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Abstract.  Formulas are derived for estimates of parameters in the normal (or Gaussian) and 
cardinal sine (or sinc) semivariogram models, based on numerical integrals of the empirical 
data.  First-order Taylor approximations are introduced.  These estimates demand little 
computation, and are shown to be preferable to the iterative estimates in some cases.

Introduction.  Given a set of training data (xji, yi), and a set of query points qji, the regression 
problem seeks a prediction ŷ  for each q.  The simple nearest-neighbors approach seeks the x 
nearest to a given q, and uses the corresponding y value.  An extension of this approach is to 
take a weighted average of the training target values, choosing the weights according to an 
influence function which decreases with the distance between x and q.

The weighted-average regression scheme has a significant flaw:  if the training data is 
sampled unevenly, areas heavily represented in the training set will have an excessive 
influence on the estimate.  If a particular xi is repeated enough times, the estimate will 
converge to yi.  This undesirable behavior can be remedied by solving the linear system 
∑ A ijw j = y i, where A is the matrix of functions of distances between the points x, and w is a 
vector of weights.  The estimate sought is then given by ŷ = b⋅w, where b is the vector of 
functions of distance between the query point and each training point.  If the influence 
function applied satisfies certain conditions, matrix A is positive semi-definite and this method 
is called kernel regression.  A particular kind of kernel regression is simple kriging.  (Hastie, 
Tibshirani & Friedman p.171)  The techniques presented in this article are applicable to any 
kriging variant.

Kriging is an interpolation technique employed extensively in the field of geostatistics, 
and has applications in mining, hydrology, and epidemiology.  (Col. U., 2025)  It may be 
distinguished from kernel regression in that kriging adopts the principled approach of 
learning the influence function from the training data.  

The original interpolation problem thus induces a second interpolation problem.  For 
each pair of points in the training data, the distance or lag between them is computed, denoted 
h; and the semivariance, denoted g, defined as g = 1

2
( y j− yk )

2.   A curve-fitting problem is then 

undertaken to approximate each observed pair (h, g) by a function γ = f (h), where f  is chosen 



from a limited group of functions.  Among these are the so-called circular and spherical 
semivariance models.  Also in this group are the normal (or Gaussian) model, and the cardinal 
(or sinc) model.  (Gavin and Khanal, 2021)  

Next the predicted semivariances γ must be computed between each pair of points in 
the training set.  These are converted to affinities according to the formula:

α = 1 −
γ

γmax
 The linear system ∑ A ijw j = y i is solved for w, where the matrix A is the affinities.  Then 
ŷ = b⋅w  gives the estimate to the original regression problem, where the vector b is 
composed of the affinities between the query point and each point in the training set.

A typical semivariogram will have a plot of the form:

It is an increasing function because the farther points are away from each other, the less alike 
they are.  One of the assumptions of kriging is that an average target value exists over the 
sample space, and therefore points at great separation will approach a maximum variance of 
their target values.  The maximum semivariance is called the sill.  It is also likely that some 
variance exists even at negligible distance ‒ that is, boreholes drilled at the same location may 
not have identical assays.  This produces a nonzero semivariance at zero lag, an effect which is 
called the nugget.

The number of pairs of points grows as ½N2; forming a histogram of average 
semivariance over intervals of lag reduces the computational effort.  More importantly, the 
histogram places increased importance on the critical short lags which will have the most 
influence on the eventual estimate.  A great deal of arbitrary discretion is possible in forming 
the histogram; the present effort will fix the number of histogram bins at 32 and space them 
evenly over the range of lags.  The arithmetic mean of lag and of semivariance in each bin will 
be used in place of the original data, and any empty bins shall be omitted.



Plausible optimality of the cardinal kernel.  The normal model is of especial interest 
because it is widely used in statistics as a kernel function.  The cardinal function is of especial 
interest because it may be optimal.  Viktor Epanechnikov proved that his kernel function was 
superior among functions which do not take on negative values.  (Chill2Macht, 2018)  This 
includes the Gaussian.

