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Abstract. Closed-form parameter estimates are given for models of
exponential growth, logistic growth, the Gompertz curve, Korf growth,
simple harmonic motion, damped vibrations, and the logarithmic spiral.
The study employs the method of Regressions et Equations Integrales
(Jean Jacquelin, 2014), but presents more concise expressions in some
instances, and gives solutions to some problems not considered in that
work. Computer programs implementing the method are described.

Introduction

Parameter estimation for nonlinear models remains a major topic in applied mathematics,
with applications spanning fields from biology to physics and engineering. While numerical
optimization techniques are widely employed, closed-form solutions offer distinct advantages:
they provide analytical insight into parameter dependencies, eliminate convergence concerns,
and enable rapid computation without iterative procedures.

The integral method, pioneered by Jean Jacquelin, represents an elegant approach to the
problem. By transforming nonlinear regression into a system of linear equations through
strategic integration, this technique circumvents the need for iterative optimization. The
method is particularly advantageous for models where iterative least-squares approaches
struggle with local minima or require careful initialization.

This article extends Jacquelin’s method to derive new closed-form parameter estimates for
important classes of models. The Mitscherlich equation, known in population biology as the
monomolecular model, is also widely used in chemical kinetics to describe processes
approaching an asymptotic limit. Next covered are oscillatory systems, which model
phenomena ranging from mechanical vibrations to electrical circuits. Finally is addressed the
logarithmic (equiangular) spiral with arbitrary center coordinates—a curve fundamental to



modeling growth patterns in nature, from nautilus shells to galactic arms. The inclusion of
translational parameters significantly complicates the estimation problem compared to the
centered case.

For each model class, explicit parameter estimators are derived. It is shown that the closed-
form solutions provide excellent initial estimates for refinement procedures. The resulting
formulas are computationally efficient and numerically stable, making them suitable for real-
time applications and large-scale data analysis.

Background

Roots of the present method extend deep to the work of Hartley (1948), who presented a
method for parameter estimation of growth models that exploited finite differences. He
showed that through simple substitutions, a method obtained for the Mitscherlich equation
could be extended to apply to the Gompertz and Verhulst equations as well.

Although similar in spirit, the method of Jacquelin (2014) differs in details. His small book,
Regressions et Equations Integrales, developed a general and powerful method that converts many
nonlinear models into linear systems of equations in terms of integrals. These may be
satisfactorily approximated by the trapezoid rule, and thus are known quantities. The present
article owes much to this prior work.

The derivation which follows demands no mathematics beyond ordinary calculus. The
resulting formulas and programs may be applied without understanding of the derivations.

Original contributions

» Simplified formulas for diminishing returns and sinusoidal models
* Treatment of Korf growth

* Treatment of damped harmonic motion about an unknown center
* Treatment of the logarithmic spiral about an unknown center

Derivation

Growth

Exponential Growth. Begin with the simple model z = e™ and integrate. For reasons that
will be explained in the next section, the constant of integration may be neglected. Letting s
denote the integral of z with respect to x,

rx
s = f zdx = & =2
r r
zZ =rs
To minimize the squared-error € between the model predictions z; and the observations y; over

a data set of size N, write



which will hold when ¥ is a linearly detrended function §° = s—3§,,, by subtracting the least
squares line of s as a function of x.

Law of diminishing returns. The Mitscherlich model of plant growth posits that each
additional unit of nutrient will produce a smaller increment of growth than the proceeding
unit. (Fox, 1971) This is expressed by the equation

Y _ (g

where x is the growth factor, y is the yield, a is the maximum attainable yield, and c is a
constant. Integrating gives
f 1 dy = f cdx

a—y
—In(a—y) = cx+k,

Rename the exponentiated constant of integration b = exp (k, ), then
y—a = —be ™
The diminishing returns model with z as the prediction is thus:
z =a—be”
Let s denote the integral of z with respect to x. Then,

s= [zdx = [(a—be ) dx = ax+§e”+k2

z+cs = a+acx+ck,

z = —cs+acx+a+ck,
Following the method of Jacquelin (2014), let
A, = —c
B, = ac

C, = a+ck,
The error residual over a set of N data of predicted z and observed y; may be written
N
€ = % Z (Ags; + Byx; + CO_yi>2

i=1
Setting oe - de - Oe g yields the system of linear equations

oA, 0B, 0C,
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An integral shifted by a linear function is equivalent to the integral of the original function
shifted by a constant. Since the model contains an additive constant as an unknown
parameter, it is permissible to detrend s as a function of x, § = s — 5, Observe that

