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Abstract.  Closed-form parameter estimates are given for models of 
exponential growth, logistic growth, the Gompertz curve, Korf growth, 
simple harmonic motion, damped vibrations, and the logarithmic spiral.   
The  study employs the method of Regressions et Equations Integrales 
(Jean Jacquelin, 2014), but presents more concise expressions in some 
instances, and gives solutions to some problems not considered in that 
work.  Computer programs implementing the method are described.

Introduction
Parameter estimation for nonlinear models remains a major topic in applied mathematics, 
with applications spanning fields from biology to physics and engineering.  While numerical 
optimization techniques are widely employed, closed-form solutions offer distinct advantages:  
they provide analytical insight into parameter dependencies, eliminate convergence concerns, 
and enable rapid computation without iterative  procedures.  

The integral method, pioneered by Jean Jacquelin, represents an elegant approach to the 
problem.  By transforming nonlinear regression into a system of linear equations through 
strategic integration, this technique circumvents the need for iterative optimization.  The 
method is particularly advantageous for models where iterative least-squares approaches 
struggle with local minima or require careful initialization.

This article extends Jacquelin’s method to derive new closed-form parameter estimates for 
important classes of models.  The Mitscherlich equation, known in population biology as the 
monomolecular model, is also widely used in chemical kinetics to describe processes 
approaching an asymptotic limit.  Next covered are oscillatory systems, which model 
phenomena ranging from mechanical vibrations to electrical circuits.  Finally is addressed the 
logarithmic (equiangular) spiral with arbitrary center coordinates—a curve fundamental to 



modeling growth patterns in nature, from nautilus shells to galactic arms.  The inclusion of 
translational parameters significantly complicates the estimation problem compared to the 
centered case.  

For each model class, explicit parameter estimators are derived.  It is shown that the closed-
form solutions provide excellent initial estimates for refinement procedures.  The resulting 
formulas are computationally efficient and numerically stable, making them suitable for real-
time applications and large-scale data analysis.

Background
Roots of the present method extend deep to the work of Hartley (1948), who presented a 
method for parameter estimation of growth models that exploited finite differences.  He 
showed that through simple substitutions, a method obtained for the Mitscherlich equation  
could be extended to apply to the Gompertz and Verhulst equations as well.  

Although similar in spirit, the method of Jacquelin (2014) differs in details.  His small book, 
Regressions et Equations Integrales, developed a general and powerful method that converts many 
nonlinear models into linear systems of equations in terms of integrals.  These may be 
satisfactorily approximated by the trapezoid rule, and thus are known quantities.  The present 
article owes much to this prior work. 

The derivation which follows demands no mathematics beyond ordinary calculus.  The 
resulting formulas and programs may be applied without understanding of the derivations.

Original contributions
• Simplified formulas for diminishing returns and sinusoidal models
• Treatment of Korf growth
• Treatment of damped harmonic motion about an unknown center
• Treatment of the logarithmic spiral about an unknown center

Derivation

Growth
Exponential Growth.  Begin with the simple model z = erx and integrate.  For reasons that 
will be explained in the next section, the constant of integration may be neglected.  Letting s 
denote the integral of z with respect to x,

s = ∫ z dx = erx

r
= z
r

z = r s
To minimize the squared-error ϵ between the model predictions zi and the observations yi over 
a data set of size N, write



ϵ = 1
2 ∑

i=1

N

(zi − y i)
2 = 1

2 ∑
i=1

N

(r si − y i)
2

dropping subscripts for concision,
∂ϵ
∂r

= ∑ (r s− y)s = 0

r∑ s2−∑ s y = 0

r = ∑~s y

∑~s 2

which will hold when ~s  is a linearly detrended function ~s = s−ŝ lin, by subtracting the least 
squares line of s as a function of x.

Law of diminishing returns.  The Mitscherlich model of plant growth posits that each 
additional unit of nutrient will produce a smaller increment of growth than the proceeding 
unit.  (Fox, 1971)  This is expressed by the equation

dy
dx

= c (a− y)

where x is the growth factor, y is the yield, a is the maximum attainable yield, and c is a 
constant.  Integrating gives

∫ 1
a− y

dy = ∫ c dx
− ln(a− y) = cx+k1

Rename the exponentiated constant of integration b = exp (k1), then
y − a = −be−cx