Although counterintuitive, an influence function which takes on negative values can 
give superior performance.  It is well-known that the cardinal sine

 sinc(h) = {sin (h)
h

, h≠0

1 , h=0} 

is optimal for certain evenly-spaced interpolation problems.  This function performs well 
empirically, takes on negative values, and produces positive-definite matrices.  It is therefore a 
plausible conjecture that it is also the optimal kernel function for kriging regression.

Compromise made.  In order to obtain a solution in closed form, exactness must be sacrificed.  
The estimates are given in terms of the integrals of the semivariance, which must be 
approximated by numerical integration.  This trade is advantageous – the examples presented 
will show results that are generally acceptable and sometimes excellent.

Use of the result.  The closed-form estimates have a very modest computational cost that is 
linear in the number of histogram bins.  They may be used directly in the kriging process, or as 
starting guesses for an iterative estimate of the semivariogram parameters.  In the case of the 
cardinal semivariogram, multiple local optima exist for fitting the parameters, but the closed-
form estimate will ensure a unique solution.

For those seeking a thorough background on kriging, information can be found in the GSLIB 
User’s Guide, Professor Nielsen’s “Kriging Example,” and the ArcGIS website – to suggest a few 
of the many worthy expositions available on the topic.

Related work.  In a recent study of the topography of East Java (Sari et al., 2024), a 
semivariance model of the form γ = c0 + c1 f (

h
c2

) was considered, and closed form least-

squares estimates were derived for the parameters c0 and c1.  For the critical c2 scaling 
parameter, the authors resorted to a direct search method.  A closed-form method to 
determine this parameter shall now be proposed.

Derivation.  Integrals of the cardinal sine where sinc denotes the cardinal sine function and Si 
denotes the (cardinal) sine integral are:

∫sinc ( h
c2

)dh = c2 Si( h
c2

)dh

∫Si( h
c2

)dh = hSi( h
c2

) + c2 cos ( h
c2

)

∫ hSi ( h
c2

)dh = 1
2
(h2 Si( h

c2
) + c2h cos ( h

c2
)− c2

2 sin( h
c2

))



∫ h2 Si ( h
c2

)dh = 1
3
(h3 Si( h

c2
) + c2h

2cos ( h
c2

)−2c2
2h sin( h

c2
)−2c2

3 cos( h
c2

))

The cardinal sine semivariance function is defined as:
γ = c0 + c1(1 − sinc( h

c2
))

Let a1, a2, a3 and a4 denote the successive integrals of  ɣ. Then,
a1 = ∫γ dh = (c0 + c1)h − c1c2Si( h

c2
)

a2 = ∫a1 dh =
c0+c1

2
h2 − c1 c2(hSi( h

c2
) + c2cos ( h

c2
))

a3 = ∫ a2 dh =
c0+c1

6
h3 − 1

2
c1 c2[h

2Si( h
c2

) + c2hcos( h
c2

) + c2
2 sin( h

c2
)]

a4 = ∫a3dh =
c0+c1

24
h4 − 1

6
c1c2[h

3 Si( h
c2

) + c2h
2 cos( h

c2
) + c2

2h sin( h
c2

) − 2c2
3 cos ( h

c2
)]

From these equations, it is possible to solve for the sub-expressions:

sin( h
c2

) = h
c0 + c1 − γ
c1 c2

Si ( h
c2

) =
(c0+c1)h − a1

c1 c2

cos ( h
c2

) = 1
c1c2

2 (ha1 − a2 −
c0+c1

2
h2)

(c0+c1) c2
2 = c2

2 γ − 2
a3

h
−
c0+c1

6
h2 + a2

Substituting these expressions yields the equation for the semivariance:

γ = −(c0+c1) −
a2

c2
2 +

6 a3

c2
2 + 4 a1

h
−

12a4

c2
2 + 4a2

h2

which is linear in the parameters c0, c1, and c2.  Parameters c0 and c1 occur together  and may be 
treated as a single variable.  The squared error of the estimate is:
f = 1

2 ∑ (γi − g i)
2

where gi are the observed semivariances, which has its optimum when
∂ f
∂c2

= ∂ f
∂(c0+c1)