Y3 =0

D> x3 =0
Apply Cramer’s rule to solve the system of equations. Developing the determinant of the
matrix along the first row, only the leftmost element is nonzero,
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Since the exponential growth model is a special case of the diminishing returns model, it can

be seen that it was permissible to detrend that integral likewise. With parameter ¢

determined, the problem of determining a and b reduces to linear least squares.
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Gompertz curve. The Gompertz model was introduced as an actuarial model for predicting
human lifetimes, but has also found use as a growth model. It has the equation
z=ae’
where population z is a function of time x, and a, b and c are parameters to be determined.
Linearize based on the method of Hartley (1948)
In(z) = In(a) —be

Making the substitutions

z' = In(z)

a' = In(a)
the problem is in the form of the diminishing returns model, and may be solved by the prior
method.

Logistic growth. The well-known logistic growth model has the equation
K

1+be™
where population z is a function of time x, r is an intrinsic rate of growth, K is the carrying
capacity of the environment, and b is a parameter which depends on the initial conditions.
Making the inverse transformation (Hartley, 1948)
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Make the substitutions



, 1
z' = =
z
, 1
a__
K
b= 2
K
c'=r

The problem is now in the form of the diminishing returns model and may be solved by that
method.

Korf growth. The Chapman-Richards four parameter growth model has been very widely
used. It is unfortunately quite resistant to integration or any closed-form estimate of its
parameters. As a consolation, one additional growth model shall be considered here out the
many which have been proposed in the literature. The Korf equation has been found accurate

for modeling the growth of tree trunk diameter. (Zeide, 1993) It has the form
—bx ¢

z=ae
Take the logarithm:
In(z) = In(a) —bx ©
Integrate:
b —c+1
= |1 = x1 - k
s f n(z)dx = x1In(a) — 1 +
l=cs = (1—c)In(a) — bx “ + 1=c,
X X
Combining with the above yields
In(z) = (1—c)% + (c—l)k% +cln(a)
Define:
A, = 1-c
B, = (c—1)k
Co = cIn(a)
Applying Jacquelin’s method, write the error of approximation as
1 1 ?
e = 2 2 (In(z)=In(y)f' = X2 (A} +By— +Co—In(y))
Let ﬁaAEo = aanO = ggo = 0, then the system of linear equations is
" ) [
s s s ' 1
sz sz ZX A Ziln()’)
s 1 1]],°
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' Z:x2 Z:X go Z;ln(y)
0
I I 2 In(y) |

The growth rate is given by c = 1— A, and a and b may be determined by linear regression.



Oscillation

Simple harmonic motion. Simple harmonic motion arises in a variety of situations, and
numerous techniques have been developed to determine the frequency. The integral method
presented here requires only modest computation, and does not require the observations to be
equally spaced. Begin by integrating the model

z = acos(wx) +bsin(wx) + ¢

a . b
s, = fzdx = &sin(wx) — g cos(wx) +cx + k,
_ _ a b . C 2
s, = [s,dx = —gcos(a)x)—;sm(a)x)+§x +k, x +k,
-1 C »
S, = —z+-x +kx+k
w 2
Thus,
2
2 cw 2 2 2
Z = —ws,+ X +kox+kow

Following Jacquelin, define

N

AO = —w
2
cw
B. =
0 2
C, = ko
D, = k,o’

The loss function of squared differences between the observations and predictions is
€ = % Y (z—yf = (Ays, + Byx*+ Cox + Dy— y )’

0c¢ ode _ 0O0e _

o€ = 0 gives the system of linear equations

Setti = = =
e eaA, T 9B,  8c, oD,
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The second integral shifted by a parabola is equivalent to the second integral of the original
function shifted by a constant. Since the model contains an additive constant as an unknown
parameter, it is permissible to parabolically detrend the second integral as S, = s,—5,,,,, by
subtracting the least-squares parabola of s, as a function of x. Then notice that

2%, =0

> x3,=0

Z X3, =0
Apply Cramer’s rule to solve the system. Developing the determinant along the first row, only
the upper-left element is nonzero, and so



2.3,
>3

Z?’:zy
YTy

Now that frequency has been determined, parameters a, b and ¢ may be determined by linear
least-squares.

