the name of a user defined function, where g(z,y) gives the right
hand side of the elliptic equation for all a; < z < ay,b; < y < b;. The argument g must be
declared in the calling program to be of type EXTERNAL.

Buundary Conditions. The edges of the rectangular domain are labeled in a clockwise
manner as follows:

v edge 1 {(:c,bl) la; <z <ay }
i 9 l] i 4 edge 2 - {(ay,y) | by < y < by }
| B edge 3 - { (z,b;) | a; < 7 < ag }
i1 edge 4 = {(az,y) | by <y < by }
I'TYPE is an array of dimension 4. For edge i (v = 1, ..., 4), 'UYPE(s) specifies the type of

boundary condition on the edge. FTYPE(s) must be set by the user to one of the following
values:

ITYPE(s) 0 It is assumned that u is given on the edge

S5

ITYPE({) =1 If i = 1 or i = 3 then uy is given on the edge. Otherwise, if { = 2
or t = 4 then u, is given on the edge.
ITYPE(i1)=-1 If { = 1 or ¢ = 3 then it is assumed that v is periodic in y; i.e.,
u(z,y+ bz — by) = u(z,y) for all z,y. In this case ITYPE(s) must
be —1 for botht = 1 and« = 3. If { = 2 or ¢ = 4 then it is assurned
that u is periodic in z; ie., u(z + a2 — a1,y) = u(z, y) for all z,y.
In this case ITYPE(s) must be —1 for both 1 = 2 and 1 = 4.
The argument BVAL is the name of a user defined function. BVAL(s, z,y) is defined for
any point (z,y) on edge ¢ when ITYPE({) = 0 or 1, where

I

u{z,y) if ITYPE()
BVAL(s,z,y) = { uy(z,y) if ITYPE()
uz(z,y) if ITYPE()

(f=1ors=23)
({=2o0ri=4)

|

0
=1
1

The function BVAL(t, z,y) is ignored when ITYPE(f) = —1. BVAL must be declared in
the calling program to be of type EXTERNAL.

W is an array of dimension £ that is a work space. The argument £ is a variable whose
value depends on IORD, m,n, and the types of boundary conditions used. Let » be the
largest integer < logyn and €; = (v ~ 1)2“** + v + 14m + 12n + 6. Then

£> 4 if IORD = 2.

£> 4y +min if IORD = 4.

When the routine terminates, £ will have been reset to the actual amount of storage
needed.

IND is a variable that reports the status of the results. When SEPDE terminates, IND
has one of the following values:

IND = 0 The solution U was obtained.

IND = —1 A constant (which is stored in W{1)) was subtracted from the
right hand side of the equation in order to obtain a solution U.
The solution is a weighted minimal least squares solution of the
original problem.

IND = 1 {Input error) a; > a3 or b1 > b;.
IND = 2 (Input error) ITYPE(f) # 0,1 for some edge s.
IND = 4 The approximating linear system of equations is not diagonally

dominant, This cannot occur when m and n are sufficiently large.
Increase m and n, and reset £.

IND = 5 (Input error) ku < m.

INI = 6 (Input error) m < 7.

IND = 7 (Input error) n < 6.

IND = 8 (Irput error) IORD # 2,4.

IND = 10 (Input error) a(z)d(y) < O for some interior point (z,y) of the

rectangle. This violates the assumption that the equation w elhp-
tic.

IND == 11 (Input error) £ was too small. € has been reset to the minitmin
amount of storage v -eded for W.

576

IND = 12 (Input error) ITYPE({) = —1 for edge 1 or 3, but not for both
edges.

IND = 13 (Input eiror) ITYPE(f) = ~1 for edge 2 or 4, but not for both
edges.

Precision. If IORD = 2 then the elliptic equation is approximated by a set of linear equa-
tions using finite differences. Otherwise, if IGRD = 4 then the approximating equations
are obtained by deferred corrections. The most accuracy i3 achieved when ITYPE(:) = 1
boundary conditions are not involved. For m,n > 100, 3—4 digit accuracy may be attained
when IORD = 2 and 7-8 digit accuracy when IORD = 4. When ITYPE(s) = | boundary
conditions are used, then for m,n > 100, 2-3 digits may be attained when IORD = 2 and
5-6 digits when IORD = 4.

Programming. SEPDE is an interface by A. H. Morris for SEPELL, a modification of the
routine SEPFLI described in the reference. SEPELI was develcped by John C. Adams, being
supported (in part) by codes written by Paul Swarztrauber and Roland Sweet {National
Center for Atmospheric Research, Boulder, Colorado). SEPDE employs the subroutines
PDEDGE, SEPELL, SEPEL1, CHKPRM, CHKSNG, ORTHG, MINSOL, TRISP, DEFER,
DXFN, DYFN, BLKTRI, BLKTR1, COMPB, PRODO0, PRODP, CPROD0O, CPRODP, IN-
DXA, INDXB, INDXC, PPADD, TQLRTO and functions PSGF, BSRH, PPSGF, PPSPF,
SPMFAR. The routines exchange information in the labeled common blocks having block
names CBLKT and SPLP.

Example. Consider (1+x)%u,, ~2(L +z)u,+uy, = 3(1+z)'sinyfor0<z < land |y <

where uz(0,y) =4siny |y <~
(1 y) = 16siny

and u is periodic in y. This problem has the solution u = (1 + z)*siny. Let

ITYPE(1) = -1
ITYPE(2) = 1
ITYPE(3) = ~1
ITYPE(4) = 0.

Then the following routines and functions may be used for describing the problem. (Here
g = GVAL))

SUBROUTINE COFX (X,A,B,C)

T =10+ X
A THT
B 2.0+T
C = 0.0
RETURN
END

SUBROUTINE COFY (Y,D,E,F)

~3

-3

D=1.0
E=0C0C
F=0.0
RETURN
END

REAL FUNCTION GVAL (X,Y)
GVAL = 3.0(1.0 + X)* + 4+SIN(Y)
RETURN

END

REAL FUNCTION BVAL {I,X,Y)
BVAL = 4.0«SIN(Y)

IF (1.EQ. 4)BVAL = 4.0+BVAL
RETURN

END

COFX, COFY, GVAL, and BVAL must be declared in the calling program to be of type
EXTERNAL.

Reference. Adams, J., Swarztrauber, P., and Sweet, R., FISHPAK: Efficient FORTRAN
Subprograms for the Solution of Separable Elliptic Partial Differential Equations,
Version 3. National Center for Atmospheric Research, Boulder, Colorado, 1978.

o
~3
x

UNIFORM RANDOM SZLECTION OF VALUES FROM
A FINITE SET OF INTEGERS

Given the integers 1, and i, whare 15 < 3. Then the following subroutine is available
for selecting integers ¢ where 1, < 1 < 1. The selection is performed so that any integer 1
is equally likely to occur w' i probability 1/m where m = 1, — i, + i. Any integer ¢ mav
be selected more than onc When the number of selected values become large, then th.
mean and variance of the values approximate the mean and variance of the discrete uniform
distribution where

mean = i, + (85 — 15)/2

variance = (m? ~ 1)/12.