= 0

By aid of computer algebra (Maxima) the resulting system of two equations in two unknowns 
may be solved for c2.  Care must be taken to re-enter the sums which occur in the expansion of 
the derivatives as distinct variables to prevent Maxima from making manipulations which are 
invalid on a summation. The result may be factored so as to be written :



p = 144 ∑( a4

h2 −
a4

h2 )( a4

h2 )
−144 ∑ ( a4

h2 −
a4

h2 ) (a3

h )
+36 ∑ ( a3

h
−
a3

h )(a3

h )
+24 ∑ (a2 − a2 )( a4

h2 )
−12 ∑ (a2 − a2 )( a3

h )
+ ∑ (a2 − a2 )a2

q = −48 ∑( a4

h2 −
a4

h2 )( a2

h2 )
+48 ∑ ( a4

h2 −
a4

h2 )( a1

h )
+24 ∑ ( a3

h
−
a3

h )( a2

h2 )
−24 ∑ ( a3

h
−
a3

h )( a1

h )
−4 ∑ (a2−a2 )( a2

h2 )
+4 ∑ (a2−a2 )( a1

h )
−12 ∑ (g−g )( a4

h2 )
+6 ∑ (g−g )( a3

h )
−∑ (g−g ) (a2)

c2 = √ pq
where the bar terms denote the arithmetic mean, for example 

a4

h2 = 1
M ∑ a4

h2 , where M is the 

number of histogram bins.  Since hi and gi are observed data; a1, a2, a3 and a4 may be determined 
by numerical integration and c2 may be evaluated.  The trapezoidal rule will suffice.  
Specifically,



(a1)1 = 0

(a1)i = (a1)i−1 +
1
2 (g i + gi−1) (hi− hi−1)

and
(a2)1 = 0

(a2)i = (a2)i−1 +
1
2 ((a1)i + (a1)i−1) (hi− hi−1)

and so forth.

Having obtained an estimate for the critical scale parameter c2, estimates for c0 and c1 may be 
gotten with considerably less difficulty, as the original equation for the semivariance may be 
used and no integration is required.  Let si  denote the cardinal sine expression

si = sinc (
hi
c2

)

The squared-error loss is:
f = 1

2∑(γ i− g i)
2 = 1

2∑ (c0 + c1(1 − s i) − gi)
2

where gi is the observed semivariance.  Then at the optimum,
∂ f
∂c0

= ∑ [c0 + c1(1 − si)− g i] = 0

∂ f
∂c1

= ∑ [c0 + c1(1 − si)− g i] (1 − s i) = 0

This system of two equations in two unknowns may be solved to yield

c1 = −
∑ (gi − ḡ)si
∑ (s i− s̄)si

c0 = ḡ − c1(1 − s̄ )
which completes the estimate of the cardinal semivariogram parameters.  It may be desired to 
have no nugget effect, for example, if the value of c0 as determined above is negative.  In that 
case the semivariogram model is:
γ = c1(1 − sinc( h

c2
))

and c1 will be found to be:

c1 =
∑ (1−si) gi
∑ (1−si)

2

Normal semivariogram parameters.  The derivation of the normal semivariogram 
parameters follows a similar strategy as the cardinal.   The defining equation is

γ = c0 + c1(1−exp(−( h
c2

)
2

))

Let a1, a2, and a3 denote the successive integrals of  ɣ. Then,



a1 = ∫γ dh = (c0 + c1)h −
√π c1 c2

2
erf( h

c2
)

a2 = ∫a1 dh =
c0+c1

2
h2 −

c1c2

2 [√π h erf ( h
c2

) + c2 exp (−( h
c2

)
2

)]
a3 = ∫a2 dh =

c0+c1

6
h3 −

c1 c2

8 [√π (2h2+c2
2)erf ( h

c2
) + 2c2hexp (−( h

c2
)