Yy
A, = >
2
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Damped vibrations. Consider a mass moving in damped harmonic motion. The case in which
the rest position is at zero has been treated by Jacquelin. Consider now a more general case.
Suppose the rest position is at an unknown offset k,, and
z = e (acos(wx) + bsin(wx))+k, = c e™ cos(wx—¢)+k,

where z is position as a function of time x, r is the decay rate, w is the angular frequency, and
parameters a and b are related to the amplitude ¢ and phase angle ¢ by

c =Va+b

¢ = arctan(b, a)

a = c cos(¢)

b = c sin(¢)
The integral equation, by aid of computer algebra (Maxima), is

kou
z = —us,+2rs + ——x + (k,u—2k,r)x + kyu — 2k, r + k,

where u = r’+o’
Let

A, = —u
B, = 2r
k,u
C. = _0-
0 2
D, = (k,u—2k,r)
E, = k,u—2k,r+k,

The loss function of sum of squared differences between the predictions and observations is
€ = % z (A,s,+ B,s, + Cox2 + Dyx + Eo—y)2

de _ 0Oe _ 0Oe _ 0Oe _ Oe

3A = 9B, — oC. — oD, - PE, = 0 yields the system of linear equations:

Setting
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The fortunate cancellations in the case of undamped motion do not occur here, and it will be
necessary to solve the system. The decay rate and angular frequency parameters are
BO

r = —
2

o = V=(A,+71°)
Parameters a, b, and k, may now be determined by linear least-squares. Jacquelin calls the
forgoing procedure the “short way” and follows with a complex method for re-estimating the
phase and frequency as a linear regression of transformed variables. This adds considerable
difficulty, and the interested reader is referred to pages 64-70 of Regressions et Equations
Integrales for the “full way.”

The death spiral

Consider the case of a logarithmic spiral. If the spiral is centered on the origin, its equation

may be written in polar formr = a e”’. Using logarithms, this may be written
In(r) = In(a)+ b0

and the parameters In(a) and b may be trivially recovered by linear least-squares. The
following method extends to the case of spirals which are not centered on the origin. A
logarithmic spiral may be written in complex form as

z = cexp((r+im)x—ig)
where z is the complex position of real time x, and c is the real amplitude, r is the real decay
rate, w is the real angular frequency, and ¢ is the real phase angle, and i is the imaginary unit.
Neglecting the constant of integration, the complex integral s is

s = fde: cexp((r+i'w)x—i¢) -z
r+iw r+im
z = (r+im)s

Separating the real and complex parts of z gives

R(z) = rR(s)— w3I(s)

3(z) = wR(s)+r I(s)
To optimize on the complex plane, recall that the squared distance metric is

lz=ylI" = R(z—y) +3(z—y)

Thus,
e = L3 (5= 0306) = ROIF + (0%(s)+r 3(5)- Sy

0€ —g yields

Setting or
r



Setting g—;) = 0 yields

2 R(s)I(y)— D 3(s) R(y)
2 R(s)+ D, 3(s)

To find phase and amplitude, recall the subtraction formulas:
cos(wx—¢) = cos(wx)cos(¢) + sin(wx)sin(¢)
sin(wx—¢) = sin(wx)cos(¢) — cos(wx)sin( )

and Euler’s formula, e'’ = cos (¢) + isin( ¢)

The spiral equation can then be expressed as
N(z) = ce™*(cos(wx)cos(¢)+sin(wx)sin(¢))

3(z) = ce™(sin(wx)cos(¢) — cos(wx)sin(¢))

Let a = ccos(¢) and b = csin( ¢), then

R(z) = ae™cos(wx)+be sin(wx)
3(z) = ae™sin(wx) — be ™ cos(wx)

This is a linear system of equations for the unknown parameters a and b which may be solved

by least-squares. If the spiral center y, is a further unknown, the system may be written as the

partitioned matrix

w =

a
b

(YO)
(

e™ cos(wx;) e “sin(wx;) 1 0

e sin(wx,) —e™cos(wx,) 0 1

Then amplitude and phase are given by
c = Jd+ b
¢ = arctan(b, a)

Example Problems

Implementation. The methods described in the prior section have been implemented in
package LILS in FORTRAN with a C translation. This package is in the public domain and is
available on the author’s website at http://130olive.net/code/lils1.zip The following problems
can be replicated with the sample programs included in that package.

Misra’s dental adsorption data

These is a benchmark data set maintained by the National Institute of Standards and
Technology (NIST) (USA). The measurements are of volume as a function of pressure, N=14, fit
to a monomolecular (Mitscherlich / diminishing returns) curve. The optimal parameter values
have been determined by NIST. Program dental fits the curve using the proposed integral
method, obtaining parameter values that differ about 5% from the NIST certified results. A


http://13olive.net/code/lils1.zip

comparison of the graphs shows that the integral method performs well on this relatively easy
problem.