CALL URGET(n,i,,i;,iz, L,IERR)

The argument n is the number of values to be sclected, L is an array of dimension n
or larger, and iz and IERR are variables. On input, 1z is an integer (called a seed) for
initializing the sequence of values. It is assumed that | < 1z < 23! - 1. When URGET is
called, if no input errors are detected then IERR is set to O and n values are stored in L.
On output, iz is a new seed for selecting more values.

Errnr Return. IERR == 1ifn < 0, IERR = 2 if 5, > ¢ or m > 2 — |, and IERR == 3 if iz
is not a proper secd.

Usage. A z1ven seed alwavs initiates the same sequence of values. Thus, the following two
A 1 y

sets of instructions

(1) IX = 7
CALL URGET(30,0,11X,1, IERR)

(2) 1IX 7
CALL URGET(20,0 1IX LIERR)
CALL URGET(10,0,1L,1X L(21) 1ERR)

]

generate the same 30 values (0 and 1),

Remarks.
e - o3 .

(1) The n values selected need be distinet only when o 28 2 ad -

(2) It is assumed that the integer arithmetic being used handles all integers ¢ the intervad
[1] - AL

Programming. Ornginally formuolated by John RO Criglers Wreetten by A H Mo

HYAY)

UNIFORM RANDOM NUMBER GENERATOR

The following subroutines are ‘available for generating a sequence of uniform variates in
the open interval (0,1).

CALL URNG(iz,A,n,IERR)
CALL DURNG(iz,4, n,]IERR)

A 1s an array of dimensiion n or larger where n > 1. URNG is used if A is a real array
and DURNG is used if A is a double precision array.

The argument n is the number of variates to be generated, and ¢z and IERR are vari-
ables. On input, iz is an integer (called a seed) for initializing the sequence of variates. It
is assumed that 1 < i» < 231 — 1. When URNG or DURN is called, if no input errors are
detected then IERR is set to 0 and n uniform variates are stcred in A. On output, 1z is a
new seed for generating more variates.

Error Return. IERR = 1 if n < 0 and IERR = 2 if 1z is not a proper seed.

Usage. A given seed always initiates the same set of variates. Thus, the following two sets
of instructions

(1) IX = 103
CALL URNG(IX,A,30,/ERR)

(2) IX = 103

CALL URNG(IX,A,20,IERR)
CALL URNG(IX,A(21),10,JERR)

generate the same 30 variates.

Remark. It is assumed that the integer arithmetic being used handles ali integers ¢ in the
interval |¢f] < 251 — 1.

Programming. Writteu by Linus Schrage (University of Chicage). Adapted by A H. Morris.

Reference. Schrage, Linus,“A More Portable Fortran Random Number Generator,” ACM
Trans. Math Software 5 (1979), pp. 132-138.

GENERATING POINTS UNIFGRMLY iIN A SQUARE

T re following subroutines are available for generating points (z1,y1), ..., {zn, yu) uni-
formlv where 0 -2 2, < 1 and 0 < y; < 1 for each .

CALL URNG2(iz,X,Y,n,JERR)
CALL DURNG2(iz, X, Y,n,IEKR)

X and Y are arrays of dimension 12 or larger where n > 1. URNG2 isused if X and Y

are real arrays, and DURNG?2 is used if X and Y are doubie precision arrays.

The arvxuinent n i t“e number of points to be generated, and sz and IERR are vari-
ables. On input, i+ is an iateger (called a seed) for initializing the sequence of points. It
is assumed vhat 1 < 1z < 2* — 1. When URNGZ or DURNG?2 is called, if no input errors
are detected then [ERR is set to O and n points are generated. The abscissas z;, ...,z,, of
the points are stored in X and tie ordinates y;, ..., Y, are stored in Y. On output, ixis a
new seed for generating more poinis,

Error Return. JERR = 1if n < 0 and IERR = 2 if 12 is not a proper seed.

Usage. A given seed always initiates the same set of points. Thus, the following two sets
of instructions

(1) IX =4
CALL URNC . ‘TX,X,Y,30,IERR]

(2) IX = 4

CALL URNG2(IX,X,¥,20,IERR)
CALL URNG2(IX,X(21),Y(21),10,IERR)

generate the same 30 points.

Remark. If is assumed that the integer arithmetic being used handles all integers ¢ in the
interval ji| < 231 — 1,

Programming. Written by Linus Schrage (University of Chicago). Adapted by A.H. Morris.

Reference. Schrage, Linus,“A More Portable Fortran Random Number Generator,” ACM
Trans. Math Seftware 5 (1979), pp. 132-138.

GENERATING POINTS UNIFORMLY IN A CIRCLE

The following subroutines are available for generating points {z1,91), ..., (Zn, Yu) uni-
formly where z? + y? < 1 for each 1.

CALL RCIR(n,iz,X,Y IERR)
CALL DRCIR(nz,X,Y JERR)

X and Y are arrays of dimrension n o larger where 1 ™ 1. RCIR (s used if X and YV
are real arrays, and DRCIR is used i\f X and ¥ are double pzocision arrays.

The argument n is the namber of points to be senerated, a4 1z and IERR are var:-
ables. On input, fz is an integer (called a seed) for mitializing the sequence of points. It
is assumed that 1 < fx < 2%! - 1 When RCIR or DRCIR is calied, if no input errors are
detected then IERR is set to 0 and n points are generated. The abscissas «©y, ..., z, of the
points are siored in X and the ordinates yy, ..., y, are stored in Y. On output, ¥x is a new
seed for generating more points.

Error Return. IERR = 1 if n < 0 and IERR = 2 if 1z is not a proper seed.

Usage. A given seed always initiates the same set of points. Thus, the following two sets
of instructions

(1) IX =7
CALL RCIR(30,IX,X,Y,JERR)

(2) IX = 7
CALL RCIR(20,IX,X,Y,JERK)
CALL RCIR(10,IX,X(21),Y(21),IERR)

generate the same 30 points.

Renzarks.

(1) RCIR and DRCIR never geuerate the point {J,0)
(2) It is assumed that the wteger arithinetic being used handles all integers ¢ in the interval

i < 2% -1,

Algorithm Points are gorerated nniformly in the square {(x,y) @ 1ol < Land Iy « |}
The procedure terminates vwaen n points have hecn obtained “which le 1 tne unit ciccle

Programmming. ROCILS culls the subroutine RCIKIG, and DRCIR cz2lis the subrouiine DR
CIR1. These routines werr writton by AL I Morns,

PTG T | S TRV N W

NORMAL RANDOM NUMBER GENERATOR
Consider the normal distribution having the distribution function

1 [" 2
Fle) = —— / e~ /2 gt
() \/é?l' J oo

for all real z. This distribution has mean 0 and standard deviation 1. The following
subroutires are available for generating normal variates from this distribution.