The diminishing returns model with z as the prediction is thus:
z = a − be−cx

Let s denote the integral of z with respect to x.  Then,
s = ∫ z dx = ∫(a − be−c x) dx = ax + b

c
e−c x + k2

z + c s = a + ac x + c k2

z = −c s + ac x + a + ck 2

Following the method of Jacquelin (2014), let
A0 = −c
B0 = ac
C0 = a + c k2

The error residual over a set of N data of predicted zi and observed yi may be written

ϵ = 1
2 ∑
i=1

N

(A0 s i + B0 x i + C0− y i)
2

Setting ∂ϵ
∂ A0

= ∂ϵ
∂B0

= ∂ϵ
∂C 0

= 0 yields the system of linear equations



[∑ s2 ∑ x s ∑ s

∑ x s ∑ x2 ∑ x

∑ s ∑ x N ] [A0

B0

C0
] = [∑ s y

∑ x y

∑ y ]
An integral shifted by a linear function is equivalent to the integral of the original function 
shifted by a constant.  Since the model contains an additive constant as an unknown 
parameter, it is permissible to detrend s as a function of x,  ~s = s− ŝlin  Observe that

∑~s = 0
∑ x~s = 0

Apply Cramer’s rule to solve the system of equations.  Developing the determinant of the 
matrix along the first row, only the leftmost element is nonzero, 

A0 =
∑~s y

∑~s 2

c = −∑~s y

∑~s 2

Since the exponential growth model is a special case of the diminishing returns model, it can 
be seen that it was permissible to detrend that integral likewise.  With parameter c 
determined, the problem of determining a and b reduces to linear least squares.

Gompertz curve.  The Gompertz model was introduced as an actuarial model for predicting 
human lifetimes, but has also found use as a growth model.  It has the equation

z = a e−b e
−cx

where population z is a function of time x, and a, b and c are parameters to be determined.  
Linearize based on the method of Hartley (1948)

ln (z) = ln (a) − b e−c x

Making the substitutions
z ' = ln (z )
a ' = ln (a)

the problem is in the form of the diminishing returns model, and may be solved by the prior 
method.

Logistic growth.  The well-known logistic growth model has the equation
z = K

1 + b e−r x
where population z is a function of time x, r is an intrinsic rate of growth, K is the carrying 
capacity of the environment, and b is a parameter which depends on the initial conditions.  
Making the inverse transformation (Hartley, 1948)

1
z

= 1
K

+ b
K
e−r x

Make the substitutions



z ' = 1
z

a ' = 1
K

b ' = b
K

c ' = r
The problem is now in the form of the diminishing returns model and may be solved by that 
method.

Korf growth.  The Chapman-Richards four parameter growth model has been very widely 
used.  It is unfortunately quite resistant to integration or any closed-form estimate of its 
parameters.  As a consolation, one additional growth model shall be considered here out the 
many which have been proposed in the literature.  The Korf equation has been found accurate 
for modeling the growth of tree trunk diameter.  (Zeide, 1993)  It has the form

z = a e−bx
−c

Take the logarithm:
ln (z) = ln (a) − b x−c

Integrate:
s = ∫ ln (z) dx = x ln (a)− b

−c+1
x−c +1 + k

1−c
x
s = (1−c) ln (a)− bx−c + 1−c

x
k

Combining with the above yields
ln (z) = (1−c ) s

x
+ (c−1)k 1

x
+ c ln (a)

Define:
A0 = 1−c
B0 = (c−1)k
C0 = c ln (a)

Applying Jacquelin’s method, write the error of approximation as 

ϵ = 1
2 ∑ (ln(z )− ln ( y ))2 = ∑ (A0

s
x

+ B0
1
x

+ C0 − ln( y ))
2

Let ∂ϵ
∂ A0

= ∂ϵ
∂B0

= ∂ϵ
∂C0

= 0, then the system of linear equations is

[∑
s2

x2 ∑ s
x2 ∑ s

x

∑ s
x2 ∑ 1

x2 ∑ 1
x

∑ s
x ∑ 1

x N ] [A0

B0

C0
] = [∑

s
x

ln ( y )

∑ 1
x

ln ( y )

∑ ln ( y)
]

The growth rate is given by c = 1−A0, and a and b may be determined by linear regression.



