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Abstract. Formulas are derived for estimates of parameters in the normal (or Gaussian) and
cardinal sine (or sinc) semivariogram models, based on numerical integrals of the empirical
data. First-order Taylor approximations are introduced. These estimates demand little
computation, and are shown to be preferable to the iterative estimates in some cases.

Introduction. Given a set of training data (x;, y;), and a set of query points gj, the regression
problem seeks a prediction y for each q. The simple nearest-neighbors approach seeks the x
nearest to a given g, and uses the corresponding y value. An extension of this approach is to
take a weighted average of the training target values, choosing the weights according to an
influence function which decreases with the distance between x and q.

The weighted-average regression scheme has a significant flaw: if the training data is
sampled unevenly, areas heavily represented in the training set will have an excessive
influence on the estimate. If a particular x; is repeated enough times, the estimate will
converge to y. This undesirable behavior can be remedied by solving the linear system

A,w; =y, where A is the matrix of functions of distances between the points x, and wis a
vector of weights. The estimate sought is then given by y = b - w, where b is the vector of
functions of distance between the query point and each training point. If the influence
function applied satisfies certain conditions, matrix A is positive semi-definite and this method
is called kernel regression. A particular kind of kernel regression is simple kriging. (Hastie,
Tibshirani & Friedman p.171) The techniques presented in this article are applicable to any
kriging variant.

Kriging is an interpolation technique employed extensively in the field of geostatistics,
and has applications in mining, hydrology, and epidemiology. (Col. U., 2025) It may be
distinguished from kernel regression in that kriging adopts the principled approach of
learning the influence function from the training data.

The original interpolation problem thus induces a second interpolation problem. For
each pair of points in the training data, the distance or lag between them is computed, denoted
h; and the semivariance, denoted g, defined as g = %( ¥;—Y). Acurve-fitting problem is then
undertaken to approximate each observed pair (h, g) by a function y = f(h), where f is chosen



from a limited group of functions. Among these are the so-called circular and spherical
semivariance models. Also in this group are the normal (or Gaussian) model, and the cardinal
(or sinc) model. (Gavin and Khanal, 2021)

Next the predicted semivariances y must be computed between each pair of points in

the training set. These are converted to affinities according to the formula:
Y
ymax

The linear system A,w; = y,is solved for w, where the matrix A is the affinities. Then
¥ = b - w gives the estimate to the original regression problem, where the vector b is
composed of the affinities between the query point and each point in the training set.
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A typical semivariogram will have a plot of the form:
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It is an increasing function because the farther points are away from each other, the less alike
they are. One of the assumptions of kriging is that an average target value exists over the
sample space, and therefore points at great separation will approach a maximum variance of
their target values. The maximum semivariance is called the sill. 1t is also likely that some
variance exists even at negligible distance — that is, boreholes drilled at the same location may
not have identical assays. This produces a nonzero semivariance at zero lag, an effect which is
called the nugget.

The number of pairs of points grows as %N? forming a histogram of average
semivariance over intervals of lag reduces the computational effort. More importantly, the
histogram places increased importance on the critical short lags which will have the most
influence on the eventual estimate. A great deal of arbitrary discretion is possible in forming
the histogram; the present effort will fix the number of histogram bins at 32 and space them
evenly over the range of lags. The arithmetic mean of lag and of semivariance in each bin will
be used in place of the original data, and any empty bins shall be omitted.



Plausible optimality of the cardinal kernel. The normal model is of especial interest
because it is widely used in statistics as a kernel function. The cardinal function is of especial
interest because it may be optimal. Viktor Epanechnikov proved that his kernel function was
superior among functions which do not take on negative values. (Chill2Macht, 2018) This
includes the Gaussian.

Although counterintuitive, an influence function which takes on negative values can
give superior performance. It is well-known that the cardinal sine

sin (h)
sinc(h)={ h h#0
1, h=0

is optimal for certain evenly-spaced interpolation problems. This function performs well
empirically, takes on negative values, and produces positive-definite matrices. It is therefore a
plausible conjecture that it is also the optimal kernel function for kriging regression.

Compromise made. In order to obtain a solution in closed form, exactness must be sacrificed.
The estimates are given in terms of the integrals of the semivariance, which must be
approximated by numerical integration. This trade is advantageous - the examples presented
will show results that are generally acceptable and sometimes excellent.

Use of the result. The closed-form estimates have a very modest computational cost that is
linear in the number of histogram bins. They may be used directly in the kriging process, or as
starting guesses for an iterative estimate of the semivariogram parameters. In the case of the
cardinal semivariogram, multiple local optima exist for fitting the parameters, but the closed-
form estimate will ensure a unique solution.