CALL RNOR(iz, A, n,IERR)
CALL DRNOR(iz, A, n,JERK)

A is an array of dimension n or lavger where n > 1. A is a real array if RNOR is used,
and A is a double precision array if DRNOR is used.

The argument n is the number of variates to be generated, and 1z and IERR are vari-
ables. On input, 1z is an integer (called a seed) for initializing the sequence of variaies. It
is assumed that 1 << ¢z < 23! - 1. When RNOR or DRNOR is called, if no input errors are
detected then IERR is set to O and n variates are stored in A. On output, iz is a new seed
for generating more variates.

Error Return. IERR = 1 if 2 < 0 and {ERR = 2 if {z is not a proper seed.
Algorithm. The polar algorithm is used.

Usage. Normal varlates are generated in pairs. If n is odd then the last variate ¢, 4
generated is not stored. Also, a given seed always initintes the same sequence of variates.
Thus, if we consider the following three sets of instructions

(1) IX = 5
CALL RNOR(IX,A,30,1ERR)

(2) iX = 5
CALL RNOR(IX,A,10,IERR)
CALL RNOR(IX,A(i1),20,]JERR)

(3) I¥ =5
CALL CENOR(IX,A 9,IERR)
CALL KNOR(IX,A(10),20,1ERR)

thea we note that (1) and (2) generate the same 30 nornal variates. Also (3) generates 29
of these 30 variates, skipping the 10 variate, The reason for this is that . e request in (3)
for O veriates iequires 1O varlater to be generated, only 9 of which are used.

1) y

H87

Remarks.

(1) If ay, ...,a, 2re variates from RNOR and v; = z5 + oa; for 1 = 1,...,n and o > O,
then vy, ...,v, are variates from a normal distribution with mean ry and standard
deviation e, '

(2) It is essumed that the integer arithmetic being used handles all integers 1 in the interval
[031
(tl { 2 - 1

Programming. RNOR calls the subroutine RCIR1, and DRNOR calls the subroutine
DRCIR1. These routines are written by A. H. Morris.

Reference. Marsaglia, G. and Bray, T.A.,“A Convenient Method for Generating Norraal
Variables,” STAM Review 6 (1964), pp. 260-264.

CALL NRNG(iz,A,n JERR)
CALL DNRNG(iz,4,n,JERR)

A is an array of dimension n or larger where n > 1. A4 is a real array if NRNG is used
and 4 is a double precision array if DNRNG is used.

The argument n is the number of variates to be generated, and ¢z and IERR are
variables. On input, fz is an integer (called 2 ceed) for initializing the sequence of variates.
It is azsumed that 1 < 1z < 23! — 1. When NPNG or DNRNG is called, if no input errois
are detected then IERR i¢ set to 0 and n variates are stored in A. On output, {x is a new
seed for generating more variates,

Error Return, TERR = 1 if n < € and IERR = 2 if 12 is nct a proper seed.
Algorithni. The Bor-Muller algorithni is used.

Usage. Normal variaves are generated in pairs. The usage of NRNG and DNRNG is
identical to the usage of RNOR and DRNOR.

Remarks.

(f) NRNG and DNRNG require 15-25% more tire than RNOR and DRNOR.

{2) M is asmuned that the integer arithmetic being used handles all integers ¢ in the interval
T AL

Programmiag. NRNG calls the subrontine URNG, and DNRNG calls the subroutine
DURNG. NRNG and DMRNG were written by A. H. Morris,

Reference. Box, G E.P. and Muller, MLE.,“A Note on the Generavion of Random Normal
Deviates,” Arnnale of Math Statistics 29 {1950), pp. 610-611.

MULTIVARIATE NORMAL RANDOM VECTOR GENERATOR

Let A be a real symmsatric positive definite matrix of order m, det(A) be the deter-
minant of A (which must be positive), and g = (p1, ..., m). Consider the multivariate
normal distribution having the density function

f(') = ——::1_7—::: e-—l/ﬂ[z—p)A“(q;_i‘)'
Vv (27)™det(A)

for z = (z1,...,%m) where all z; are real. This distribution has the covariance matrix
A and mean vector u. The subroutines NRVG and DNRVG are available for generating
variates z from this distribution when A is an arbitrary positive definite matrix. If 4 is a
diagonal matrix then the subroutines NRVG1 and DNRVGI1 are also available for generating
variates from the distribution.

CALL NRVG(MO,iz,n,m, A, u, X kz,JERR)
CALL DNRVG(MO,sz,n,m, A, u, X kz,JERR)

It is assumed that m > 2. A is an array of dimension m(m 4 1)/2 or larger containing
the positive definite matrix A in packed form,! and u is an array of length m contairing
the niean vector of the distribution.

The argument n is the number of vectors to be generated, and X is a 2-dimensional
array of dimension kz x n. It is assumed that kz > m.

NRVG is used if A, u, and X are real arrays, and DNRVG is used if A, i, and X are
dcuble precision arrays.

MO is an argument which specifies if NRVG or DNRVG is being called for the first
time. On an initial call, MO = 0 and we have the following setup:

The arguments iz and IERR are variables. On input, iz is an integer {called a seed)
for initializing the sequence of vectors. It is assumned that 1 < 1z < 2*' - 1. When NRVG
or DNRVG is called, if no input errors are detected then IERR is set to 0 and n vectors z
are stored in X. The j'P vector is stored in the 3*® column of X. On output, iz is a new
sced for generating more vectors,

Error Return. IERR = 1if n <0, IERR = 2ifm <1 orm > kz, [ERR = 3 if A is not a
positive deflinite matrix, and IKRR = 4 if 1z i3 not a proper seed.

On an initial call io NRVG or DNRVG, the lower triangular matrix in the Cholesky
decomposition of A replaces the original data in A, If IERR == 0 then the routine inay
be recalled with MO # 0 to generate more vectors. If MO / O then it is assumed that A
and -n have not been modified by the user. However, n, g, X, and kz may be different.

YSee the secticn on packed symmetric matrices and the subroutines MOVES, MOVSE, DMCVE'S, and

DMOVSE.

The routine employs the lower triangular matrix obtained on the initial call toc NRVG or
DNRVG to generate n new vectors. As before, if no input errors are detected then IERR
is set to 0 and the new vectors are stored in X.

Usage. A given seed always initiates the same set of vectors. Thus, the following two sets
of instructions

(1) IX = 3
CALL NRVG (0,IX,30,M,A,X0,X KX IERR)
IF (IERR .NE. 0) STOP

(2) IX = 3
CALL NRVG (0,IX,20,M,A,X0,X KX IERR)
IF (IERR .NE. 0) STOP
CALL NRVG (1,IX,10,M,A,X0,X(1,21),KX,IERR)

generate the same 30 vectors.

Remark. It is assumed that the integer arithmetic being used handles all integers 1 in the
interval |i| < 2% — 1.

Algorithm. The lower triangular matrix L in the Cholesky decomposition of A is computed,
and n vectors z = (zy, ..., 2m) are generated where the values z; are independent variates
from the normal distribution with mean O and variance 1. The n variates x = Lz + u of the
multivariate normal distribution are then computed.