Oscillation
Simple harmonic motion.  Simple harmonic motion arises in a variety of situations, and 
numerous techniques have been developed to determine the frequency.  The integral method 
presented here requires only modest computation, and does not require the observations to be 
equally spaced.  Begin by integrating the model

z = acos (ω x) + b sin(ω x) + c

s1 = ∫ z dx = a
ω sin(ω x )− b

ω cos(ωx ) + cx + k1

s2 = ∫ s1 dx = − a
ω2 cos (ω x) − b

ω2 sin (ω x) + c
2
x2 + k1 x + k2

s2 =
−1
ω2 z +

c
2
x2 + k1 x + k2

Thus,

z = −ω2 s2 + cω
2

2
x2 + k1 ω

2 x + k2ω
2

Following Jacquelin, define
A0 = −ω2

B0 = cω2

2
C0 = k1 ω

2

D0 = k2ω
2

The loss function of squared differences between the observations and predictions is
ϵ = 1

2 ∑ (z− y )2 = (A0 s2 + B0 x
2 + C0 x + D0− y)

2

Setting ∂ϵ
∂ A0

= ∂ϵ
∂B0

= ∂ϵ
∂C 0

= ∂ϵ
∂ D0

= 0 gives the system of linear equations

[∑ s2
2 ∑ x2 s2 ∑ x s2 ∑ s2

∑ x2 s2 ∑ x4 ∑ x3 ∑ x2

∑ x s2 ∑ x3 ∑ x2 ∑ x
∑ s2 ∑ x2 ∑ x N ] [ A0

B0

C0

D0
] = [∑ s2 y

∑ x2 y

∑ x y
∑ y

]
The second integral shifted by a parabola is equivalent to the second integral of the original 
function shifted by a constant.  Since the model contains an additive constant as an unknown 
parameter, it is permissible to parabolically detrend the second integral as ~s2 = s2− ŝ2prb by 
subtracting the least-squares parabola of s2 as a function of x.  Then notice that

∑~s 2 = 0
∑ x~s 2 = 0
∑ x2~s 2 = 0

Apply Cramer’s rule to solve the system.  Developing the determinant along the first row, only 
the upper-left element is nonzero, and so



A0 =
∑~s 2 y

∑~s 2
2

ω = √−∑~s 2 y

∑~s 2
2

 

Now that frequency has been determined, parameters a, b and c may be determined by linear 
least-squares.

Damped vibrations.  Consider a mass moving in damped harmonic motion.  The case in which 
the rest position is at zero has been treated by Jacquelin.  Consider now a more general case.  
Suppose the rest position is at an unknown offset k0, and

z = er x (acos (ω x) + b sin(ω x)) + k 0 = c er x cos (ω x−ϕ) + k0

where z is position as a function of time x, r is the decay rate, ω is the angular frequency, and 
parameters a and b are related to the amplitude c and phase angle φ by

c = √a2 + b2

ϕ = arctan(b , a)
a = c cos (ϕ)
b = c sin(ϕ)

 

The integral equation, by aid of computer algebra (Maxima), is

z = −us2 + 2rs1 +
k0u
2
x2 + (k1u−2k0 r )x + k2u − 2k1 r + k0

where u = r2+ω2

Let

A0 = −u
B0 = 2 r

C0 =
k0u
2

D0 = (k1u−2k 0r )
E0 = k2u − 2k 1r + k0

The loss function of sum of squared differences between the predictions and observations is
ϵ = 1

2 ∑ (A0 s2 + B0 s1 + C0 x
2 + D0 x + E0− y )

2

Setting ∂ϵ
∂ A0

= ∂ϵ
∂B0

= ∂ϵ
∂C 0

= ∂ϵ
∂ D0

= ∂ϵ
∂ E0

= 0 yields the system of linear equations:



[∑
s2

2 ∑ s1 s2 ∑ x2 s2 ∑ x s2 ∑ s2

∑ s1 s2 ∑ s1
2 ∑ x2 s1 ∑ x s1 ∑ s1

∑ x2 s2 ∑ x2 s1 ∑ x4 ∑ x3 ∑ x2

∑ x s2 ∑ x s1 ∑ x3 ∑ x2 ∑ x

∑ s2 ∑ s1 ∑ x2 ∑ x N
] [A0

B0

C0

D0

E0

] = [∑
s2 y

∑ s1 y

∑ x2 y
∑ x y

∑ y
]

The fortunate cancellations in the case of undamped motion do not occur here, and it will be 
necessary to solve the system.  The decay rate and angular frequency parameters are

r =
B0

2
ω = √−(A0 + r2)

Parameters a, b, and k0 may now be determined by linear least-squares.  Jacquelin calls the 
forgoing procedure the “short way” and follows with a complex method for re-estimating the 
phase and frequency as a linear regression of transformed variables.  This adds considerable 
difficulty, and the interested reader is referred to pages 64-70 of Regressions et Equations 
Integrales for the “full way.”

