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Abstract:   The statistic s = (1/N) SUM (max(min(x, y), min(-x, -y)))  is 
proposed as measure of linear dependence.  Three distinct lines of 
reasoning converge on this result:  from the orthogonality of vectors in 
a non-Euclidean space, by analogy with the standard covariance, and as 
an equivalence function in fuzzy logic.  It is empirically validated to give 
reasonable results on real-world data.

Background
A fundamental task in statistics is to seek relations between variables as a means of explaining 
relationships and variations within datasets.  For this purpose, the classical covariance statistic, 
based on the ℓ2 norm (Euclidean distance),  has long been a cornerstone of statistical analysis, 
providing insights into the linear dependence between variables.  This article proposes a statistic 
rooted in the ℓ1 norm (Manhattan distance).  

The ℓ2  standard deviation has its ℓ1 counterpart in the mean absolute deviation.  The proposed 
statistic extends this correspondence by introducing an ℓ1 counterpart to the covariance, to be 
called the codeviation.

The following sections will give a derivation of codeviation, point out its significance in non-
Euclidean geometry, and study its feasibility for use as an alternative to covariance in a 
conventional linear discriminant analysis classifier.

Definition
The codeviation may be defined as a scalar-valued function of two vectors.

σ1 (x , y ) = 1
2 N ∑

i=1

N

(|xi+ y i|−|xi− y i|)



This function is not an inner product.  It is symmetric such that  σ1 (x , y )=σ1 (y , x ), but not 
homogeneous, so that for scalar a

σ1 (a x , y) ≠ aσ1 (x , y)

The isosceles orthogonality criterion
When two vectors have zero covariance, they are orthogonal.  A criterion for orthogonality of 
vectors u and v is that the distance from u to v must equal the distance from u to -v.  (Roberts, 
1934)  

Applying the ℓ1 metric, this means that

∑|ui+v i| = ∑|u i−vi|
∑ (|u i+v i|−|u i−v i|) = 0

A constant factor of 1
2N

 does not affect the equality, and so the critical expression may be 

written 1
2 N ∑ (|ui+v i|−|ui−v i|).

The Gnanadesikan-Kettenring construction
In a study of robust statistics, Gnanadesikan and Kettenring (1972) introduced a generally useful 
technique for deriving a measure of relation between variables from a measure of dispersion. 
(page 90)

A simple idea for estimating the covariance between two variables Y1 and Y2 is based on 
the identity

cov (Y 1 , Y 2) = ¼[var (Y 1 + Y 2) − var (Y 1 − Y 2)]



One robust estimator, s12
∗ , of the covariance between Y1 and Y2  may, therefore, be 

obtained from 

s12
∗ = ¼( σ̂ ∗2

1
− σ̂ ∗ 2

2
)

where  σ̂ ∗ 2

1
 and σ̂ ∗ 2

2
 are robust estimators of the variances of Y1  + Y2 and Y1 – Y2, 

respectively….

This is not equal to the proposed statistic.  However, the aim of the present article is not an 
estimate of covariance as such, but rather a low-order analog of covariance.  Taking their result 
as motivational, consider the formula for covariance of the centered variables where ~x = x−μ x 
and ~y = y−μy

σ xy = 1
N ∑~x~y

Compare this to the identity:

xy = (½(x+ y ))2 −(½(x− y ))2

Notice that the covariance is the difference of an agreement and a disagreement. Extending the 
analogy of mean absolute deviation to standard deviation, change from squaring the quantities to 
taking the absolute value, and define:

σ xy
1 = 1

2 N ∑ (|x+ y|−|x− y|)

as a new measure of the relationship between x and y. The factor ½ ensures that for x = y and 
centered data, the expression reduces to mean absolute deviation:

 σ1 = 1
N ∑|~x|

Thus, the mean absolute deviation is a special case of the ℓ1 codeviation, just as the ℓ2 variance is 
a special case of the ℓ2 covariance.

Argument from fuzzy logic
In their work on fuzzy logic, Klir and Yuan (1995) observed that when the variables are the  
Boolean {0,1}, then logical AND is equivalent to the minimum, and logical OR is equivalent to 
the maximum.   To obtain the Manhattan codeviation, begin with an expression for fuzzy logical 
equivalence.  (Theodoridis & Koutroumbas, 2006) 

x⇔ y = (x ∧ y ) ∨ (¬ x ∧ ¬ y ) = max(min(x , y ), min(1−x , 1− y ))



Switching from logical variables to scalar variables, the effects of the min and max operations 
are unchanged. For negation, values must be reflected across 0 instead of ½, thus ¬x becomes -x 
rather than 1-x, resulting in:

x⇔ y = max(min(x , y) , min (−x , − y ))

Equivalence of these approaches
The expression derived from covariance and the expression derived from fuzzy logic are 
identical.