Proegramming. NRVG employs the subroutines RNOR, RCIR1, SPPFA, and function
SDOT, aad DNRVG employs the subroutines DRNOR, DRCIR1, DPPFA, and function
DDOT. NRVG and DNRVG were written by A. H. Morris.

Reference. Anderson, T.W., An Introduction to Multivariate Statistical Analysis, John
Wiley and Sons, New York, 1958, pp. 5-27.

CALL NRVG1(MO,iz,n,m, A, u, X kz,IERR)
CALL DNRVG1(MO,iz,n,m, A, 1, X ,kz,IERR)

It i3 assumed that m > 2, and that A is a diagonal matrix whose diagonal clements are
positive numbers. A is an array of dimension m or larger containing the diagonal elements.
and p 18 an array of dimensiocn m containing the mean vector of the distribution.

The argument n is the number of vectors to be generated, and X is a 2-dimensional
array of dimension kx x n. It is assumed that kx > .

NRVGILisused if A, u, and X are real arrays, and DNRVGUis used if A, p, and X are
double precision arrays.

MO 18 an argument which specifies iIf NRVG1 or DNRVGL is being called for the first

590

time. On an initial call, MO = 0 and we have the following setup:

The argument fz and IERR are variables. On input, iz is an integer (called a seed)
for initializing the sequence of vectors. It is assumed that 1 < iz < 23! — 1. When NRVG1
or DNRVGI is called, if no input errors are detected then IERR is set to O and n vectors z
are stored in X. The 7*P vector is stored in the j*® column of X. On output, {z is a new
seed for generating more vectors.

Error Return. IERR = 1ifn <0, JERR = 2if m < 1 or m > kz, IERR = 3 if A(f) < 0 for
some 1, and I[ERR = 4 if sz is not a proper seed.

On an initial call to NRVG1 or DNRVGI1, the square roots of the diagonal elements of
the matrix are stored in A. If IERR = 0 then the routine may be recalled with MO # 0 to
generate more vectors. If MO # 0 then it is assumed that A and m have not been modified
by the user. However, n, u, X, and kz may be different. The routine employs the roots
obtained on the initial call to NRVG1 or DNRVG1 to generate n new vectors. As before, if
no input errors are detected then IERR is set to 0 and the new vectors are stored in X.

Usage. The usage of NRVG1 and DNRVG1 is identical to the usage of NRVG and DNRVG.

Remarks.

(1) NRVG and NRVGI1 generate the same vectors when A is a diagonal matrix.
(2) It is assumed that the integer arithmetic being used handles all integers 1 in the interval
ff] <28 - 1.

Programming. NRVG1 employs the subroutines RNOR and RCIR1, and DNRVG 1 employs
the subroutines DRNOR and DRCIR1. NRVG1 and DNRVG1 were written by A. H.
Morrig.

EXPONENT!IAL RANDOM NUMBER GENERATOR

For a > 0 consider the exponential distribution having the distribution function

, 1 f* ‘
F(z) = ~-/ e trdt=1-¢"%/% {z>0).
0

a .

This distribution has the mean a and variance a®. The following subroutines are available
for generating variates from this distribution.

CALL RANEXP(n,a,iz,X,IERR)
CALL DRNEXP(n,a,iz,X,IERR)

X is an array of dimension n or larger where n > 1. The argument a is a real number
and X a real array if RANEXP is used. Otherwise, a is a double precision number and X
a double precision array if DRNEXP is used.

The argument n is the number of variates to be generated, and 1z and IERR are vari-
ables. On input, iz is an integer (called a seed) for initializing the sequence of variates. It
is assumed that 1 < sz < 23! — 1. Whea RANEXP or DRNEXP is called, if no input errors
are detected then IERR is set to O and n exponential variates are stored in X. On output,
1z is a new seed for generating more variates.

Error Return. IERR = 1if n <0, IERR = 2if a € 0, and IERR = 3 if 1z is not a proper
seed.

Usage. A given seed always initiates the same set of variates. Thus, the following two sets
of instructions

(1) IX=3
CALL RANEXP(30,A,1X,X,IERR)

(2) IX=3

CALL RANEXP(20,A,1X,X,IERR)
CALL RANEXP(10,A,1X,X(21),IERR)

generate the same 30 variates.

Remark. It is assumed that the integer arithmetic being used h.indles all integers ¢ in the
interval || < 2%1 - 1.

Programming. RANEXP calls the subroutine URNG, and DRNEXP calls the subroutine
DURNG. RANEXP and DRNEXP were written by John R. Criggler. RANEXP has been
obtained from the STATLIB library.

Referente. Thomas, M.A., Gemmill,G.W., and Crigler,J.R., STATLIB: NSWC Library of
e Statistical Programs and Sudroutines, Report NSWC TR 89-97, Naval Surface Warfare
Center, Dahlgren, Va., 1986.

H94

GAMMA RANDOM NUMBER GENERATOR AND
THE CHI-SQUARE DISTRIBUTION

For a > 0 consider the gamnma distribution having the distribution function

—_ j' [—t,a—1 ,
P(a,x) = i) J/o e dt (z > 0),

and for v > O consider the chi-square distribution having the distribution function

2——1.//2

x
- ~4/240/2-1
e ¢ dt (z >0).
I'(v/2) J/<; -

F,(z) =

Then F,(z) = P(v/2,z/2), so that only the gamma distribution need be computed. The
following subroutines are available foir gererating variates from the gamma distribution
when a > 1071,

CALL RGAM(iz,a,n, X,IERR)
CALL DRGAM(iz,a,n, X, IERR)

X is an array of d'mension n or jarger where n > 1. The argument a is a real number
and X a real array if RGAM is used. Otherwise, a is a double precision number and X a
double precision array if DRGAM is used.

It is assumed that ¢ > 0.1 and that n is the number of variates to be generated. IERR
and 12 are variables. On input, ¢z is an integer (cailed a sced) for initializing the sequence
of variates. it is assumed that 1 < 1z < 23! — 1. When RGAM or DRGAM is called, if no
input errors are detected then TERR is set to 0 and n gamma variates are stored in X. On
output, 1z 18 a new seed for generating more variates.

Error Return. IWRR = 1ifn < 0, IERR == 2 1if 2« < 0.1, and IERR = 3 if 1z is not a proper

szed.

Usage. A given seed always initiates the same set of variates. Thus, the following two sets

of instructions

(1) IX = 3
CALL RGAM(IX,A,30.X,IERR)

(2) 1X - 3
CALL KGAM(IXA,20, X IERR)
CALL RGAM{IX A 10, X(21) TEKRR)

generate the same 30 variates.

Warning. The double precision subroutine DRGAM can be quite slow. It is recommended
that its speed be checked if thousands of variates are to be generated.

Remarks.

(1) If @ = v/2 and z;, ...,z, are variates for the gamma distribution given by P{a,z)
then 22y, ...,2z, are variates for the chi-square distribution given by F,(z).

