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Abstract: The statistic s = (1/N) SUM (max(min(x, y), min(-x, -y))) is
proposed as measure of linear dependence. Three distinct lines of
reasoning converge on this result: from the orthogonality of vectors in
a non-Euclidean space, by analogy with the standard covariance, and as
an equivalence function in fuzzy logic. It is empirically validated to give
reasonable results on real-world data.

Background

A fundamental task in statistics is to seek relations between variables as a means of explaining
relationships and variations within datasets. For this purpose, the classical covariance statistic,
based on the £?norm (Euclidean distance), has long been a cornerstone of statistical analysis,
providing insights into the linear dependence between variables. This article proposes a statistic
rooted in the £' norm (Manhattan distance).

The €* standard deviation has its £' counterpart in the mean absolute deviation. The proposed
statistic extends this correspondence by introducing an £' counterpart to the covariance, to be
called the codeviation.

The following sections will give a derivation of codeviation, point out its significance in non-
Euclidean geometry, and study its feasibility for use as an alternative to covariance in a
conventional linear discriminant analysis classifier.

Definition
The codeviation may be defined as a scalar-valued function of two vectors.
N

0o, (X: Y) = (|Xi+yi| - ‘Xi_yi‘)

2N &



This function is not an inner product. It is symmetric such that o, (x, y)=o0; (y, x), but not
homogeneous, so that for scalar a

O-1 (CIX, Y) # 610’1 (X, Y)

The isosceles orthogonality criterion

When two vectors have zero covariance, they are orthogonal. A criterion for orthogonality of
vectors u and v is that the distance from u to v must equal the distance from u to -v. (Roberts,
1934)

ISOSCELES ORTHOGONALITY CRITERION

u-+v

ulvwv
[futv]] = [lu-v]|

Applying the £' metric, this means that

Zlui+vi| = Z|ui_vi‘
Z(‘ui"-vi‘_‘ui_vi‘) =0

1 . .o .
A constant factor of N does not affect the equality, and so the critical expression may be

written —— (|Ju;+v| = lu;=v])
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The Gnanadesikan-Kettenring construction

In a study of robust statistics, Gnanadesikan and Kettenring (1972) introduced a generally useful
technique for deriving a measure of relation between variables from a measure of dispersion.

(page 90)

A simple idea for estimating the covariance between two variables Y, and Y, is based on
the identity

cov(Y,, Y, = Vvar(Y,+Y,) — var(Y,—Y,)]



One robust estimator, 81*2, of the covariance between Y, and Y, may, therefore, be
obtained from

s, = w(or - &%)

A 2 A 2 . .
where O ;‘ and a;‘ are robust estimators of the variancesof Y, +Y,and Y, - Y,,

respectively....

This is not equal to the proposed statistic. However, the aim of the present article is not an
estimate of covariance as such, but rather a low-order analog of covariance. Taking their result
as motivational, consider the formula for covariance of the centered variables where X = x—u,

andy = y—u,
1 ~ o~
Oy = FZ Xy
Compare this to the identity:

xy = (Yalx+y)) = ((x—y))f

Notice that the covariance is the difference of an agreement and a disagreement. Extending the
analogy of mean absolute deviation to standard deviation, change from squaring the quantities to
taking the absolute value, and define:

11
O‘xy - 2N <|X+y|—|X—y|)
as a new measure of the relationship between x and y. The factor 2 ensures that for x =y and
centered data, the expression reduces to mean absolute deviation:

1 ~
0,= EZ|X|

Thus, the mean absolute deviation is a special case of the £' codeviation, just as the £* variance is
a special case of the £ covariance.

Argument from fuzzy logic

In their work on fuzzy logic, Klir and Yuan (1995) observed that when the variables are the
Boolean {0,1}, then logical AND is equivalent to the minimum, and logical OR is equivalent to
the maximum. To obtain the Manhattan codeviation, begin with an expression for fuzzy logical
equivalence. (Theodoridis & Koutroumbas, 2006)

xey = (x A y)V (-x A my) = max(min(x, y), min(1-x, 1-y))



Switching from logical variables to scalar variables, the effects of the min and max operations
are unchanged. For negation, values must be reflected across 0 instead of %2, thus -x becomes -x
rather than 1-x, resulting in:

xey = max(min(x, y), min(-x, —y))

Equivalence of these approaches

The expression derived from covariance and the expression derived from fuzzy logic are
identical.