The death spiral
Consider the case of a logarithmic spiral.  If the spiral is centered on the origin, its equation 
may be written in polar form r = a ebθ .  Using logarithms, this may be written

ln (r ) = ln(a) + bθ  
and the parameters ln(a) and b may be trivially recovered by linear least-squares.  The 
following method extends to the case of spirals which are not centered on the origin.  A 
logarithmic spiral may be written in complex form as

z = c exp((r + iω) x − i ϕ)
where z is the complex position of real time x, and c is the real amplitude, r is the real decay 
rate, ω is the real angular frequency, and φ is the real phase angle, and i is the imaginary unit.  
Neglecting the constant of integration, the complex integral s is

s = ∫ z dx = c exp((r + iω)x − i ϕ)
r + iω

= z
r + iω

z = (r + iω) s
Separating the real and complex parts of z gives

ℜ(z) = r ℜ(s )− ω ℑ(s)
ℑ(z) = ω ℜ(s) + r ℑ(s)

To optimize on the complex plane, recall that the squared distance metric is
 ‖z− y‖2 = ℜ(z− y )2 + ℑ(z− y)2 

Thus,
ϵ = 1

2 ∑ (r ℜ(s)− ω ℑ(s ) − ℜ( y))2 + (ω ℜ(s) + r ℑ(s )− ℑ( y ))2

Setting ∂ϵ
∂r

= 0 yields



r =
∑ℜ(s ) ℜ( y ) + ∑ ℑ(s ) ℑ( y )

∑ℜ(s)2 + ∑ ℑ(s)2

Setting ∂ϵ
∂ω = 0 yields

ω =
∑ℜ(s) ℑ( y )−∑ ℑ(s) ℜ( y)

∑ ℜ(s)2 + ∑ ℑ(s)2

To find phase and amplitude, recall the subtraction formulas:
cos (ω x−ϕ) = cos (ω x)cos(ϕ) + sin(ω x)sin(ϕ)
sin(ωx−ϕ) = sin(ω x)cos (ϕ) − cos (ω x)sin(ϕ)

and Euler’s formula, e iϕ = cos (ϕ) + isin(ϕ) 
The spiral equation can then be expressed as

ℜ(z) = c er x (cos(ω x)cos(ϕ) + sin (ω x)sin(ϕ))
ℑ(z) = cer x (sin (ω x )cos (ϕ)− cos (ω x)sin(ϕ))

Let a = ccos (ϕ) and b = c sin(ϕ), then
ℜ(z) = aer x cos(ωx ) + b er xsin (ω x)
ℑ(z) = aer x sin(ω x) − b er xcos (ω x)

This is a linear system of equations for the unknown parameters a and b which may be solved 
by least-squares.  If the spiral center y0 is a further unknown, the system may be written as the 
partitioned matrix

[ er x i cos(ωx i) er xi sin(ωx i) 1 0
er x i sin (ω xi) −er x i cos (ω x i) 0 1 ] [ a

b
ℜ( y0)
ℑ( y0)

] = [ ℜ( y i)
ℑ( y i) ]

Then amplitude and phase are given by
c = √a2 + b2

ϕ = arctan(b , a)

Example Problems
Implementation.  The methods described in the prior section have been implemented in 
package LILS in FORTRAN with a C translation.  This package is in the public domain and is 
available on the author’s website at http://13olive.net/code/lils1.zip  The following problems 
can be replicated with the sample programs included in that package.

Misra’s dental adsorption data
These is a benchmark data set maintained by the National Institute of Standards and 
Technology (NIST) (USA).  The measurements are of volume as a function of pressure, N=14, fit 
to a monomolecular (Mitscherlich / diminishing returns) curve.  The optimal parameter values 
have been determined by NIST.  Program dental fits the curve using the proposed integral 
method, obtaining parameter values that differ about 5% from the NIST certified results.  A 

http://13olive.net/code/lils1.zip


comparison of the graphs shows that the integral method performs well on this relatively easy 
problem.

Parameter Certified value Estimated value Relative error
b1 238.942129 249.763741 4.53 %
b2 0.000550 0.000523 5.02 %

Ratkowsky’s pasture yield data
This is another NIST benchmark data set, concerning the growth of a pasture as a function of 
time.  The data was fit to a logistic curve and optimal parameters were determined by NIST.  
Program pastur fits this growth data to the logistic model according to the proposed integral 
method, and for sake of comparison, to the Gompertz and Korf models as well.  The coefficient 
of determination is computed for each fit.  There is close agreement between the certified and 
the integral approximations, and all these models give reasonable results.