(2) It is assumed that the integer arithmetic being used handles all integers ¢ in the interval
lij < 231 - 1.

Programming. RGAM calls the subroutines URNGO and GAMINV, and DRGAM cails the
subroutines DURNGO and DGINV. RGAM and DRGAM were written by A. H. Morris.

BETA RANDOM NUMBER GENERATOR

For a,b > 0 consider the beta distribution having the distribution function

_ ___1__ * a—1 _pyb—1
Iz(a,b)—B(a’b)/ot (L-t)=1dt (0<z<1),

where B(a,b) is the beta function. The following; subroutines are available frr generating
variates from this distribution when a,b > 1/4

CALL RBETA(r,a,b,iz, X, IERR)
CALL DRBETA(n, a,b,iz, X, IERR)

X is an array of dimension n or larger where n > 1. The arguments a and & are real
numbers and X a real array if RBETA is :sed. Otherwise, a and b are double precision
numbers and X a double precision array if JRBETA is used.

It is assumed that a,b > 1/4 and that n is the number of variates to be generated.
IERR and ¢z are variables. On input, sz is an integer (called a seed) for initializing the
sequence of variates. It is assumed that ! < {r < 23! — 1. When RBETA or DRBETA is
called, if no input errors are detected then IEE.R is set to O and n beta variates are stored
in X. On output, 1z is a new seed for generaiing more variates.

Ecror Return. IERR =1if n <0, IFRK =2 if a < I/4 or b < 1/4, and IERR = 3 if 1z is
not a proper seced.

Usage. A given seed always initia‘es the gaine set of variates. Thus, the following two sets
of instructions

(1) IX =17
CALL RBETA (30, A, B, IX, X, IERR)

(2) IX =7
CALL RBETA (20, A, B, IX

{, X, IERR)
CALL RBETA (10, A, B, I X, X

(21), IERR)
generate the same 30 variates,

Warning. The double precis on subroutine DRBISTA can be quite slow. 1t is recommended
that 1ts speed be checked ff ibousands of variates are to be generated.

Remark. It 1% assumed that che integer arithmetic being used handleas all mtegers ¢ in the

interval | - YALEEE B

Programming. RBETA calls the subroutines URNGO and GAMINV, and DRBIEITA calls
the subroutines DURNGO and DGINV, RBETA and DRBFTA were written by A H

Morris.

F-DISTRIBUTION RANDOM NUMBER GENERATOR

For a,b > 0 consider the F-distribution having the distribution function

aa/2bb/2

Pu(F) = Ba/2,572)

F
/ t(a/z)-1(b + at)—(a+b)/’2 dt (F >0)
Jo

where B(a/2,b/2) is the beta function. The values a and b are called the numerator
and denominator degrres of freedom of this distribution. The value F = (bs)/(at) is
a variate from this distribution when s and t are independent variates from the gamma
distributions with parameters a/2 and b6/2 respectively. The following subroutines are
available for generating variates from the F-distribution when a,b > 1/2.

CALL FRAN(n,a,b,iz, X, IERR)
CALL DFRAN(n,a,b,iz, X, IERR)

X is an array of dimension n or larger where n > 1. The arguments a and b are real
numbers and X a real array if FRAN is used. Otherwise, a and b are double precision
numbers and X a double precision array if DFRAN is used.

It is assumed that a,b .» 1/2 and that n is the number of variates to be generated.
IERR and iz are variables. On input, i1z is an integer (called a seed) for initializing the
sequence of variates. It is assumed that 1 < iz < 2% -~ 1. When FRAN or DFRAN is
called, if no input errors are detected then IEKR is set to 0 and n variates are stored in X.

On output, 1z 1s a new seed for generating more variates.

Error Return. 1ERR ~ 1if n < 0, IERR = 2ifa < 1/2 0or b < 1/2, IERR = 3 if b s
too small for the floating arithimetic being used, and IERR = 4 if 11 is not a proper seed.
IERR - 3 can occur only if the floating arithmetic has a exceedingly limited range (say, its
largest value s loss than 10%7),

Usage. A given seed always inttiates the same set of variates. Thus, the following two sets

of instructions

(1) IN 3
CALL FRAN (30, A, B IX, X, IERR)

(2) 1IX 3

CALL FRAN (20, A, B, IX, X, IERR)
CALL FRAN (10, A, B, IX, X(21), IERR)

penerate the same 30 vartates

Warning The double precision subrontine DFRAN can be quate stow, T s recommended

that its speed be checked f thousands: of variates are to be generated

H09

Remark. It is assumed that the integer arithmetic being used handles all integers 7 in the
interval [¢| < 2% - 1.

Programming. FRAN calls the subroutines URNGU and GAMINV, and DFRAN calls the
subroutines DURNGO and NGINV. FRAN anc DFRAN were w-iter by A. H. Mouvris.

STUDENT t-DISTRIBUTION RANDOM NUMBER GENERATOR

For a > 0 consider the student t-distribution having the distribution function

P.(t) = [Va B{1/2,a/2)]! /—‘ (14 2% /a)~(*+1)/2 g

where B(1/2,a/2) is the beta function. The value t = z/\/w/a is a variate from this
distribution when 2 is a variate from the normal distribution with mean O and variance
1, and w is an independent variate from the chi-square distribution with a degrees of
freedom. The following subroutines are available for generating variates from the student
t-distribution when a > 1/2.

CALL TRAN(n, a,iz, X, IERR)
CALL DTRAN(n,a,iz, X, IERR)

X is an array of dimension n or larger where n > 1. The argument a is a real number
and X a real array if TRAN is used. Otherwise, a is a double precision number and X a
double precision array if DTRAN is used.

It is assumed that a > 1/2 and that n is the number of variates to be generated. IERR
and ¢z are variables. On input, iz is an integer (called a seed) for initializing the sequence
of variates. It is assumed that 1 < iz < 23! -- 1. ‘/hen TRAN or DTRAN is called, if no
input errors are detected then IERR is set to O and n variates are stored in X. On output,
1z i3 a new seed for generating more variates.

Ercor Return. IERR = 1ifn <0, IERR = 2 if a < 1/2, IERR = 3 if u is too small for
the floating arithmetic being used, and IERR = 4 if vz is not a proper seed. IERR = 3
can ccecur only if the floating arithmetic has a exceedingly limited range (say, its smallest
positive value is greater than 10737),

Ucage A given seed always initiates the same set of variates. Thus, the following two sets
of instructions

(1) IX =3
CALL TRAN (30, A, IX, X, IERR)

(2) IX = 3

CALL TRAN (20, A, 1X, X, IERR)
CALL TRAN {10, A, 1X, X(21}, IERR)

generate the same 30 variates,

Warning. The double precisicn subroutine DTRAN can Le quite slow. It is recommended
that its speed be checked if thousands of variates are to be generated

601

Remark. It is assumed that the integer arithmelic being usad handles all integers ¢ in the

interval |5} < 231 — 1.