V(|x+y| — |x—y|) = max(min(x, y), min(—x,—y))

which can be seen by expanding

vi(lx+yl = lx—yl) = w|| X¥Y> XZTYi_| Xx=y, x>y
—X—y, X<—Y —x+y, X<y

X, Xx>—-y, x<y

o y’ X>_Y; X>y
—X, X<—y, x>y
-y, X<-—y, X<y

and again

max(min(x, Y)’min(—X,—y)) = Inax ;z i:i ’[:;: §:§
X, x>—y, x<y

= y’ X>_y’ X>y
—X, X<—Yy, X>y
-y, X<—Y, X<y

In the case x=y,

V(|x+x| — [x—x|) = max(min(x, x), min(—x, —x)) = [x|

This demonstrates a remarkable relationship between fuzzy logic and £' geometry. For the
purposes of computation, the min/max formula is to be preferred, since it is not susceptible to
subtractive cancellation.

Meaning in Planar Geometry

Angles in the £' plane are measured according to arc length along the unit parallelogram.
Functions sin, and cos, may be defined analogously to their £* counterparts. (Akca & Kaya,



1997) The unit parallelogram has a circuamference of 8 rather than 2m. It can be shown for unit
vectors u and v separated by an angle 6, that

u®v = cos,(6,)

where u¢ v is the codeviation, and cos, is the taxicab cosine of 6, given by

]

cos,(6,)=1— o —4sx<4. The subscript ¢ denotes the “taxicab” or £' metric. The

relationship is not as general as might be hoped for: It applies only to unit vectors, and it has not
been determined if the result applies to dimensions higher than N=2.

Correlation and Generalized Distance

For a measure of dependence that is unaffected by scale, define £' correlation

. D lx+yl = |x—yl
=
> Ixl+yl

For p variables, there is a pxp codeviation matrix S. An expression for £' generalized statistical
distance is

d = Y

i

Z (5_1)1'1' X;j

i

Classification Experiment

To test the effectiveness of €' generalized distance, traditional linear discriminant analysis
(LDA) was compared to the £' variant in classifying 19 data sets from the UCI repository
(Lichman, 1987) and one other. The results are disappointing, showing that the £' variant is
usually quite similar to traditional LDA and generally inferior. The table below result lists the
results for classification accuracy, and the difference. The 95% confidence interval was
computed by a paired Student's t test, according to the procedure described by Mitchell (1997).
10-fold cross-validation was used, except as noted.

Data set variable |objects [classes |L2 L1 dif interval |note
s
iris 4 150 3 0.980 [0.967 |-0.013 |0.000 *in 5-fold cross-validation
balance-scale |4 625 3 0.851 |0.838 |-0.013 |0.085
Banknote 4 1372 |2 0.976 |0.971 |-0.005 |0.000
authentication
wilt 5 4839 |2 0.943 ]0.957 |0.014 |0.000
Wholesale 6 440 2 0.848 |0.861 |0.014 |0.037 *ignoring the nominal
customers variable "region"
seed 7 210 3 0.962 |0.933 |-0.029 |0.025 *in 5-fold cross-validation




E. coli 7 336 8 0.881 |0.834 |-0.048 |0.025

pima-indians- |8 768 2 0.778 |0.721 |-0.057 |0.028

diabetes

yeast 8 1484 |10 0.587 |0.580 |-0.007 |0.020

fertility 9 100 2 0.830 |0.840 [0.010 |0.113 *in 3-fold cross-validation

glass 9 214 6 0.631 |0.594 |-0.037 |0.033 *in 5-fold cross-
validation, omitting 1
empty class

breast-cancer-|9 683 2 0.960 |0.917 |-0.043 |0.021 *16 missing data deleted

wisconsin

hockey 10 796 2 0.685 |0.764 |0.079 |0.137 *new data set

wine 13 178 3 0.989 [0.977 |-0.011 |0.040 *in 5-fold cross-validation

leaf 14 340 30 0.812 |0.768 |[-0.044 |0.042 *30 non-empty classes.
Not to be confused with
'One-hundred species
plant leaves' or 'folio’ data
sets

parkinsons 22 195 2 0.846 |0.790 |-0.056 |0.047 *in 5-fold cross-validation

ionosphere 34 351 2 0.877 |0.795 |0.083 |0.050

Landsat 36 6435 |6 0.838 |0.680 |-0.158 |0.013

satellite

musk 166 6598 |2 0.945 |0.893 |-0.051 |0.000

isolet 617 7797 |26 0.944 |0.858 |-0.087 |0.011

average 0.858 |0.828 |-0.030

Discussion

The ¢' codeviation seems to be chiefly of theoretical interest. It is insensitive to extreme values.
This makes it robust against outliers, but that is not always an advantage. These measures are
equal:

1
2—(IX+ yl=1x=yl)

max (min (x, y ), min (—x,—y))
sgn (xy )-min ([x], |yl)

The last form makes the behavior explicit. If the signs of x and y are the same, the result is
positive, and if the signs of x and y are different, the result is negative. The magnitude is the
lesser of x and y.

For example, these data sets have the same codeviation:
{(1,1), (2,2), (3,3)} and
{(1,1), (2,2), (3,99)}.

The codeviation has been given a formal derivation as a property of vectors which are orthogonal



under the £' norm. This argument is buttressed by supporting arguments from fuzzy logic and
by comparison to the covariance and the mean absolute deviation, which demonstrates
convincingly that codeviation is the correct £' measure of linear dependence. It is easy to
compute, and can be applied with reasonable success on real-world data. A practical application
remains to be discovered.
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Appendix: Gram-Schmidt Process under the L1 norm

Let u ¢ v denote %Z (Ju;+v| = Ju;—v]). To orthogonalize v against u, subtract the parallel
component from v. Seek a scalar c such that

(v-cu)ou=0

This reduces the problem to solving an equation of a single variable. The function

flc) = (v—cu)Ou =0

may be solved by bisection for c.

A set of vectors may be made orthogonal by a variant of Gram-Schmidt orthogonalization. The
normalization step must be deferred, because

(cx)0y # c(x0y)

so normalizing the vectors destroys orthogonality. However, an iterative method may be
employed, alternately normalizing a vector, then subtracting parallel components.

Unlike in Euclidean geometry, the shortest path from a point to a hyperplane is not orthogonal to
the hyperplane. This means that making a vector b orthogonal by the £1 isosceles criterion to a
set of vectors A does not lead to a solution to the linear system A x = b in the sense of
minimizing the residual Y_|A x—b|.

Existence and uniqueness of the orthogonal vector

From the orthogonality criterion, vector v' = v—cu will be orthogonal to u when
(v—cu)du =0

1
flc) = EZ |(Vi_cui) + “i‘ - ‘(Vi_cui) - ”i‘ =0
To show that the function is monotonic, differentiate with respect to c. Expanding the absolute
values gives
of _ 1 , v,—cu+u,<0
oc 2 2

-1 -1, v,—cu,—u;<0
+1, v,—cu+u;>0

+1, v,—cu;—u;>0

(_Ui) - (_Uz‘)

Since terms where u; is zero vanish, it may be taken u; # 0, and



V. .
-1, ¢>— -1, u>0 -1, ¢>—+1, u>0
u.
1 1
vi i
-1, c<—-1, u<0 -1, c<—+1, u<0
of 1 u; u;
_— = = Lli - ul
oc 2 Vi 2
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1 1

—‘u c>&—1 —|u c>ﬁ+1
of _ 1 i u, B l’ u,
oc 2 ‘ v, v,
ul‘ c<—-—1 |ul., c<—+1
u; u;
V.
0, c<——1
U;
of Vv, v
L=3 —lu|, ——-1l<c<—+1
oc u; u;
Vi
0, — +1<c
U;

The derivative with respect to c is negative or zero for all c. Therefore the function is
monotonically decreasing, although not strictly so.

For sufficiently large negative values of c, the quantities inside the absolute value bars are
dominated by the cu; term and the expression simplifies

hmf 12[ u+u) (i—cu,-—ul-), u>0

—(vi—cu+u;) + (vi—cu;—u;), u<0

= Z|ui‘

c>—o

For sufficiently large positive values of c, the absolute values again simplify

lim f(c 12 Z|

c>®©

vi—cu+uy) + (vi—cu—u;), u;>0
(vi—cuu;) — (vi—cu—u;), u;<0




For nonzero u, the function f{(c) is continuous, monotonic, and has values less than and greater
than zero. Its slope is zero only at its extreme values. Therefore the equation f(c) = 0 must
have a unique solution.
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A graph of a typical function f{c) illustrates the behavior.