½(|x+ y|−|x− y|) ≡ max(min(x , y ), min(−x , − y ))

which can be seen by expanding

½(|x+ y|−|x− y|) = ½[{ x+ y , x>− y
−x− y , x<− y }−{ x− y , x> y

−x+ y , x< y }]
= { x , x>− y , x< y

y , x>− y , x> y
−x , x<− y , x> y
− y , x<− y , x< y

}
and again

max (min (x , y ) , min(−x , − y)) = max({x , x< y
y , x> y }, {−x , x> y

− y , x< y})

= { x , x>− y , x< y
y , x>− y , x> y

−x , x<− y , x> y
− y , x<− y , x< y

}
In the case x= y ,

½(|x+x|−|x−x|) = max(min (x , x ), min(−x , − x)) = |x|

This demonstrates a remarkable relationship between fuzzy logic and ℓ1 geometry.  For the 
purposes of computation, the min/max formula is to be preferred, since it is not susceptible to 
subtractive cancellation.

Meaning in Planar Geometry
Angles in the ℓ1 plane are measured according to arc length along the unit parallelogram.  
Functions sint  and cos t may be defined analogously to their ℓ2 counterparts.  (Akça & Kaya, 



1997)  The unit parallelogram has a circumference of 8 rather than 2π.  It can be shown for unit 
vectors u and v separated by an angle θt  that 

u ◊ v = cost (θt)

where u◊ v  is the codeviation, and cost is the taxicab cosine of θt , given by 

cost(θ t)= 1−|θt

2|, −4≤x<4.  The subscript t denotes the “taxicab” or ℓ1 metric.  The 

relationship is not as general as might be hoped for:  It applies only to unit vectors, and it has not 
been determined if the result applies to dimensions higher than N=2.

Correlation and Generalized Distance
For a measure of dependence that is unaffected by scale, define ℓ1 correlation

r1 =
∑|x+ y|−|x− y|

∑|x|+|y|

For p variables, there is a p×p codeviation matrix S.  An expression for ℓ1  generalized statistical 
distance is

d1 = ∑
i |∑j

(S−1)ij x j|

Classification Experiment
To test the effectiveness of ℓ1 generalized distance, traditional linear discriminant analysis 
(LDA) was compared to the ℓ1 variant in classifying 19 data sets from the UCI repository 
(Lichman, 1987) and one other. The results are disappointing, showing that the ℓ1 variant is 
usually quite similar to traditional LDA and generally inferior. The table below result lists the 
results for classification accuracy, and the difference. The 95% confidence interval was 
computed by a paired Student's t test, according to the procedure described by Mitchell (1997).  
10-fold cross-validation was used, except as noted.

Data set variable
s

objects classes L2 L1 dif interval note

iris 4 150 3 0.980 0.967 -0.013 0.000 *in 5-fold cross-validation
balance-scale 4 625 3 0.851 0.838 -0.013 0.085
Banknote 
authentication

4 1372 2 0.976 0.971 -0.005 0.000

wilt 5 4839 2 0.943 0.957 0.014 0.000
Wholesale 
customers

6 440 2 0.848 0.861 0.014 0.037 *ignoring the nominal 
variable "region"

seed 7 210 3 0.962 0.933 -0.029 0.025 *in 5-fold cross-validation



E. coli 7 336 8 0.881 0.834 -0.048 0.025
pima-indians-
diabetes

8 768 2 0.778 0.721 -0.057 0.028

yeast 8 1484 10 0.587 0.580 -0.007 0.020
fertility 9 100 2 0.830 0.840 0.010 0.113 *in 3-fold cross-validation
glass 9 214 6 0.631 0.594 -0.037 0.033 *in 5-fold cross-

validation, omitting 1 
empty class

breast-cancer-
wisconsin

9 683 2 0.960 0.917 -0.043 0.021 *16 missing data deleted

hockey 10 796 2 0.685 0.764 0.079 0.137 *new data set
wine 13 178 3 0.989 0.977 -0.011 0.040 *in 5-fold cross-validation
leaf 14 340 30 0.812 0.768 -0.044 0.042 *30 non-empty classes. 

Not to be confused with 
'One-hundred species 
plant leaves' or 'folio' data 
sets

parkinsons 22 195 2 0.846 0.790 -0.056 0.047 *in 5-fold cross-validation
ionosphere 34 351 2 0.877 0.795 0.083 0.050
Landsat 
satellite

36 6435 6 0.838 0.680 -0.158 0.013

musk 166 6598 2 0.945 0.893 -0.051 0.000
isolet 617 7797 26 0.944 0.858 -0.087 0.011
average 0.858 0.828 -0.030

Discussion
The ℓ1 codeviation seems to be chiefly of theoretical interest. It is insensitive to extreme values.  
This makes it robust against outliers, but that is not always an advantage. These measures are 
equal:

1
2

(|x+ y|−|x− y|)

max (min (x , y ), min (−x ,− y ))
sgn (xy )⋅min (|x|,|y|)

The last form makes the behavior explicit. If the signs of x and y are the same, the result is 
positive, and if the signs of x and y are different, the result is negative. The magnitude is the 
lesser of x and y.