2

)]
From these equations, it is possible to solve for the sub-expressions:

exp(−( h
c2

)
2

) =
c0+c1−γ
c1

erf ( h
c2

) =
(c0+c1−a1)
c1c2

√π
2

(c0+c1)c
2 = 2ha1 − 2a2 − (c0+c1)h

2 + c2
2 γ

Substituting to eliminate the nonlinear terms yields:

γ =
a1

h
−

( 4a3

h
− 4 a2 + 2a1h− 2

3
(c0+c1)h

2)
c2

2

The least-squares estimate for the scaling parameter is

p = 8 (∑ a2a3

h ∑ h4 − ∑ a2h
2 ∑ a3h)

+4 ((∑ a3h)
2

− ∑ a3
2

h2 ∑ h4)

+4 (∑ a1h
3 ∑ a3h − ∑ a1a3 ∑ h4)

+4 ((∑ a2h
2)

2
− ∑ a2

2 ∑ h4)
+4 (∑ a1a2h∑ h4 − ∑ a1h

3 ∑ a2h
2)

+ ((∑ a1h
3)

2
− ∑ a1

2h2 ∑ h4)

q = 2 (∑ a1h∑ a3h − ∑ a1a3

h2 ∑ h4)

+2 (∑ a1a2

h ∑ h4 − ∑ a1h∑ a2h
2)

+ (∑ a1h∑ a1h
3 − ∑ a1

2 ∑ h4)

+2 (∑ a3g
h ∑ h4 − ∑ a3h∑ gh2)

+2 (∑ a2h
2 ∑ gh2 − ∑ a2g∑ h4)

+ (∑ a1g h∑ h4−∑ a1h
3 ∑ gh2)



 c2 = √2 p
q

Let ei  denote the exponential expression  e i = exp(−(
hi
c2

)
2

)

Then

c1 = −
∑ (gi−ḡ)e i
∑ (ei− ē)e i

c0 = ḡ−c1(1− ē)
which completes the estimate of the normal semivariogram parameters.  If c0 is to be held to 
zero, the estimate for c1 is instead:

c1 =
∑ (1−e i)g i
∑ (1−e i)

2



Favorable examples.  To demonstrate the 
accuracy of the approximation, consider the 
fish toxicity data (Cassotti et al.)  Each 
variable was assigned an importance weight 
of its linear regression coefficient, and the 
distance between each pair of observations 
was taken to be weighed Euclidean.  A 
sample of one seventh of possible 
semivariance pairs was collected into a 
histogram of 32 bins, and the cardinal and 
normal semivariogram parameters were 
estimated according to the above method.  
The result was then compared to that 
obtained by the iterative solution available 
in the spreadsheet Gnumeric.  The 
semivariances plotted here are of a much 
smaller sample for illustrative purposes.  The 
agreement in this case is excellent.

Iterative 
estimate

Closed-form 
estimate

c0 0.175 0.191

c1 3.267 3.252

c2 0.658 0.665

Squared error 13.198 13.222

Comparative 
error

- 0.175%

The normal parameter estimate on this 
problem is less impressive, but still useful.

Iterative 
estimate

Closed-
form 
estimate

c0 0.273 0.833

c1 3.533 3.310

c2 1.553 2.201

Squared error 21.935 27.534

Comparative 
error

- 25.524%



For a better validation of the correctness of the estimate in the normal case, construct the 
artificial test case in which the semivariance is given from the formula with known parameters 
with some added Gaussian noise.  With parameters c0=0.2, c1=1.6, c2=1.4, and noise level σ = 0.3, 
a draw from the random number generator is shown below.

 

Iterative 
estimate

Closed-form 
estimate

c0 0.278 0.280

c1 1.543 1.542

c2 1.562 1.568

Squared error 17.705 17.706

Comparative 
error

- 0.003%

As a further example, consider the concrete 
compressive strength data (Yeh, 1998), using 
the Euclidean distance with the linear 
regression weights.  The histogram bins are 
averages over all semivariance pairs, and the 
plotted dots are a sample of each thousandth 
pair.  For the cardinal model, reasonable 
agreement is attained between the closed-form 
solution and the iterative solution.  The 
difference in squared error is within 20%.