For those seeking a thorough background on kriging, information can be found in the GSLIB
User’s Guide, Professor Nielsen’s “Kriging Example,” and the ArcGIS website - to suggest a few
of the many worthy expositions available on the topic.

Related work. In a recent study of the topography of East Java (Sari et al., 2024), a

semivariance model of the form y = ¢, + ¢,f <c£) was considered, and closed form least-
2

squares estimates were derived for the parameters ¢, and c,. For the critical ¢, scaling
parameter, the authors resorted to a direct search method. A closed-form method to
determine this parameter shall now be proposed.

Derivation. Integrals of the cardinal sine where sinc denotes the cardinal sine function and Si
denotes the (cardinal) sine integral are:
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The cardinal sine semivariance function is defined as:

y = co+c,(1- sinc(ﬂ))
Gy
Let a,, a;, a;and a, denote the successive integrals of y. Then,
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From these equations, it is possible to solve for the sub-expressions:
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Substituting these expressions yields the equation for the semivariance:
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which is linear in the parameters ¢, ¢;, and c,. Parameters ¢, and ¢, occur together and may be
treated as a single variable. The squared error of the estimate is:

1
f=520-gf
where g; are the observed semivariances, which has its optimum when
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By aid of computer algebra (Maxima) the resulting system of two equations in two unknowns
may be solved for ¢,. Care must be taken to re-enter the sums which occur in the expansion of
the derivatives as distinct variables to prevent Maxima from making manipulations which are

invalid on a summation. The result may be factored so as to be written :
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where the bar terms denote the arithmetic mean, for example — = i Z F, where M is the
number of histogram bins. Since h; and g; are observed data; a;, a;, a; and a, may be determined

by numerical integration and ¢, may be evaluated. The trapezoidal rule will suffice.
Specifically,



(a); = (@) + 2 (g + gi-1) (b — hiy)

(ay); = (@) + 5 ((ay); + (ay)i-y) (hy = hiy)
and so forth.

Having obtained an estimate for the critical scale parameter c,, estimates for ¢, and ¢, may be
gotten with considerably less difficulty, as the original equation for the semivariance may be
used and no integration is required. Lets; denote the cardinal sine expression
. h
s; = sinc(—)
&
The squared-error loss is:

f = %Z(yi_gi)z = %Z(Co"'cl(l_si)_gi)Z

where g; is the observed semivariance. Then at the optimum,

S—IO = Z[CO+C1(1_S1‘)_gi] =0

0
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1
This system of two equations in two unknowns may be solved to yield
Z (g —9)s,
Z (s, = 5)s,

¢, = g—al(1-73)
which completes the estimate of the cardinal semivariogram parameters. It may be desired to
have no nugget effect, for example, if the value of ¢, as determined above is negative. In that
case the semivariogram model is:

¢, = -

y = ¢,(1—sinc(1))
G,
and c; will be found to be:

c. = z (1_Si)gi
1 2(1_51)2

Normal semivariogram parameters. The derivation of the normal semivariogram
parameters follows a similar strategy as the cardinal. The defining equation is

h 2
y = areli-exp(-(1))
2
Let aj, a,, and a; denote the successive integrals of y. Then,
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From these equations, it is possible to solve for the sub-expressions:
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Substituting to eliminate the nonlinear terms yields:

The least-squares estimate for the scaling parameter is
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Let e; denote the exponential expression e, = exp(—(c—’) )
2

Then
c = _Z(gi_g)ei
' Z (ei_é)ei

co = g—ci(1-e)
which completes the estimate of the normal semivariogram parameters. If ¢, is to be held to
zero, the estimate for c; is instead:

c = Z (1_91')91‘
1 Z(l_ei)z
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Fish data: sinc kernel

The normal parameter estimate on this
problem is less impressive, but still useful.

Favorable examples. To demonstrate the
accuracy of the approximation, consider the
fish toxicity data (Cassotti et al.) Each
variable was assigned an importance weight
of its linear regression coefficient, and the
distance between each pair of observations
was taken to be weighed Euclidean. A
sample of one seventh of possible
semivariance pairs was collected into a
histogram of 32 bins, and the cardinal and
normal semivariogram parameters were
estimated according to the above method.
The result was then compared to that
obtained by the iterative solution available
in the spreadsheet Gnumeric. The
semivariances plotted here are of a much
smaller sample for illustrative purposes. The
agreement in this case is excellent.