For example, these data sets have the same codeviation:

{(1,1), (2,2), (3,3)} and

{(1,1), (2,2), (3,99)}.

The codeviation has been given a formal derivation as a property of vectors which are orthogonal 



under the ℓ1  norm.   This argument is buttressed by supporting arguments from fuzzy logic and 
by comparison to the covariance and the mean absolute deviation, which demonstrates 
convincingly that codeviation is the correct ℓ1  measure of linear dependence.  It is easy to 
compute, and can be applied with reasonable success on real-world data.  A practical application 
remains to be discovered.
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Appendix:  Gram-Schmidt Process under the L1 norm
Let u ◊ v denote  1

2∑(|ui+vi|− |ui−v i|).  To orthogonalize v against u, subtract the parallel 

component from v. Seek a scalar c such that

(v – cu) ◊ u = 0

This reduces the problem to solving an equation of a single variable.  The function 

f (c ) = (v−cu) ◊ u = 0

may be solved by bisection for c.

A set of vectors may be made orthogonal by a variant of Gram-Schmidt orthogonalization.  The 
normalization step must be deferred, because 

 (c x ) ◊ y ≠ c (x ◊ y)

so normalizing the vectors destroys orthogonality.  However, an iterative method may be 
employed, alternately normalizing a vector, then subtracting parallel components.

Unlike in Euclidean geometry, the shortest path from a point to a hyperplane is not orthogonal to 
the hyperplane.  This means that making a vector b orthogonal by the ℓ1 isosceles criterion to a 
set of vectors A does not lead to a solution to the linear system A x = b in the sense of 
minimizing the residual ∑|A x−b|.

Existence and uniqueness of the orthogonal vector
From the orthogonality criterion, vector v ' = v−c u will be orthogonal to u when

(v − c u) ◊ u = 0

f (c ) = 1
2 ∑ |(v i−cui) + ui| − |(v i−cui) − ui| = 0

To show that the function is monotonic, differentiate with respect to c.  Expanding the absolute 
values gives

∂ f
∂c =

1
2∑ {−1 , v i−cui+ui<0

+1, v i−cui+ui>0}(−u i) − {−1 , v i−cu i−ui<0
+1 , v i−cu i−ui>0}(−u i)

Since terms where ui  is zero vanish, it may be taken ui ≠ 0 , and



∂ f
∂c =

1
2∑ {

−1, c>
v i

ui
−1 , ui>0

−1, c<
v i

ui
−1 , ui<0

+1, c<
v i

ui
−1 , ui>0

+1, c>
v i

ui
−1 , ui<0

}ui − {
−1 , c>

v i

ui
+1 , ui>0

−1 , c<
v i

ui
+1 , ui<0

+1 , c<
v i

ui
+1 , ui>0

+1 , c>
v i

ui
+1 , ui<0

}ui

By ordering these conditions according to c,

∂ f
∂c

= 1
2∑ {−|ui|, c>

v i

ui
−1

|ui| c<
v i

ui
−1} − {−|ui|, c>

v i

ui
+1

|ui|, c<
v i

ui
+1}

∂ f
∂c

= ∑ { 0 , c<
v i

ui
−1

−|u i|,
v i

ui
−1<c<

v i

ui
+1

0 ,
v i

ui
+1<c }

The derivative with respect to c is negative or zero for all c.  Therefore the function is 
monotonically decreasing, although not strictly so.  

For sufficiently large negative values of c, the quantities inside the absolute value bars are 
dominated by the cui term and the expression simplifies

lim
c→−∞

f (c ) = 1
2∑ { (v i−cui+ui)− (v i−cui−ui) , u i>0

−(v i−cui+ui) + (v i−cui−ui) , u i<0} = ∑|u i|

For sufficiently large positive values of c, the absolute values again simplify

lim
c→∞

f (c) = 1
2∑ {−(v i−cui+ui) + (v i−c ui−ui) , ui>0

(v i−cu i+u i) − (v i−c ui−ui) , ui<0} = −∑|ui|



For nonzero u, the function f(c) is continuous, monotonic, and has values less than and greater 
than zero. Its slope is zero only at its extreme values.  Therefore the equation f (c )= 0 must  
have a unique solution. 

A graph of a typical function f(c) illustrates the behavior.