The closed-form estimate for the normal 
model also performs reasonably well on this 
problem, achieving a relative error of less 
than 10%.

Unsatisfactory example.  When distances in the concrete data are computed without 
importance weights on the variables, the semivariogram shows an increasing trend that does 
not approach a limit.  In this case the closed-form estimates for c2 fail completely, with the 
quantity inside the square root being negative.  The iterative solution will depend on the 
starting values and may fail to converge, with c1 and c2 increasing indefinitely.  

Taylor series approximation.  If the data do 
not show a sill, it is not reasonable to expect 
to fit a curve with a sill to the data.   Recalling 
the Epanechnikov kernel, try to fit the data to 
a parabola instead.



Make use of the first-order Taylor series approximation 

sinc(x ) ≈ 1 − x2

6
Then

γ = c0 + c1(1 − sinc( h
c2

)) ≈ c0 +
c1

6c2
2 h

2

Defining  c3=
c1

6c2
2 , the parabolic model to be fit is 

γ = c0 + c3h
2

To minimize the squared error, solve the equations
∂ f
∂c0

= ∑ (c0 + c3hi
2 − g i) = 0

∂ f
∂c3

= ∑(c0 + c3hi
2−gi)h i

2 = 0

resulting in:

c3 = ∑ gihi
2 − ḡ∑ hi

2

∑ h i
4 −

(∑ hi
2)

2

N

c0 = ḡ − c3
∑ hi

2

N
unless a zero nugget c0=0 is imposed, in which case 

c3 = ∑ gihi
2

∑ hi
4

The parabolic model thus obtained may be used as itself, or it may be used to find the 
corresponding cardinal sine model.  Taking a reasonable guess for the sill, such as the 
maximum observed semivariance
c0+c1 = gmax
from the definition of c3, 

c2 = √ c1

6c3

and c0 and c1 may be recomputed by the method given before.

Taylor approximation of the normal model.  The first-order Taylor series approximation of 
the exponential function is

ex = ∑
i=0

∞ x i

i !
≈ 1 + x

Thus, the parabolic approximation of the normal semivariance model is:

γ = c0 + c1(1 − exp (−( h
c2

)
2

)) ≈ c0 +
c1

c2
2 h

2



Defining c3 =
c1

c2
2 , parameters c0 and c3 may be determined as before.  If the corresponding 

normal semivariogram is desired, take the maximum observed semivariance as a reasonable 
guess for the sill, and
c1 = gmax−c0

c2 = √ c1

c3

and c0 and c1 may be recomputed by the method given before.

Parabolic example.  The concrete problem is illustrated with lags extrapolated out to 5000.  
Depending on the initial guess, the iterative solution may converge, or it may diverge with 
values for c1 and c2 increasing indefinitely.   The estimate given by converting the Taylor 
approximation to the cardinal model extrapolates better than the divergent iterative estimate. 

It is also much more accurate than the convergent estimate.  In this case, the closed-form 
method would seem preferable to the iterative method, even as a final result.



Convergent 
estimate

Divergent 
estimate

Taylor estimate

c0 26.970 76.329 69.257 

c1 433.613 16041331.615 2018.960 

c2 59.439 35147.543 371.586

Squared error 3.211 x 106 1.202 x 106 1.313 x 106

Comparative 
error

167.240% - 9.308% 

Implementation.  Efficient programs in FORTRAN and C for estimating the cardinal 
semivariogram parameters are placed in the public domain in the package variogram, 
available at http://13olive.net/code/variogram.zip

Programming the estimates of the normal semivariogram parameters is left as a project 
for the interested reader.
Conclusions.  The closed-form parameter estimates may be used themselves or may serve as 
initial guesses in an iterative technique.  These estimates are not exact, but can be made as 
accurate as the numerical integration of the empirical semivariance data.  

The estimate for the cardinal sine semivariogram parameters is especially valuable 
since this curve does not have a unique local minimum of least-squared error.  The Taylor 
series approximations introduced provide a feasible solution in cases in which iterative 
estimates do not converge.  The technique used in the derivation may offer an avenue of attack 
to other challenging problems.
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