Iterative |Closed-form
estimate |estimate

Co 0.175 0.191
C1 3.267 3.252
C 0.658 0.665
Squared error |13.198 |13.222
Comparative |- 0.175%
error

Iterative | Closed-
estimate |form
estimate
Co 0.273 0.833
C 3.533 3.310
C 1.553 2.201
Squared error | 21.935 27.534
Comparative |- 25.524%
error

semivariance
| ] bins
- e jterative estimate
ST . close d-form estimate

Fish data: normal kernel




For a better validation of the correctness of the estimate in the normal case, construct the
artificial test case in which the semivariance is given from the formula with known parameters
with some added Gaussian noise. With parameters c,=0.2, ¢,=1.6, ¢,=1.4, and noise level 6= 0.3,
a draw from the random number generator is shown below.
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Toy example: normal kernel

As a further example, consider the concrete
compressive strength data (Yeh, 1998), using
the Euclidean distance with the linear
regression weights. The histogram bins are
averages over all semivariance pairs, and the
plotted dots are a sample of each thousandth
pair. For the cardinal model, reasonable
agreement is attained between the closed-form
solution and the iterative solution. The
difference in squared error is within 20%.

Iterative |Closed-form
estimate |estimate
Co 0.278 0.280
C1 1.543 1.542
C 1.562 1.568
Squared error |17.705 |17.706
Comparative |- 0.003%
error
1000 4
[ ] bins. .
8004 | = — = terative estinate
‘‘‘‘‘‘‘‘ closed-form estimate
600 — [ ] =
. -
, - -

Concrete data: sinc kernel, linear regression weights




The closed-form estimate for the normal
model also performs reasonably well on this
problem, achieving a relative error of less
than 10%.
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Concrete data: normal kernel, linear regression weights

Unsatisfactory example. When distances in the concrete data are computed without
importance weights on the variables, the semivariogram shows an increasing trend that does
not approach a limit. In this case the closed-form estimates for ¢, fail completely, with the
quantity inside the square root being negative. The iterative solution will depend on the
starting values and may fail to converge, with ¢, and ¢, increasing indefinitely.
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Concrete data: sinc kernel, unweighted

Taylor series approximation. If the data do
not show a sill, it is not reasonable to expect
to fit a curve with asill to the data. Recalling
the Epanechnikov kernel, try to fit the data to
a parabola instead.




Make use of the first-order Taylor series approximation
2
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Defining c3:6—12, the parabolic model to be fit is
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To minimize the squared error, solve the equations
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The parabolic model thus obtained may be used as itself, or it may be used to find the
corresponding cardinal sine model. Taking a reasonable guess for the sill, such as the
maximum observed semivariance

CO+C1 = gmax

from the definition of ¢,

c
c, = \/—1
6c,

and ¢, and ¢, may be recomputed by the method given before.

Taylor approximation of the normal model. The first-order Taylor series approximation of
the exponential function is

=YX ~ 1+x
i=o 1!
Thus, the parabolic approximation of the normal semivariance model is:
hy €y
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Defining c, = —, parameters ¢, and c; may be determined as before. If the corresponding
€y
normal semivariogram is desired, take the maximum observed semivariance as a reasonable
guess for the sill, and

Cl = gmax_CO

- &
= |
and ¢, and ¢, may be recomputed by the method given before.

Parabolic example. The concrete problem is illustrated with lags extrapolated out to 5000.
Depending on the initial guess, the iterative solution may converge, or it may diverge with
values for ¢, and ¢; increasing indefinitely. The estimate given by converting the Taylor
approximation to the cardinal model extrapolates better than the divergent iterative estimate.
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Concrete data: sinc kernel, unweighted

It is also much more accurate than the convergent estimate. In this case, the closed-form
method would seem preferable to the iterative method, even as a final result.



Convergent | Divergent Taylor estimate
estimate estimate
Co 26.970 76.329 69.257
C1 433.613 16041331.615 |2018.960
C 59.439 35147.543 371.586
Squared error |3.211 x 10° |1.202 x 10° 1.313 x 10°
Comparative |167.240% |- 9.308%
error

Implementation. Efficient programs in FORTRAN and C for estimating the cardinal
semivariogram parameters are placed in the public domain in the package variogram,
available at http://13olive.net/code/variogram.zip

Programming the estimates of the normal semivariogram parameters is left as a project
for the interested reader.

Conclusions. The closed-form parameter estimates may be used themselves or may serve as
initial guesses in an iterative technique. These estimates are not exact, but can be made as
accurate as the numerical integration of the empirical semivariance data.

The estimate for the cardinal sine semivariogram parameters is especially valuable
since this curve does not have a unique local minimum of least-squared error. The Taylor
series approximations introduced provide a feasible solution in cases in which iterative
estimates do not converge. The technique used in the derivation may offer an avenue of attack
to other challenging problems.
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