Programming. TRAN calls the subroutines URNGO, URNG1, PNI, and GAMINV, and
DTRAN calls the routines DURNGO, DULNG1, DPNI, and DGINV. TRAN and DTRAN

were written by A. H. Morris.

FIRST ORDER MARKCYV RANDOM NUMBER GENERATOR

Given asequence of independent variates z;, ..., 2, (n > 2} from a norma! distributicn
with mean 0 and standard deviation ¢ > 0. For any real to and je| < 1 et

(+)

aj == xo -+ a{a;..1 — 2o) + 2y (G=2,...,n)

Then ay, ..., a, are variates from a normal distribution with mean zg and variane~ 0% /{1 -
a?}. Since zi, ..., 2z, are independent variates, a; (7 > 2) js considered to -depend only on
a;_1 for information from the past. Yerce, aj, ..., a, forms a first order Matkov ‘Le, first
order autcregressive) process. Since the process is covariance stationary, the vorrelatinon

between terms 2, and ax of the sequence becomes progressively weaker when |k— 7| increases.

For any z,,0,«, and n the following subroutines are available for obtaining sequences
w1, . ,ay of variates from (*).

CALL RMK1i(n,zo,0,,12, 4,IERR)
CALL DRMK1(n,z;,0,a,iz, A, IERR)

The arguments zo,0, and «a are real numbers and A a real arr v if RMK1 ig used.
Otherwise, zg, 0, and « are double precision numbers and A a double precision array when
DRMK1 is used.

A is an array of dimension n or larger when n > 2, and 1= and IERR are variakbles, It
is assumed that o > 0 and |a| < 1. Cn input, i« is an integer (called a se=d) for initializing
the sequence of variates zy, ...,z,. It is assumed that 1 < ¥z < 23" — 1. Wten RMKI
or DRMKI1 is called, if no input errors are detected then IERR is set to (0 and a sequence
ay, ...,a, 18 obtained and stored in A. On output, ¢z is a new seed for generating other
SEqUENCES Uy, ...,dpn.

Error Return. IERR is set tc one of the following values if an input error s detected.
IERR:= 1 ifn <2
[ERE = 2 ife <0
IERR = 3 if o] > 1
IERR = 4 if iz is not a proper sead.

Remark. It is assumed that the integer arithmetic being used hardies ali utegers ¥ in the
interval 1] < 2%t _ 1.

Programming. RMK{ employs the subroutines RMOR and RUIRL, and DEME: enploys
the subroutines DRNOR and DBCIRL. RMK1 was writter by John R. Crigler and maditied
by A H. Mornis. RMKT is a modification of the subroatine RANMET, wiuch revides in the
STATLIB hibrary. DEMK} was adapted from KME1 by A H. Maorris

02

Reference. Thomas, M.A., Gemmill, G.W., and Crigler, J.R., STATLIB: NSWC Libyrary of
Statistical Programs and Suvroutines, Report NSWC TR 89-37, Naval Surface Warfare
enter, Dahlrren, Virginia, F989.

604

APPENDIX

Installation Of The NSWC Library And Conversion
Of Codes From Single To Doubie Precision Form

Code for the library can be obtained on 9-track tape and on 5% inch disks that can
be read by the IBM PC. Two copies of the code are given on a tape.

The first function in the library, namely IPMPAR, must be modified for the particular
Fortran being used. IPMPAR provides the integer constants which characterize the integer,
single precision, and double precision arithmetics being used (see pp. 3-4).

Instructions are given in the in-line documentation of IPMPAR for defining the
constants that are needed. If constants are not provided for the compiler being
used, then the Fortran manual for the compiler normally gives the constants for
she integer arithmetic. However, help may be needed in obtaining the constants for
the single and double precision arithmetics. The subroutines MACH and RADIX
are provided for this purpose.

MACH and RADIX, and their subroutines MACH1, STORE2, MACH2, DSTOR?2
are the next subprograms after IPMPAR. Instructions for the use of MACH and
RADIX are given in MACH. These subroutines zrc experimental. They are pro-
vided only as an aid for obtaining the constants for the single and double precision
arithmetics. They are not used by any of the functions and subroutines in the
NSWC library, and they are not considered to be part of the library. MACHI1
and MACH2 perform some writing. None of the functions and subroutines in the
NSWC library perform I/O.

After IPMPAR has been defined, the remainder of the library can be installed. None of
the remaining code needs any modification. Codes for the functions and subroutines appear
approximately in the order that they appear in the manual.

Single /Double Precision Conversion. The foliowing modifications must be made when a
subroutine is converted from single to double precision form.

(2) Replace the functions SPMPAR, EPSLN, and EXPARG with DPMPAR, DEPSLN,
and DXPARG. Do not modify the arguments of these functions. DPMPAR, DEPSLN,
and DXPARG must be declared to be of type DOUBLE PRECISION when they are
employed.

(2) If the function IPMPAR appears in the subroutine then replace IPMPAR(5) with
IPMPAR(8), IPMPAR(6) with IPMPAR(9), and IPMPAR(7) with IPMPAR(10).

ABSLV
ADAPT
AERF
Al

AIE
ALI
ALNREL
ANG
AORD
ARCECQO
ARCESL
ARTNQ
ASSGN
BADD
BCVDR
BCVRC
BCVRD
BESI
BESJ
BETALN
BFIT
Bl

BIE
BIMAG
BLKORD
BLSQ
BNRM
BPUSE
BPROD
BRATIO
BRCOMP
BREAL
BRKF45
BSLS3Q
BSLSQ2
BSLV
BSLV1
BSPP
BSSLI
BSSLJ
BSSLK
BSSLY
BSTRP
BSTRP2
BsSUBT
BTPRD
BTPRO1
BTSLV
BVAL
BvAL I
BvaL 2
BVPRD
BYPRD1
BI1CND
B 1NRM
Ccal
CAPO
CAXP
CHALD

CHORT

CBESK
cBI
CBND
CBPOSE
LBPROD
CBRT
cBSLV
CBSLV 1
CRsSP
CBsSSlt
CBSSLJ
CBSSLK
CBsSUBT
CBTPD
CBTPD1
CBVPD
CBVPD1
CCOPY
COET
DIV
CDIVID
CcbOoTC
chboTu
CEIC
CEIGV
CERF
CERFC
CEXEXT
CEXPPLT
CFRM:
O GATIMA
IR
[N
CIRCV
CK