Model Coefficient of determination
Logistic (NIST certified)  0.998267
Logistic (proposed method)  0.997483
Gompertz  0.992516
Korf  0.976315

Variable star data
Data on the brightness of a variable star was published by the SuperWASP project.  (Norton, et. 
al.)  A variable star classified as a rotator is believed to vary in brightness across its surface and 
its changes in observed brightness are due to the star’s rotation.  This results in a case of 
simple harmonic variation in brightness as a function of time. 

The integral method, unlike Fourier analysis, does not require equally spaced samples.  It 
cannot tolerate long gaps in the data sequence, unfortunately, because this will corrupt the 
numerical integrals.  The longest available sequence of observations taken over a single night 
was selected for study and the excerpt var_star.csv is included in the package.  Program 
star determines the period of the variable star.  The approximation determined by the 
proposed method was compared against an iteratively optimized fit computed by the 
spreadsheet Gnumeric (using algorithm NLSOLVE).  The results show excellent agreement.



Gharib’s damped vibrations data
Measurements of position versus time of a vibrating mass-damper system were published by 
Gharib (2021) in the course of his research in structural engineering.  A portion of his data was 
excerpted as damp.csv and program damp fits the data according to the integral method, 
then assesses the fit according to the coefficient of determination.  The program first attempts 
to fit the 80-second interval in one piece.  This does not succeed.  The program then breaks the 
record into ten 8-second segments and fits them separately.  A satisfactory fit is found for most 
of the segments, however, the ninth has a C.O.D. of only 61%.  The approximations over the 
first segment and the ninth segment are plotted below.



Segment Coefficient of determination

1  0.998453

2  0.998402

3  0.997122

4  0.997135

5  0.998669

6  0.996201

7  0.994579

8  0.998284

9  0.618703

10  0.987325

What is particularly alarming about this result is that there is no obvious anomaly in the data 
to explain the poor results on this segment.  So while the proposed integral method can be said 
to have very high computational efficiency, it cannot be claimed that it is entirely reliable.



Spiral problem
This is a toy problem.  The file spiral.csv gives the coordinates of a spiral in the complex 
plane with additive Gaussian noise.  Program spiral recovers an approximation to the 
original parameters.  The coefficient of determination in the complex plane is 0.994.

Discussion and Conclusion
The integral method is noteworthy for its low computational burden – linear in its inputs.  It 
serves well as an initial estimate for iterative procedures, but due to its sometimes fickle 
performance, cannot be recommended as a final answer.  The method depends on the stability 
of integration for its effectiveness.  In contrast, numerical differentiation is unstable, and does 
not form a basis for practical estimation methods.  Cubic splines are an alternative to the 
trapezoid rule for numerical integration.  They can yield higher precision, but are also more 
sensitive to noise.  The trapezoid rule, the safer, low-order method, should be preferred in 
general.

Allowing for the well-understood operation of detrending, formulas for exponential growth 
rate and sinusoid frequency are simple and involve only two sums each, making these methods 
quite easy to implement.

The author is aware of little research on the topic, and it may be that mathematicians have 
only begun to scratch the surface of this powerful technique.
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Appendix

Algorithm RATEST
Given:  data set (x i , y i) of length N
Assume:  model equation of form z = a + bec x

Find:  parameter c

Begin.
Compute numerical integral s =∫ y dx by the trapezoid rule.

     
s1 = 0

si+ 1 = s i +
1
2
( y i+1 + y i)(x i+1 − x i)

Find the least-squares line ŝlin to fit s as a linear function of x
Detrend ~s = s− ŝlin

Compute c =
∑
i=1

N
~s i y i

∑
i=1

N
~s i

2

Done.

Algorithm FREEST
Given:  data set (x i , y i) of length N
Assume:  model equation of form z = acos (ω x) + b sin(ω x ) + c
Find:  parameter ω

Begin.
Compute numerical integral s1 = ∫ z dx by the trapezoid rule.
Compute numerical integral s2 = ∫ s1dx by the trapezoid rule.
Find least-squares parabola ( ŝ2)prb to fit s2 as a quadratic function of x
Detrend ~s2 = s2 − (ŝ2)prb

Compute ω = √−
∑
i=1

N

(~s2)i y i

∑
i=1

N

(~s2)i
2

Done.