Dental adsorption data
90 4

] Obse rvations
Certified approximation
---------------------- Proposed approximation

80—

70+

60—

304

401

30+

Parameter Certified value |Estimated value [Relative error
b1 238.942129 249.763741 453 %
b2 0.000550 0.000523 5.02 %

Ratkowsky’s pasture yield data

This is another NIST benchmark data set, concerning the growth of a pasture as a function of
time. The data was fit to a logistic curve and optimal parameters were determined by NIST.
Program pastur fits this growth data to the logistic model according to the proposed integral
method, and for sake of comparison, to the Gompertz and Korf models as well. The coefficient
of determination is computed for each fit. There is close agreement between the certified and
the integral approximations, and all these models give reasonable results.



Growth of a pasture
BO o
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Certified approximation
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Model Coefficient of determination
Logistic (NIST certified) 0.998267
Logistic (proposed method) 0.997483
Gompertz 0.992516
Korf 0.976315

Variable star data

Data on the brightness of a variable star was published by the SuperWASP project. (Norton, et.
al.) A variable star classified as a rotator is believed to vary in brightness across its surface and
its changes in observed brightness are due to the star’s rotation. This results in a case of
simple harmonic variation in brightness as a function of time.

The integral method, unlike Fourier analysis, does not require equally spaced samples. It
cannot tolerate long gaps in the data sequence, unfortunately, because this will corrupt the
numerical integrals. The longest available sequence of observations taken over a single night
was selected for study and the excerpt var_star. csv is included in the package. Program
star determines the period of the variable star. The approximation determined by the
proposed method was compared against an iteratively optimized fit computed by the
spreadsheet Gnumeric (using algorithm NLSOLVE). The results show excellent agreement.



Variable star data
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Gharib’s damped vibrations data

Measurements of position versus time of a vibrating mass-damper system were published by
Gharib (2021) in the course of his research in structural engineering. A portion of his data was
excerpted as damp . csv and program damp fits the data according to the integral method,
then assesses the fit according to the coefficient of determination. The program first attempts
to fit the 80-second interval in one piece. This does not succeed. The program then breaks the
record into ten 8-second segments and fits them separately. A satisfactory fit is found for most
of the segments, however, the ninth has a C.0.D. of only 61%. The approximations over the
first segment and the ninth segment are plotted below.

Damped vibrations

=10 4

=207 . Observations
—— Proposed approximation
—30+ H “ u u H -------- Ite rative approximation

—40 T T T T T T T 1
0.0 1.0 20 3.0 40 5.0 6.0 70 B.O




Damped vibrations, segment #9
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What is particularly alarming about this result is that there is no obvious anomaly in the data
to explain the poor results on this segment. So while the proposed integral method can be said
to have very high computational efficiency, it cannot be claimed that it is entirely reliable.



Spiral problem

This is a toy problem. The file spiral.csv gives the coordinates of a spiral in the complex
plane with additive Gaussian noise. Program spiral recovers an approximation to the
original parameters. The coefficient of determination in the complex plane is 0.994.

Logarithmic spiral
10+

. Data points
— Fitted curve

Discussion and Conclusion

The integral method is noteworthy for its low computational burden - linear in its inputs. It
serves well as an initial estimate for iterative procedures, but due to its sometimes fickle
performance, cannot be recommended as a final answer. The method depends on the stability
of integration for its effectiveness. In contrast, numerical differentiation is unstable, and does
not form a basis for practical estimation methods. Cubic splines are an alternative to the
trapezoid rule for numerical integration. They can yield higher precision, but are also more
sensitive to noise. The trapezoid rule, the safer, low-order method, should be preferred in
general.

Allowing for the well-understood operation of detrending, formulas for exponential growth
rate and sinusoid frequency are simple and involve only two sums each, making these methods
quite easy to implement.

The author is aware of little research on the topic, and it may be that mathematicians have
only begun to scratch the surface of this powerful technique.
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Appendix

Algorithm RATEST
Given: dataset (x;,y;) of length N

Assume: model equation of formz = a + be®”
Find: parameter ¢

Begin.
Compute numerical integral s = f y dx by the trapezoid rule.
s; =0
1
Sipp = St E(yi+1 +y) (X = x)
Find the least-squares line §,,, to fit s as a linear function of x
Detrend § = s —35,,

N
ngiyz‘

i=1

Computec =

Done.

Algorithm FREEST

Given: dataset (x;,y;) of length N
Assume: model equation of form z = acos(wx) + bsin(wx) + ¢
Find: parameter w

Begin.
Compute numerical integral s, = f z dx by the trapezoid rule.
Compute numerical integral s, = f s, dx by the trapezoid rule.
Find least-squares parabola (, ), to fit s, as a quadratic function of x
Detrend s, = s, — (5))

prb

Compute w =

Done.