CKE
CKPRUD
CLE
CLI
CL
CMADD
CMADJ
CMCONY
CMCuPY
CMCVBS
CMCUVSH
CMIMAG
CMPROD
CMREAL
CMSLY
CMSLVAY
CMSUBT
CMTMS
CONSTR
CosuB
COSOF
Cos0Q1
CO5
CHABS
CPOSE

a7
39
159
267
273

293
293

A65

184
2008
1869
235
236
202
203

21
409
430
429

S}

I
313

INDEX

CPOSE 1
CPSC
CPST
CREC
CROUT
CSADD
CscCalL
CSCORY
CSEVL
CSIMAG
CSINT
CSINTAH
CSINT2
CSLOoP
CoLY
CSILVMP
CSPFIT
CSPRQOD
CGPSLYV
CSRTZAL
CSRI
CSRE2
CSRUT
CSSCaL
cssuB
CSURF
CSURF1
csvDC
CSwaAP
CTIP
CTPOSE
CTPRD
CTPRD
CTRANS
CTsSLV
CUBTRI
CURVD
CURVI
CURV 1
CURVZ
cvace
CVRBRD
GVRR
cves
CVCR
CVUS
cvoRy
cvDg 1
CcvDs
CVPRD
CVPRD1
CVvkB
CVREB 1
CVR3
[GAVATY
CVSD
VSR
NApsSL Y
DAFRT
DAURL

607

313
439

13
215
315
173
305
145
301
465
465
465
473
148
239
459
319
347
301
510
510
165
173
317
509
509
241
163
195
195
325
325
197
348
543
479
479
475
477
257
257
257
257
258
297
257
258
297
325
325
257
258
297
297
247
297
24

DARTNQ
DASUM
DAW
DAXPY
DEADD
DBETLM
DBNRM
DBPOSE
OBPRQOD
DBSLV
DBSLV 1
DBSUBT
DBTPD
DBTPD 1
DBVPD
DBVPD 1
DB 1CND
OB INRM
DCBCRT
DCBRT
DCEIG
DCEIGV
DCERF
DCERFC
DCGAMA
DCMSLV
DCOPY
DCOSH
DCPABS
DCPOLY
DCPSC
DCPSI
DCREC
DCSEVL
ODCSQRT
pDoT
DDSORT
DEI
DEIG
DEIGYV
DEIt
DELLPI
DEPI
DEPSLN
NERF
DERFKC
DERFCH
DERFI
DET

L RAN
DGAMIN
DGAMMA
DGINV
DGRAT
DHF T]
OHET L2
DISORT
IKPIROD
GRS
DUNREL

109
112

DLSQR
DMADD
DMCOPY
DMCVBS
DMCVFS
DMCVSR
DMCVSF
DMEVAL
DMEXP
DMFIT
DMPROD
DMSLV
OMSLV 1
DMSUSBT
DMTMS
DNRM?2
DNRNG
DNRVG
DNRVG !
DORDER
DPADD
DPCHOL.
DPCOPY
DPDAW
DPDET
DPDIV
DPINV
DPLE
DOPLPWR
DPMPAR
OPMULT
DPNI
DPOSE
DPOSE 1
nDPSI
DP BT
DQAGI
DQAGS
DQDCRT
DQTCRT
DOXGS
DRBETA
DRCIR
DRCOMP
DRDVAL
DREXP
DRFVAL
DIRGAM
DRUVAL
DRLOG
DRLOG
[RMK -
DRNE - 1
DRNK
DRNOR
DROT
UROTG
GROTM
DROTM,
DRPOU

386
199
191
259
183
259
183
529
251
527
203
217
218
201
203
179
588
589
590

131
231
129
59
243
137
1414
253
139
4
135

311
311

132
354G
534

155

155
536
597
5835

84

110

;) 8]
1Y

$95

NSADD
DSCAL
DSCOPY
DSEIG
DSEIGV
DSINY
DSLV
DSMSLV
DSNRM
DSORT
DSPROD
DSPSLV
DS3UBT
DsSVDC
DSVPRD
D3SwWaP
DS1CND
DS INRM
DTASLV
DTIP
DTOPLX
DTPOSE
DTPRD
DIPRD
DTRAN
DTSLV
DURNG
DURNG2
DYPRD
UVPRD 1
DXPARG
DZERC
EIG
EIGV
EIGV 1
EIGH
ELLPF
ELLPI
ELPFCH
EPI
EFOLN
ERF
ERFC
ERFCA
ERFI
FXPARG
fXPLLT
FET
FFETA
FMIN
FRAN
FRNL
GAMINY
GAMUN
GAMMA
GEFRK
GRADG
GRADY
GRATTO
HEE

315
173
305
363
365
25
342
227
32

319
341
317
241
205
163
345
327
247
195
233
19%
323
323
601
342
581
583

351
353
353
351
119
107
116
111
5
46
46
46
L)1

66
a425
425
307
H4y9

63

a5

71

003
024
Hud

$d

HC
HETI
HFTI2
HTRP
HULL
ICAMAX
IDAMAX
TESLV
INTRVL
IORDER
IPMPAR
ISAMAX
ISHELL
ISUBX
KPROD
KROUT
KURVPH
KURVP2
KURV 1
KURV?2
LATNY
LE
LGRNGN
LGRNGV
LGRNGX
LLSQ
L SOMP
IMDIFF
LOCPT
LOPCMP
LOPDF
LSEI
LSQR
LTRP
L2sLy
MADCD
MCapy
MCVBS
MCVDR
MCVFS
MCVRC
MCVRD
MCVSB
MOCVSF
MEVAL
ME XF
ME £ 1
M 1
ME 1
MK
MP L NMY
MPROD
MGV
MSL VT
MOUBT
MIM
M1
MR
AV

[KEVA RN

HO8

41
379
379
447

NPIVGT
NRNG
NRVG
NRVG1
NSURF2
0DE
ORTF
ORTHGS
ORTHOV
ORTHOX
PADD
PAREA
PCHOL
PCOEFF
POFIT
FDIV
PDSPL
PEG
PEQ1
PFIND
PFLY
PINV
PKIIL
FLCcapy
PLEM
PLEM
PLPWR
PMULT
PNDF
PNT
PQCA
PRVAL
PSCMP
PSE VL
PsSI
PSICF
PSUBT
QAGI
DALY
QDCRT
GSCRTD
QSOR™ L
QS0ORTR
DSuUBA
OTORT
GURV 1
WURVZ
1JAGS
RWANE 22
ROETA
REND
RCIR
RCOMP
ROVAL
RE
WEVAal
TAM
LR

216
588
589
590
S15
551
409
149
149
143
131
39
231
449
469
137
467
112
120
35
451
1441
127
129
120
121
139
135
5%

15
497

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Fublin reportieg borden for ths collvation abiptormation s astimated taaveragas Uhour onr neponse, mcladog the Xime tor tevewing astructons, s roung existing dot y saur ey,
gathenmg and mamntainng the data aceded, and compieting andd roviswing the oollection ob nfarmanon Sencommoents regqarding thys burder estimate ocany othor aspect of this
callection af infarmation, snchudiog suqagestions far cadueryg this burden o Washigton steadguartee. Services, Directarate for Intormation Qperation® and Reparts 12145 feiforsan
Dowis Highway, Sroc 1204, Arlington, VA 22202 43102, ana ta the Ottice of Macagement and Budagat, Paperwork Reduction Dropeat (0204 0188), Washington, DC 20503

1. AGENCY tJSE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Junuary 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MSWC Library of Mathematics Subroutines

6. AUTHOQR(S)
Alfred H. Morris, Jr.

7. PERFORMING QORGANIZATION NAME(S) AND ADDRESS(ES) 2. PERFORMING ORGANIZATION
REPORT NUMBER
Naval Surface Warfare Center (Code B10) NSWCDD/TR-92/425
Dahlgren Division
Dahlgren, Virginia 22448-5000
9. SPONSORING/MONITCRING AGENCY NAME(S) AND 10. %%%ﬁ%?‘?:‘%‘ﬁé‘%"&“&%’é‘éﬁ‘a

11. SUPPLEMENTARY NOTLS

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT {Maximem 200 words)

The NSWC library is a librioy of general purpose Fortran subroutines that provide i basic computational
capability for i variety of mathematical activities. imphasis has been placed on the transportability of the
codes. Subroutines are availabliin the following areas: elementarv operations, geometry, special functions,
polynomials, vectors, matrices, large dense systems f linear equations, banded matrices, sparse matrices,
eigenvalues and eigenvectors, £ solution of linear «quations, least squares solution of linear equations,
optimization, transforms, approximati n of fanctions, curse fitting, surface fitting, manifold titting,
numerical intepration, integrat equations, ordinary diftferentio. quations, partial differentol equations, and
randumn nuither generaiton

14 SUBJECT TEHMS 15, NUMBER U PAGES T

b e e e

16 PRiVE COD

17 SECURITY CLASSHIC AT 3 !125 SECURITY CLASSIFICATION 19 SECURITY LASSHHC A HION 200 LIMITAVIWN O ARSIAC Y
Cb REFOHT i OF THIS PAGE OF AR THG T
UINCEAYSS TR D PNC A= 0D PINC L oossH D AR
P /\“).'élﬂ)i Jold Hhik . o) T \'.w!m"* G AN, b

GENERAL INSTRUCTIONS FOR COMPLETING Si 298

The Report Documentation Page (RDP) is used in announcing and cataleging reports. It is imporwant ihat
this informatiun be consistent with the rest of the report, particularly the cover and its title page.
Instructions for filiing in each biock of the form follow.

optical scanning requirements.

It is important to stay within the lines to meet

Block 2. Report Date. Full publization date including
day, month, and year, if available (e.g. 1 Jan 88). Must
cite at least the year.

Block 3. Type of Report and Dates Covered. State
whether reportisinterim, final, etc. If applicable, enter
inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the
part of the report hat provides the most meaningfu!
and complete information. When a reportis prepared
in more than one volume, repeat the primary title, add
volume number, and include subtitie for the specific
volume. On classified documents enter the title
classification in parentheses.

Block 5. Funding Numbers. To include contract and
grant numbers; may inciude program elerment
number(s), project number(s), task number(s), and
work unit number(s). Use the “ollowing labals:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Elei ent Accession No.

BLOCK 6. Author{s). Name(s) « “persor(s) responsible
for writing the report, performing the research, or
credited with the content of the report. If editor or
compiler, this should foilow the name(s).

Block 7. Performing Organization Nan «{s) and
address(es). Self-explanatory.

Block 8. Performing Orqanization Report Nuimber.
Enter the unigue alpiranumeric report niumbe §4)
assigned by the orgatization performing the 1 eport.

Block 9. Sponsoring/Monitoring Agency Name(s) and
Address(es}. Self explanatory.

Block 16. Sponsonng/Monitoring Agen:y Report
Number. (ff Kncwn)

Biock i1 Su, ol wenitacy Notos Dntenainforiation not
mduded elfvewiere s h as Propared mcooperatan
with Trans. of. . Tobe pubichedin. . Whena

repc s revised, indiade astatement whethe the new
repe tsupersedes or soproements e older tenon

!

Block 12a. Distribution/Availability Statement .
Denotes public availability or limitations. Cite any
availability to the public. Enter additional limitations
or special markings in all capitals (e.g. NCFORN, REL,

ITAR).

DOD -

DOE -
NASA -
NTIS -

Biock 12b. Distribution Code.

boD -
DOE -

NASA -
NTIS -

Block 13. Abstract. indude a brief (Maximum 200
words) factual summary of the nost significant
inforrnation contained in the report.

Block 14. Subject Terms. Keywords or phrases

identifying

Block 15. Number of Pages. Enter the total number
cof pages.

Block 16. Price Coue Erter appropriate price cod

(NTI5 only)

Block 17.-79. Secur.ty Classifications Self-
explanatory cnter U.S Securty Classification in
accordance with U S Secunty Regutations (e,
ONCLASSIFIEDY 1 form contains dassified
mformation, stamp cloassification on the top and
bettom ol thus paae

Block 20, Linmitaton of abstract Thas blodk muaso he
completert (o assgn ol tion o e abetraey

Eriver cither UL Quromited or SAR (sames as report)

Nventryn
e lonnted
Calrmted

See DoDD 5230.24, “"Distribution
Statements on Technical Documents.”
See authorities.

See Handbook NHB 2200.2

Leave blank

this hlock o e essery if the abstrastiso

Leave blank.

Enter DOE distribution categories from
the Standard Distribution for
Unclassified Scientific and Technical
Reports.

Leave blank.

Leave blark.

major subjects in the report.

I hbank, the b tras ts assamed Lo be

Standar P o JUM B e Do P

RKF 4%
RKE
RLOG
RLNG
RMK 1
RNK
RNOR
RGRDER
ROTA
ROT3
RPMHSE
RPOSE 1
SCORY
RSLV
SADD
SASUM
SAXPY
SCASUM
SCNRM2
SCOMP
SCOMP 1
SCOMP2
SCCONU
Scapy

559
573

31

31
€03
213
587

15

19
309
209
305
336
319
177
178
177
179
461
462
462
307
161

SCVDR
SCVRC
SCVRD
SDOT
SEIG
SEIGV
SEIGVH
SEIGH
SEPDE
SEVAL
SEVAL
SEVALZ
SFQDE
SFODE 1
SFVAL
SFVAL2
SHELL
SHELL2
SI
SINQS
SINQF
SIN1
SLVMP
SMADD

299
303

SMCOPY
SMPLX
SMPRJD
SMS.V
SMSURT
SN=CISH
SNRM
SNRM2
SPFIT
SPFIT2
SPLIFT
5PLSQ
SPMPAR
SPORD
SPROD
SPSLV
SQUINT
SRAOT
SROTG
SROTMm
SROTMG
SSCAL
SSPLX
SSUBT

HUG

191
413
209
227
201

329
179
4<7
507
456
405

331
319
33%
249
165

17
169
168
173
413
317

SsSvDC
SSWaAP
STLSQ
SURF
SuURF2
SVPRD
S1CND
S iNRM
TASLV
TIP
TMPRQOD
TOPLX
TFOSE
TRAN
TRMESH
TRP
ToLV
URGET
URNG
URNG2
VALRZ2
WNNLS
WPFIT
ZEROIN

241
163
405
513
515
205
339
327
247
195
207
233
195
601
523
443
336
579
581
583
123
395
453
151

